

DELOS Workshop on Evaluation of Digital Libraries Padova, Italy, 4 October 2004

> Christine L. Borgman Professor & Presidential Chair in Information Studies University of California, Los Angeles

> > &

Oxford Internet Institute University of Oxford, UK

## Outline of Talk

- DELOS WP 7 Goals
- Use and context for digital libraries
- Case studies
  - Alexandria Digital Earth Prototype (ADEPT)

- Center for Embedded Networked Sensing (CENS)
- Measures and metrics
- Discussion and conclusions

# Task 7.2: Evaluation Models and Methods



- Integrated research on DL evaluation
- Initial focus on specification of standard DL evaluation methods
- Starting with comparison and evaluation of existing evaluation methodologies
- $\rightarrow$  DL evaluation workshop

## Digital Libraries

- Systems that support searching, use, creation of content
- Institutions with people, digital collections, and services
- *Repositories* of digital data and documents, as a component of cyberinfrastructure / e-science / e-social science (etc.)
  - Primary data: scientific data from sensors, labs, field work
  - Secondary sources: published articles, monographs, reports
  - Teaching resources: lectures, labs, exercises, exams, illustrative documents and images

## Cyberinfrastructure / e-Science

- Link human expertise, data, information, computational models, sensor arrays, specialized facilities
- Create new pathways for research
- Create "cyberinfrastructure enabled knowledge communities"
- Create community-specific knowledge environments for research and education (Atkins, 2004)

#### "Knowledge Communities" and Digital Libraries

- What are the scope and boundaries of "knowledge communities"?
  - Disciplines?
  - Collaboratories?
  - Workgroups?
  - Epistemic cultures?
- What is the relationship between digital libraries and "knowledge communities"?
  - Cyberinfrastructure enables new forms of distributed collaboration
  - Data sources, shared repositories, are essential components of scientific collaboration"
  - Sharing of resources is economically efficient for researchers, institutions, funding agencies, and societies (David & Spence, 2003)

## Primary and secondary resources

- Digital libraries of secondary resources
  - Published documents
  - Scholarly products
  - Record of research
  - Institutional role of libraries and librarians
- Digital libraries of primary sources
  - Raw data from research
    - Instrumented data collection (labs, sensor networks)

- Field notes
- Archival sources
  - Unique documents
  - Records of individuals and organizations

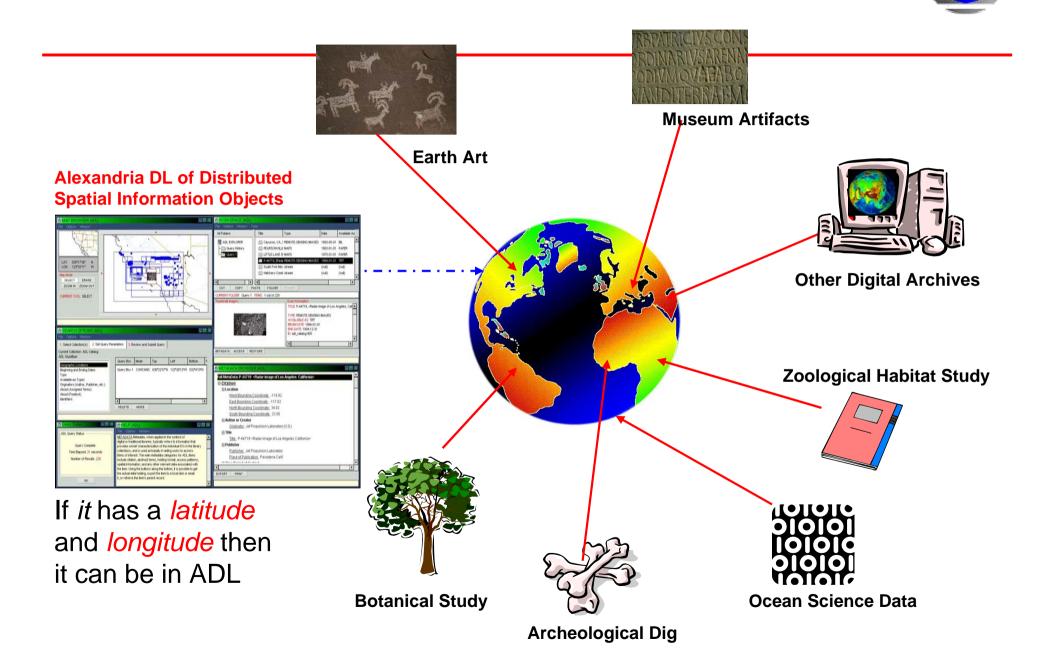
## Secondary sources (scholarly literature)

- Community orientation of researchers
  - publications are "end product" of research
  - incentive and reward system is based on publication
  - researchers contribute to digital collections (via publication)
  - publications are shared within invisible college
- Individual orientation of students
  - searchers of digital collections, not contributors
  - reliant upon search mechanisms and bibliographic control
- Digital libraries are "boundary objects" between experts and novices in a scholarly domain

## Primary sources (scientific data)-1

- Community orientation of researchers
  - Scientific databases are becoming "end product" of research in some fields
  - Practices for sharing scientific data are evolving along with development of cyberinfrastructure
  - Sharing practices may vary widely by research area
  - Establishing agreements for access to data, credit for publications, is fundamental to any collaborative project

- Providing context to interpret data
  - Scholarly publications *provide* context
  - Digital libraries *remove* context


## Primary sources (scientific data)-2

- Incentives to share data
  - Establish trust and reciprocity within a research group
  - Ability to mine large data sets, compare results
  - Ability to replicate experiments, studies
  - Requirement of some funding agencies
- Incentives *not* to share data
  - Rewards for publication, not for data management
  - Benefits of contributing data may accrue to other parties

- Risks of others analyzing and publishing your data
- Risks of misinterpretation of your data
- Risks of losing control over data
- Risks of loss of intellectual property

### Evaluating primary source DLs in context

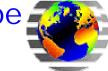
- Challenge: Design scientific digital libraries that will support research *and* teaching applications
- Goals:
  - Leverage investment in scientific data
  - Improve science instruction via inquiry learning
  - Provide services to use and share these data
  - Evaluate usefulness of digital libraries
- Case studies:
  - Alexandria Digital Earth Prototype (ADEPT)
  - Center for Embedded Networked Sensing (CENS)





### ADEPT Project: Geospatial digital libraries

### □ Goals


- Add services to Alexandria Digital Library for teaching undergraduate courses in geography
- Facilitate inquiry learning by providing access to primary sources

### User communities

- Faculty, as researchers
- Faculty, as teachers of undergraduate courses
- Undergraduate students

#### Activities to be supported

- Information searching and retrieval
- Composing lectures that incorporate text, concepts, and objects
- Constructing learning modules in which students can formulate and test hypotheses



### Socio-technical studies and methods-1

- 1. Iterative design and classroom deployment of prototype virtual learning environments
  - Classroom observations, interviews with faculty, students, teaching assistants
  - o Analysis of teaching materials (lectures, assignments, exams)
- 2. Faculty perspectives on the use of digital libraries for teaching geography
  - o Interviews in faculty offices
- 3. Teaching assistant roles in the use of information technology for instruction
  - o Interviews, observations in lab sessions
- 4. Faculty information seeking for research and teaching
  - o Interviews in faculty offices

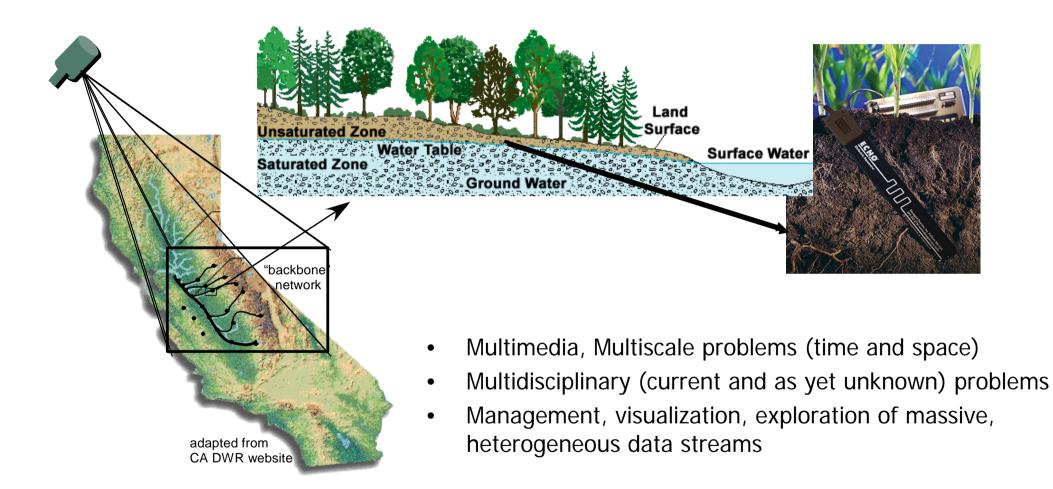
# ° 🥸

### Socio-technical studies and methods-2

- 5. Student use of primary sources for inquiry learning
  - Interviews with students and faculty; analysis of student work
- 6. Adoption of digital libraries for undergraduate instruction
  - o Assessment of take up rate for prototypes
- 7. Concept maps: How geography instructors organize teaching concepts
  - o Classroom observations, videotaping, interviews
- 8. Metadata requirements for educational applications of geospatial digital libraries
  - o Analysis of search queries, information seeking behavior, comparison to available metadata standards



## Some ADEPT Results (1999-2004)


### Information seeking by geographers

- Research: typical library use, online searching
- Teaching: irregular, non-directed, often a by-product of research activities
- □ Information resources used by geographers
  - Research: varies by specialty; all want maps and images
  - Teaching: varies by course; all want maps and images
- □ Search queries of geographers
  - Research: concept, place (place name, latitude/longitude)
  - Teaching: concept, place, process (examples of erosion, population movements, etc.)
- □ Use of primary data in instruction
  - Preference for use of own research data
  - Tools to manage own research data would make DL teaching services more attractive



# Data models for habitat monitoring and sensor networks

UCLA USC UCR CALTECH CSU





### Center for Embedded Networked Sensing: Education and Data Management Projects

- Goals
  - Make data from sensors useful for scientists on our research team
    and for other scientific communities
  - Make data from sensors useful for teaching high school science
  - Facilitate inquiry learning by providing access to scientific data by teachers and students
- User communities
  - Research scientists (habitat ecology, seismology)
  - High school science teachers (biology and physics)
  - High school students
- Activities to be supported
  - Scientific data management by scientists
  - Constructing learning modules in which students can formulate and test hypotheses

UCLA USC UCR CALTECH

CSL

 Experimental design and execution by "tasking" sensors for students



## Methods and metrics

- Formative evaluation
  - Attending workgroup meetings of scientific teams
  - Analyzing work products of scientific teams (datasets, websites, publications)
  - Interviewing individual faculty
  - Visiting primary research site
    - Two-day research retreat at James Ecological Reserve, August 2004
  - Identification and assessment of available
    - Data repositories
    - Metadata standards and structures
  - Collaboration with ecology and seismic teams to assess repository requirements

UCLA USC UCR CALTECH CSU



## Some CENS Results-1

- CENS has committed to sharing data; Center participates in NEON, NEESgrid, and related initiatives
- Maturity of data management practices varies widely by knowledge community
  - Seismic: Contributing data to community repository (IRIS) in standard format (SEED) for many years
  - Habitat ecology: Recent commitment to community repository (Morpho) in standard format (environmental metadata language); not yet implemented
  - Avian biology (localization of birdsongs): Sophisticated knowledge of data management issues, draws on practices from multiple disciplines
  - Education: Standards exist but high school teachers have little or no knowledge of them

UCLA USC UCR CALTECH CSU



## Some CENS Results-2

- No metadata models exist that will address needs of all CENS scientific applications
  - Discipline / community specific standards needed
    - Environmental Metadata Language for biocomplexity data
    - SEED for Seismic data
  - Technology standards may bridge scientific communities
    - Sensor Markup Language to describe instruments
  - Geospatial coordinates required for most applications
    - Geospatial data standards exists for 2D points
    - Context descriptors also needed (distance from sea level, local distance from ground, above/below leaf, north/south side of tree)

UCLA USC UCR CALTECH CSL

UCLA USC UCR CALTECH CSU

| ME ADATA FOR SENSOR                                                               | R DATA FOR HABITAT MONITORING                        |                                                   | METADATA FOR EDUCATION MODULES FOR HABITAT MONITOR |                               |                             |
|-----------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------|
| CENS Schema                                                                       | SensorML                                             | EML 2.0                                           | LOM                                                | GEM                           | ADN                         |
| CENS_Node.Node_Name<br>Name of Node                                               | Sml:IdentifiedAs (2.2.2)                             |                                                   |                                                    |                               |                             |
| CENS_Node.Node_Desc<br>Description of Node                                        | AssetDescription<br>:<br>sml:description<br>(2.2.12) |                                                   |                                                    |                               |                             |
| <b>CENS_Location.Location_ID</b><br>Unique location ID                            | <b>CrsID</b> (2.2.5)                                 | <b>Eml-Coverage</b> (2.4.4)                       |                                                    |                               |                             |
| <b>CENS_Location.X_Pos</b><br>(Position on X axis)                                | HasCRS (2.2.5)<br>ObjectState<br>(3.3.6)             | Eml-Coverage-<br>GeographicCover<br>ge<br>(2.4.4) |                                                    |                               |                             |
| <b>CENS_Location.Time_Recor</b><br><b>ded</b><br>Time location was captured       |                                                      | Eml-Coverage-<br>TemporalCoverage<br>(2.4.4)      |                                                    |                               |                             |
| CENS_Location.Time_Type_<br>ID<br>Refers to type of time of<br>Time_Type ID table |                                                      | <i>Eml-Coverage</i> (2.4.4)                       |                                                    |                               |                             |
|                                                                                   |                                                      |                                                   | Educational-Typical Age<br>Range<br>(5.7)          | Audience Age                  | Audience                    |
|                                                                                   |                                                      |                                                   | Life Cycle-Contribute (2.3)                        | Creator                       | Resource Creator            |
|                                                                                   |                                                      |                                                   | General-Coverage<br>(1.6)                          | Coverage-Spatial,<br>Temporal | Coverage (spatial temporal) |
|                                                                                   |                                                      |                                                   | Life Cycle-Date (2.3.3)<br>DateTime (8)            | Date                          | Creation date Acc<br>date   |
|                                                                                   |                                                      |                                                   | <b>General-Description</b> (1.4)                   | Description                   | Description                 |
|                                                                                   |                                                      |                                                   | Educational (5)                                    | Pedagogy                      | Educational                 |



#### **CENS Research Directions**

- Infrastructure goals for CENS
  - Support scientists' requirements for collecting, managing, preserving, sharing data
  - Develop modular, extensible metadata architecture (XMLbased)
  - Develop filtering tools to extract and visualize scientific data for educational applications
- Conduct behavioral studies of scientists, teachers, and students
  - How do they determine their data requirements?
  - What are their criteria for selecting, preserving data?
  - How do they use scientific data?
  - How do their uses evolve over time?
  - What are their incentives and disincentives to contribute data to repositories?

UCLA USC UCR CALTECH CSL

## Some potential methods and metrics

- Goal: Sustainability of digital library
  - Transfer of tools between participants
  - Adoption of standards
  - Evidence of scalability
- Goal: Usefulness to a community
  - Evidence of contributions to shared repository
  - Evidence of adoption, take up, use in practice
  - Evidence of using, enhancing available tools

24

- Evidence of re-use of contributed content

## **Discussion and Conclusions**

- Digital libraries may have a wide range of users and of uses
- Users and uses interact in complex ways
- Cyberinfrastructure / e-science may enable new forms of collaboration and use of digital resources
  - These are claims to be assessed; not results
  - Research on the interaction between uses and users of CI are needed

- Research is all about context, and DLs tend to remove context
- Incentives and disincentives to use DLs exist
- Evaluation of use
  - Real measure is whether the DL is used

## Acknowledgements

- ADEPT is funded by National Science Foundation grant no. IIS-9817432, Terence R. Smith, University of California, Santa Barbara, Principal Investigator.
  - ADEPT collaborators: Gregory Leazer, Anne Gilliland, Richard Mayer
- CENS is funded by National Science Foundation Cooperative Agreement #CCR-0120778, Deborah L. Estrin, UCLA, Principal Investigator.
  - CENS collaborators: Jonathan Furner, William Sandoval, Noel Enyedy, Michael Hamilton