
Maristella Agosti
Hans-Jörg Schek
Can Türker (Eds)

Digital Library Architectures:
Peer-to-Peer, Grid, and Service-Orientation

Pre-proceedings of the Sixth Thematic Workshop of
the EU Network of Excellence DELOS

S. Margherita di Pula, Cagliari, Italy
24-25 June, 2004

Edizioni Libreria Progetto Padova

Preface

DELOS is an interdisciplinary EU FP6 Network of Excellence with a broad
vision: Future digital libraries should enable any citizen to access human knowl-
edge any time and anywhere, in a friendly, multi-modal, efficient and effective
way. The main objective of DELOS is to define and conduct a joint program of
activities in order to integrate and coordinate the ongoing research activities of
the research teams in the field of digital libraries for the purpose of developing
next generation digital library technologies.

Various newer computing areas like peer-to-peer, grid, and service-oriented
computing provide new opportunities and challenges for architectures of future
digital libraries. Peer-to-peer data management allows for loosely coupled inte-
gration of information services and sharing of information such as recommen-
dations and annotations. Grid computing middleware is needed because certain
services within digital libraries are complex and computationally intensive, e.g.,
extraction of features in multimedia documents to support content-based similar-
ity search or for information mining in bio-medical data. The service-orientation
provides mechanisms to describe the semantics and usage of information ser-
vices and to combine services into workflow processes for sophisticated search
and maintenance of dependencies. It is obvious that elements of all three direc-
tions should be combined in a synthesis for future digital libraries architectures.

This volume contains the papers accepted for the Sixth Thematic Workshop
of the EU Network of Excellence DELOS on Digital Library Architectures, S.
Margherita di Pula (Cagliari), Italy, 24-25 June, 2004. This workshop is co-
located with the 12th Italian Symposium on Advanced Database Systems (SEBD
2004) and it is organized jointly by the DELOS Network of Excellence and the
Department of Information Engineering of the University of Padua. The accepted
workshop papers address a broad range of issues in digital library architectures,
and thus will provide many starting points for interesting discussions.

Finally, we would like to thank all the persons that have contributed directly
or indirectly to the organization of this workshop. Specifically, we want acknowl-
edge much help by Nicola Ferro, Emma Liere, Francesca Borri, and Bruno Le
Dantec. Last but not least, we thank the members of the program committee
for helping in selecting the papers as well as the authors who have submitted a
paper to this workshop.

Maristella Agosti, Hans-Jörg Schek, and Can Türker June 2004

VI

Program Committee

Maristella Agosti University of Padua, Italy
Elisa Bertino University of Milano, Italy
Donatelli Castelli CNR-ISTI, Italy
Stavros Christodoulakis Technical University of Chania, Greece
Wilhelm Hasselbring OFFIS Oldenburg, Germany
Yannis Ioannidis University of Athens, Greece
Martin Kersten CWI Amsterdam, Netherlands
Liz Lyon UKOLN Bath, United Kingdom
Erich Neuhold FhG Darmstadt, Germany
Hans-Jörg Schek ETH Zurich, Switzerland/UMIT Innsbruck, Austria; chair
Heiko Schuldt UMIT Innsbruck, Austria
Can Türker ETH Zurich, Switzerland; co-chair
Gerhard Weikum MPI Saarbrücken, Germany
Pavel Zezula Masaryk University Brno, Czech Republic

Links

Web page of the workshop: http://www.dbs.ethz.ch/delos/
Web page of the DELOS project: http://www.delos.info/

Table of Contents

Moving to the Grid

Pyragrid: Bringing Peer-to-Peer and Grid Architectures Together 1
Stratis D. Viglas

Moving Digital Library Service Systems to the Grid 13
Leonardo Candela, Donatella Castelli, Pasquale Pagano, Manuele Simi

Hyperdatabase Infrastructure for Management and Search of
Multimedia Collections . 25
Michael Mlivoncic, Christoph Schuler, Can Türker

Data Stream Management and Digital Library Processes on Top of a
Hyperdatabase and Grid Infrastructure . 37
Manfred Wurz, Gert Brettlecker, Heiko Schuldt

Information Access

Supporting Information Access in Next Generation Digital Library
Architectures . 49
Ingo Frommholz, Predrag Knežević, Bhaskar Mehta, Claudia Niederée,

Thomas Risse, Ulrich Thiel

Towards Collaborative Search in Digital Libraries Using Peer-to-Peer
Technology . 61
Matthias Bender, Sebastian Michel, Christian Zimmer, Gerhard

Weikum

Web Services for Peer-to-Peer Resource Discovery on the Grid 73
Domenico Talia, Paolo Trunfio

Use of Distributed Resources

Collaboration of loosely coupled repositories using peer-to-peer paradigm 85
András Micsik, László Kováks, Robert Stachel

A P2P and SOA Infrastructure for Distributed Ontology-Based
Knowledge Management . 93
Nektarios Gioldasis, Nikos Pappas, Fotis Kazasis, George Anestis,

Stavros Christodoulakis

A Hierarchical Super Peer Network for Distributed Artifacts 105
Ludger Bischofs, Wilhelm Hasselbring, Jürgen Schlegelmilch, Ulrike

Steffens

VIII

Advanced Services for Digital Libraries

An Information Service Architecture for Annotations 115
Maristella Agosti, Nicola Ferro

Peer-to-Peer Overlays and Data Integration in a Life Science Grid 127
Curt Cramer, Andrea Schafferhans, Thomas Fuhrmann

Distribution Alternatives for Superimposed Information Services in
Digital Libraries . 139
Sudarshan Murthy, David Maier, Lois Delcambre

JDAN: a Component Architecture for Digital Libraries 151
Fabio De Rosa, Alessio Malizia, Massimo Mecella, Tiziana Catarci,

Luigi Cinque

Service Oriented Architecture

Analysis and Evaluation of Service Oriented Architectures for Digital
Libraries . 163
Hussein Suleman

Towards a Global Infrastructure for Georeferenced Information 175
Michael Freeston

Towards a Service-oriented Architecture for Collaborative Management
of Heterogeneous Cultural Resources . 183
Jérôme Godard, Frédéric Andrès, Elham Andaroodi, Katsumi

Maruyama

Workflow and Query Tasks

Supporting Multi-Dimensional Trustworthiness for Grid Workflows 195
Elisa Bertino, Bruno Crispo, Pietro Mazzoleni

Query Trading in Digital Libraries . 205
Fragkiskos Pentaris, Yannis Ioannidis

Scalable Similarity Search in Metric Spaces . 213
Michal Batko, Claudio Gennaro, Pasquale Savino, Pavel Zezula

Author Index . 225

Pyragrid: Bringing Peer-to-Peer and Grid

Architectures Together

Stratis D. Viglas

School of Informatics

University of Edinburgh, UK

sviglas@inf.ed.ac.uk

Abstract. Peer-to-peer and Grid architectures share common abstrac-

tions with respect to storage and computing functionality. To date, how-

ever, there has been little insight on how the architectures can be bridged.

The purpose of this paper is to start the discussion on how this can be

achieved. In particular, we present a system called Pyragrid and its ar-

chitecture. The system borrows the principle of locating data used in a

peer-to-peer system and extends it to more complex functionality and

types of processing. The Pyragrid architecture aims at capturing generic

distributed computing paradigms, irrespective of their specific field. As

an instance of a system built on top of the Pyragrid architecture, we

present PyraDB, a novel distributed database system.

1 Introduction

In the past few years there has been an evident research turn towards distributed
computing. Peer-to-peer systems (P2P) are the token distributed system archi-
tecture, focussing mainly on exploiting the huge storage infrastructure provided
by a collection of interconnected machines. The P2P premise is collaborative

sharing: everything is available to everyone, so long as there are ways of access-
ing the information. On the other hand, Grid computing has emerged as the most
serious contender for scientific and computation-intensive applications. The Grid
premise is collaborative computation: every machine in the Grid can undertake
computation for everyone, so long as there are computational cycles to spare.
Schematic descriptions of the two architectures are presented in Fig. 1(a) and
Fig. 1(b). The purpose of this paper is to start the discussion on bridging the two
areas. Though the two areas seem diverse at first inspection, they have rather
complementary functionalities, and this is what we will attempt to exploit.

A P2P system is rather chaotic in nature1 as there is no clear and static
concept of a network. Machines in a P2P system, referred to as peers, join and
leave the network at will. Each time they join new data becomes available; each

1 There is, of course, the concept of structured P2P systems, but a pure P2P system

is one that is not organised; rather, peers join and leave on demand and a static

structure is never assumed. In subsequent discussion we will only refer to pure P2P

systems.

2 S. D. Viglas

(a) A P2P system

D a t a G r i d
C o m p u t a t i o n a l G r i dH i g h � s p e e d c o n n e c t i o n

(b) A computational and a

data grid

D a t a P e e r s
C o m p u t a t i o n a l P e e r sH i g h ' s p e e dp e e r c o n n e c t i o n s

(c) The Pyragrid architecture

Fig. 1. P2P, Grid, and PG architectures

time they leave data ceases existing. The situation, however, is not always as
clear since, when a peer leaves the network, there is a high probability that its
data has been “shared” with some other peer; so, the data continues being “live”
even after the peer that introduced it into the network leaves. The challenges in
this scenario are making sure data is available, and minimizing the time needed
to access the data by providing fast lookup functionality. At the same time
the system needs to be load-balanced, so that peers are not overloaded with
retrieval requests, and fault-tolerant, in the sense that peers joining and leaving
the network should not affect its performance.

A Grid architecture can be conceptually decomposed into two layers: the data

grid and the computational grid. The data grid presents a massive, interconnected
storage infrastructure, connected to the computational grid via a high-speed net-
work connection. The computational grid is the virtual single machine created
by bringing together a large collection of independent hosts. Various ways of
collaboration can be implemented on top of the virtual machine. The intercon-
nection network at the computational grid level allows for communication across
hosts, while the high-speed data connection to the data grid layer allows for data
availability and fast exchange of information.

The greatest challenge in bridging the two architectures is combining the
chaotic nature of a P2P system with the structured approach of the Grid. To do
so, one needs to look at the big picture and identify not the architectural differ-
ences, but rather the shared objectives of the two frameworks. The conclusion is
that a P2P system can act as the data grid of a larger Grid architecture. At the
same time, the collaborative nature of the Grid can enrich the functionality of a
P2P system. What we propose is a hybrid architecture, which we term Pyragrid2

(PG), shown in Fig. 1(c). The PG architecture aims at using the P2P function-
ality as the infrastructure for both the computational and the data layers of the
Grid. Collaboration in PG is achieved through the use of a high-level processing
abstraction, termed the Operator Graph Model (OGM). It is used to capture
the operations to be undertaken by a complex processing request and decom-
pose it into problems of lower complexity. These sub-problems will be solved in

2 The name is a euphemism for “Peer” and “Grid” combined in a single well-sounding

word.

Pyragrid: Bringing Peer-to-Peer and Grid Architectures Together 3

a collaborative fashion. The lookup functionality of P2P systems will be used
to identify relevant data and computing resources.

As a first instance of the PG architecure, we envision a distributed database
system prototype: PyraDB. The physical algebra employed by contemporary
database systems will be mapped to the OGM, allowing for queries issued to
the system to be decomposed in terms of the OGM. Relevant lookup operations
to locate the necessary sources will be performed and the query will be evaluated
in a collaborative fashion. By employing P2P primitives, the system affords to be
completely dynamic in terms of data and computing resources being introduced,
while at the same time guaranteeing load balancing and fault tolerance.

The remaining of this paper is organized as follows. Introductory background
information on distributed processing using P2P or Grid systems is presented in
Section 2. The PG architecture is presented in more detail in Section 3, while the
mapping to PyraDB is presented in Section 4. Finally, related work is presented
in Section 5, while conclusions are drawn in Section 6.

2 Background Information

In this section we will provide some more detail into the underlying structures
of both Grid and P2P systems. In particular, we will concentrate on the lookup
functionality of both.

2.1 Grid Information Service

A basic assumption of Grid architectures is that the system is highly structured.
Though there are many proposals on Grid information systems [2], the idea is
always the same. Computers participating in a Grid employ the information of
a registry so that the remaining Grid participants can be located. This is not
much different than what happens in traditional data networks.

The idea translates to the Grid, since a Grid can be thought of a special-
ized data network. Since it is specialized, however, there is extra information
that needs to be monitored, such as processing capabilities of the participating
machines; various annotations pertinent to the workflows that are taking place;
and information on process migration just to name a few. An instance of such a
service is shown in Fig. 2(a) where we have chosen to present the information as
a relational table containing entries on the symbolic name of machines, their IP
addresses in the Grid and various types of information. This is merely one way
of implementing Grid information services; many others exist. To date there has
not been a single standard as to how Grid information services are to be real-
ized. All proposals, however, share the same concept of a registry that contains
all relevant information about the machines of the Grid. The registry need not
be centralized, it could be distributed a la DNS; the concept, however, is that,
virtually, a well-defined central information service exists.

4 S. D. ViglasN a m e I Pa b c 1 2 3.x y z 2 5 4 i n f o.G r i d r e g i s t r y
(a) Grid registry

i d s p a c ed a t a o b j e c tp e e rh d (d)c l o s e s ts u c c e s s o r d
(b) Mapping of data objects

to peers in a DHT

(c) A Chord ring; different line

styles denote different connec-

tion classes

Fig. 2. Grid information services, DHT principles and the Chord overlay

2.2 Distributed Hash Tables

One key idea behind a P2P system is a distributed catalog, i.e., a way of quickly
locating data in the network. The best-known example of such a structure is
a distributed hash table (DHT). A DHT essentially maps a data object to the
peer of the system that is responsible for it. The process, presented in Fig. 2(b),
is the following:

– Peers are mapped to a discrete domain, which contains much more elements
than the number of peers in the system; this domain is referred to as the
id space I of the DHT. Mapping is done in terms of a hash function hp.
Assuming that there is a domain P of peers in the system, then the hash
function hp is defined as hp : P → I.

– The data objects are hashed by employing a different hash function hd that
maps them to the same id space I. Assuming a data domain D, the hash
function hd can be defined as hd : D → I.

– For a data object d ∈ D, the peer p ∈ P is chosen to store it, such that
hp(p)− hd(d) is minimized. In other words, p is the closest successor of d in
the id space.

The DHT is the principle behind mapping data objects to peers in a P2P

system. What remains is an efficient way of routing requests to peers in the sys-
tem. This is the overlay network structure of the system, i.e., a virtual network
of connections imposed over the peers of the system. Perhaps the best-known
example of such an overlay network is the Chord ring [13], shown in Fig. 2(c).
The concept behind a Chord ring is that each peer in the overlay network is
connected to log m other peers, where m is the total number of peers in the
system. There are log m connection classes altogether. Each of the log m connec-
tions of each peer belongs to a class, according to what the distance between the
originating peer and the destination peer is. For example, in Fig. 2(c), there are
four connection classes (shown with different types of lines): one for connections
between peers with a distance of one, one for connections between peers with a
distance of two, and so on. Routing is performed in terms of these connections

Pyragrid: Bringing Peer-to-Peer and Grid Architectures Together 5

following a simple rule: at most one class of connection can be used to route a
message from originating peer po to destination peer pd. This means that at most
log m “hops” will be made to route a single message. Chord rings also provide
other guarantees with respect to fault tolerance and load balancing.

The PG architecture, as it will be presented in subsequent sections, is largely
independent of the overlay network. It only assumes the existence of a DHT; it
can therefore be used by any overlay network structure, as long as that structure
provides DHT-style lookup functionality.

3 Pyragrid Architecture

In this section we will concentrate on the envisioned architecture for Pyragrid.
The premise of any distributed processing paradigm has been that it is easier to
move the processing to the data than vice versa. It is therefore the same premise
that fuels the PG architecture. Of course, it is inevitable that some data will
have to be moved around; the objective, however, it to minimize data movement.

The key idea is using a single namespace for three concepts that have been
traditionally treated as distinct: peers, data and operations over the data. This is
achieved is by use of what is termed the PG Operator Graph Model (OGM). As
we will see, this leads to a uniform way of characterizing both the location of the
data in the system’s namespace, as well as the local processing that needs to be
performed on the data. Localizing processing is achieved through decomposing
larger operations into basic operations that can be locally evaluated.

3.1 High-level Description

In this section we will present a high-level description of the PG architecture.
In the next section we will move on to the details of the PG OGM that enables
the realization of the architecture.

Central to the PG architecture is the concept of a resource. We assume there
are two basic types of resources available:

– Data resources: The data stored by each peer. The storage infrastructure is
a DHT, which allows for each peer to route requests for a particular data
object to the peer that is responsible for storing it.

– Computing resources: The processing capabilities of each peer. Computing
resources can be thought of as functional ways of manipulating the data
resources. There is a fixed set of primitive computing resources that can be
composed to allow for more complex processing.

The separation of resources into data-centric and computation-centric allows
the system to have a clear and consistent way of addressing each request that it
receives. Given this modeling, the system undertakes three main tasks:

1. Given data retrieval requests, identify the peers that are responsible for the
data that is to be retrieved.

6 S. D. ViglasP r o c e s s i n gr e q u e s tR e s o u r c ei d e n t i fi c a t i o n O p e r a t o rg r a p hC o m p u t a t i o nr e s u l t s
D a t ap r o c e s s i n gP y r a g r i d P e e r s

(a) Computation in the PG architecture

P e e r 1
P r o c e s s i n g o p e r a t i o nM o v e m e n t o p e r a t i o n C o m p u t i n g r e s o u r c eD a t a r e s o u r c e

P e e r 2
P e e r 3 P e e r 4

(b) The operator graph for a com-

plex computation

Fig. 3. Schematics of how processing requests are handled in PG

2. Given computational requests, identify the peers that are capable of per-
forming them.

3. Combining the above two in order to process complex computational prob-
lems. This means that either computing resources are shipped to peers that
contain the relevant data, or vice versa. Of course, the first alternative is
preferable.

The underlying principle of tackling the enumerated tasks is a generalized
version of a DHT, as this was explained in Section 2.2. In more detail, all
resources, independent of their type, are hashed and mapped to the peers of
the system. Data resources are hashed on the types of their values, as well as
the values themselves. Each computing resource has a name, and an abstract
representation of the types of inputs it accepts and outputs it produces. This is
called the signature of the computing resource. The id space in which peers, data
resources and computing resources are mapped is common for all three types of
entities, so the DHT principle is satisfied.

Each complex request is decomposed in terms of the OGM (further explained
in Section 3.2) and routed to the peers of the system for processing. There is
a fixed set of primary computing resources that can be made available by the
peers. As in the case of data resources, not all peers are expected to have all
computing resources available. The entire process is presented in Fig. 3(a). Each
processing request is handled in two steps. First, an analysis of the request is
performed at the peer receiving it, which results in a mapping of the request
to the OGM. This triggers a number of DHT lookup operations so that the
peers containing the relevant data and computing resources are identified. This
leads to the building of the operator graph for the processing request, which is a
roadmap of how the processing request can be satisfied by the system in terms
of data and computing resource movement, as well as processing. The second
step involves the actual computation, where the operator graph is traversed and
the results of the computation are shipped back to the requesting entity.

Pyragrid: Bringing Peer-to-Peer and Grid Architectures Together 7

A schematic of an operator graph is presented in Fig. 3(b), while it will be
more formally defined in Section 3.2. Circles indicate computing resources, while
triangles indicate data resources. Solid arrows indicate processing steps, while
dashed arrows indicate resource movement. Finally, boxes indicate local process-
ing. The first step in traversing the operator graph is shipping available resources
to nodes so that computation can be initiated. Local processing then takes place
in parallel across the peers, with necessary intermediate result movements acting
as “joining” points for the computation.

In this representation, there is a “hidden” optimization problem. The graph
is set up in such a way so that the total resource movement (whether it is data
or computing resource movement, or even movement of intermediate computa-
tional results) is minimized. This implies a cost-based optimization modeling.
The system uses an objective function that takes into account the relative sizes
of data and computing resources, as well as the (possibly estimated) sizes of
intermediate computational results.

3.2 Pyragrid Operator Graph Model

The PG processing model is based on the PG OGM. The OGM is an abstraction
of all the operations that are necessary in order to satisfy a complex processing
request. We assume there are three domains in the system: (i) the peer domain
P, which is the domain peer identifiers are derived from, (ii) the data domain
D, which is the domain data resource identifiers are derived from, and (iii) the
computing domain C, which is the domain computing resource identifiers are
derived from.

There are two types of operators in the OGM: (i) movement operations,
that model the movement of data or computing resources between peers; and
(ii) processing operations that capture all the processing steps needed to address
the request. The OGM is a graph comprised of various operations of each type.
In the next paragraphs we will formally define each.

Movement Operators The movement operators capture the parts of the
OGM that denote data or computing resource movement. The generic class
of movement operators is denoted as M and there are two subclasses. Sub-
class MD, henceforth referred to as the data movement subclass, denotes data
resource movement, while MC , henceforth referred to as the computing move-
ment subclass denotes computing resource movement. To present a compact rep-
resentation of the operators, we will use the following notation, which captures
preconditions and postconditions:

(pre) =: op := (post)

The semantics are that before operator op has been applied preconditions pre

hold. After operator op is applied postconditions post hold as well. The precondi-
tions continue to hold, unless stated otherwise. Additionally, the notation r ⊳ p

denotes that resource r is available at peer p.

8 S. D. Viglas

Operators of the data movement subclass all have the same signature. Each
operator µD ∈ MD of the subclass accepts as input a triplet consisting of a data
resource identifier d ∈ D and two peer identifiers. The first peer identifier po ∈ P

is the originating peer, while the second peer identifier pd ∈ P is the destination
peer. The data resource is available at the originating peer. After the operation
the data resource is available at the destination peer. Using our notation, this
can be expressed as:

d ∈ D, po ∈ P, pd ∈ P, d ⊳ po =: µD(d, po, pd) := d ⊳ pd

The corresponding can be written for each operator µC ∈ MC of the computing
movement subclass:

c ∈ C, po ∈ P, pd ∈ P, c ⊳ po =: µC(c, po, pd) := c ⊳ pd

Processing Operators Processing operators can be thought of as manipula-
tors of the data resources of a peer. We assume there is a class R of available
processing operators µR ∈ R. Each operator is executed in one of the peers of
the system and accepts as input the peer identifier and a set Di of local data
resources that it manipulates. It produces a new set of data resources Do as out-
put. The resulting data resources are local to the peer. Therefore, the signature
of all processing operators can be expressed as:

Di ⊂ D, p ∈ P, ∀d ∈ Di(d ⊳ p) =: Do = µR(D,p) := ∀d ∈ Do(d ⊳ p)

Operator Graph Composition The final step is composing the operator
graph for a processing request that the system accepts. The modeling we use is
the following. A processing request is accepted at one of the peers. The request
is analyzed so that the set of necessary data resources di ∈ D and the set
of necessary computing resources ci ∈ C are identified. Each data resource is
denoted by a triangle in Fig. 3(b)’s graph, while each computing resource is
denoted by a circle. The identification of resources leads into the forming of
the “movement” part of the graph, which is denoted by the dashed arrows in
Fig. 3(b). Each dashed arrow corresponds to a data movement operator, either
µD or µC depending on the subclass of movement operation the operator belongs
to (correspondingly, MD or MC).

The next step is combining the computing resources in order to form pro-
cessing operations over the data of the system. This is depicted by solid arrows
in Fig. 3(b). Note that the result of a processing operation may be directly
“fed” into a subsequent processing operator (e.g., Peer 4 in Fig. 3(b)’s operator
graph), or stored as a new data resource. The data resource may then be further
moved to another peer so that the complete operator graph is formed (e.g., the
movement from Peer 3 to Peer 4 in Fig. 3(b)’s operator graph).

Pyragrid: Bringing Peer-to-Peer and Grid Architectures Together 9

4 PyraDB: A Pyragrid Database Prototype

The first step towards addressing the viability of the PG approach is to map
it to a well-defined processing paradigm. The paradigm so chosen is a database
system. The reasons for this choice are the following:

– A database system is traditionally expected to store massive amounts of
data; the same is expected of a data grid or a P2P system. It seems natural
to build a database system on top of an architecture like PG, which combines
the two.

– There is a clear mapping from the PG OGM to the physical algebra used by
database systems. The algebraic operators, which form the procedural way
of expressing relational queries, become PG operators.

– Old ideas of relational algebraic operator decomposition [3, 4], coupled with
recent advances in data stream query evaluation [9, 15], allow for completely
asynchronous and assymetric evaluation of queries. The consequence is that
it is easier to decompose queries into in a way that facilitates local compu-
tation.

In the next few sections we will present how the PG OGM can be mapped to
query evaluation algorithms and to the execution model employed by database
systems in general. We will also discuss some initial thoughts on query optimiza-
tion in PyraDB, as well as system evolution.

4.1 Query Execution

Query execution has been traditionally addressed in terms of an execution plan,
i.e., a tree that captures the physical operators used in the evaluation of a query,
along with their interconnections. An instance of an execution tree is shown in
Fig. 4(a). This paradigm can be mapped to the PG OGM. The differences lie
in that not only do we have to account for the actual operator processing, but
also for the data movement across peers of the system.

The execution plan of Fig. 4(a) is depicted as an operator graph, following
the conventions of the PG OGM, in Fig. 4(b). There, we see that the physical
logical operators are captured as PG operators in the OGM. Moreover, two
peers cooperate in evaluating the query. A temporary result is moved from one
peer to another in order for the computation to complete. Note that local com-
putation may in fact be completely asynchronous, as is implied by the use of
an asynchronous join processing operator like symmetric hash join [17]; parts
of the evaluation can be performed in parallel and the results asynchronously
transferred between nodes for faster response time.

4.2 Query Optimization

The optimization paradigm employed by database systems ever since the seminal
work of [12] has been cost-based query optimization. Simply put, the query

10 S. D. Viglas

I n d e xs c a n S . aT a b l e s c a n RP r o j e c tR . a , R . b , R . c P r o j e c tS . a , S . cH a s h � j o i nR . c = S . cP r o j e c tR . a , R . b , S . a
(a) A database execution plan

I n d e x S . aT a b l e R M o v e f r o m P 2t o P 1P r o j e c tR . a , R . b , R . cS y m m e t r i ch a s h ¿ j o i nR . c = S . c I n d e x s c a n P r o j e c tS . a , S . cS t o r e r e s u l tP r o j e c tR . a , R . b , S . a P 2P 1
(b) The execution plan in PyraDB

Fig. 4. Mapping from an execution plan to OGM

optimizer iterates over alternative execution plans, estimates the cost of each
plan and picks the plan with the minimum estimated cost. The basis for the
cost model used has traditionally been the cardinality of the inputs. The logic
behind the choice is that what really “hurts” performance in a database system
is disk I/O and cardinality is a good metric of how much disk I/O is needed to
evaluate a query.

Cost-based query optimization is of course applicable in the case of PyraDB;
however, we need to tailor it to the distributed execution environment. First of
all, cardinality is not the only metric that captures the cost of an alternative
execution plan for the query. Since we are operating in a distributed execution
environment, we have to take into account that data will be moved around so
the rates [16] at which we can receive the data from the various peers become
important. Moreover, as we have mentioned, it could be the case that necessary
algorithms will have to be shipped to the peers (the computing resource move-
ment operators of Section 3.2); in this scenario we care for the “raw” size of data
movement, whether it is a data resource or a computing resource, rather than
the cardinality (which is not even applicable for computing resources). Finally,
we have mentioned that part of the PG architecture is locating the relevant
sources in the first place. This cost needs to be taken into account when deriving
the cost model of the system.

4.3 System Evolution

The system evolves in two ways. The first one is quite straightforward: by the
introduction of data resources. As in the vein of a P2P system, the PG ar-
chitecture allows the introduction of a new data resource and therefore a new
queryable source for PyraDB. Once these resources are stored in the system’s
distributed catalog, they are available for querying by any peer of the system.

Perhaps more surprisingly, the system evolves in another way: by introducing
new computing resources. In the PyraDB case, a new computing resource may
indeed be a new query evaluation algorithm. For instance, consider the case
where a new join processing algorithm becomes available to the system. Its

Pyragrid: Bringing Peer-to-Peer and Grid Architectures Together 11

signature is then known by some of the peers and the operator slowly propagates
through the system. Contrast this with the case of a centralized or traditional
distributed database system, where the introduction of a new algorithm implies
the whole query engine and optimizer being recompiled to take into account
the new algorithm. This description is admittedly simplistic, in the sense that
even for PyraDB the introduction of a new algorithm will have to take some
amount of “restructuring” (e.g., the cost function of the algorithm needs to be
propagated and incorporated into optimization decisions). This restructuring,
however, is minimal in comparison to a specialized database system that is not
executed on top of a flexible architecture like the PG architecture.

5 Related Work

A host of Grid-related projects exists [14]. Computational grids like Condor [10]
and Globus [5] aim at providing an operating system-like abstraction to compu-
tation. Jobs are submitted to a pool of cooperating computers and the system
undertakes the task of employing the entire pool to carry out the computation
by taking advantage of idle computers and migrating the process to them. Both
systems address the computational grid aspects rather than the data grid ones.

Workflow-based database systems are also relevant, in the sense that they
employ a database system for storage and data access. They then use the work-
flow of a scientific computation as the primitive under which data is retrieved
from the database and manipulated. To the best of our knowledge, ZOO [1, 8] is
the only such system to make this connection. In contrast to the PG approcach,
however, ZOO is not aimed to be used in a distributed computing environment.

Implementation of a database system over the Grid is examined in [11], while
over a P2P system in [6, 7]. The PyraDB proposal is different from both Grid and
P2P databases since it does not rely on any central catalog (as is the case in [11])
and allows for computing resource identification and movement, something that
is not the case in either [6] or [7].

6 Conclusions

We have presented Pyragrid, a system architecture that bridges the gap between
P2P systems and the Grid. The novelty of the architecture lies in the classifica-
tion of system resources into data and computing resources, the same separation
that is found in the distinction between computational and data grids. This sep-
aration, however, is only conceptual in the Pyragrid architecture. The system
employs a distributed hash table to map both types of resources to the peers
of a larger system. Handling of processing requests is performed by first de-
composing the request in terms of its constituent data and computing resources
and locating those resources (much in the same way that a peer-to-peer system
locates relevant data). Once the resources are identified, an operator graph is
composed that captures all operations that need to be performed so that the pro-
cessing request is satisfied. The operators of the graph capture the movement

12 S. D. Viglas

of data and computation from peer to peer, as well as the processing taking
place at each peer. As a first step towards assessing the viability of the Pyragrid
approach, we presented PyraDB, a prototype database system built on top of
the Pyragrid architecture. We showed how query evaluation principles can be
mapped to Pyragrid’s operator graph model and briefly touched on aspects of
query execution, query optimization and system evolution.

Acknowledgements. This work was funded by the DELOS Network of Excel-
lence for Digital Libraries.

References

1. Anastassia Ailamaki et al. Scientific Workflow Management by Database Manage-

ment. In Proceedings of SSDBM, 1998.

2. Rob Allan et al. Grid Information Systems (Draft). Technical Report UKeS-2003-

04, UK National e-Science Center, December 2003.

3. Philip A. Bernstein and Dah-Ming W. Chiu. Using Semi-Joins to Solve Relational

Queries. JACM, 28(1):25–40, 1981.

4. Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.

CACM, 13(7):422–426, 1970.

5. Ian T. Foster. The Globus Toolkit for Grid Computing. In Proceedings of CCGRID,

2001.

6. Matthew Harren et al. Complex Queries in DHT-based Peer-to-Peer Networks. In

Proceedings IPTPS, 2002.

7. Ryan Huebsch et al. Querying the Internet with PIER. In VLDB Conference,

2003.

8. Yannis E. Ioannidis et al. ZOO : A Desktop Experiment Management Environment.

In VLDB Conference, 1996.

9. Jaewoo Kang, Jeffrey F. Naughton, and Stratis D. Viglas. Evaluating Window

Joins over Unbounded Streams. In ICDE Conference, 2003.

10. Michael J. Litzkow et al. Condor - A Hunter of Idle Workstations. In Proceedings

of ICDCS, 1988.

11. David T. Liu and Michael J. Franklin. GridDB: A Data-Centric Overlay for Sci-

entific Grids. In VLDB Conference, 2004.

12. Patricia G. Selinger et al. Access Path Selection in a Relational Database Man-

agement System. In SIGMOD Conference, 1979.

13. Ion Stoica et al. Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-

plications. In SIGCOMM Conference, 2001.

14. United Devices. Grid computing projects, 2004. http://www.grid.org.

15. Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the Output

Rate of Multi-Way Join Queries over Streaming Information Sources. In VLDB

Conference, 2003.

16. Stratis D. Viglas and Jeffrey F. Naughton. Rate-Based Query Optimization for

Streaming Information Sources. In SIGMOD Conference, 2002.

17. Annita N. Wilschut and Peter M. G. Apers. Pipelining in Query Execution. In

Conference on Databases, Parallel Architectures and their Applications, 1991.

Moving Digital Library Service Systems to the

Grid

Leonardo Candela, Donatella Castelli, Pasquale Pagano, and Manuele Simi

Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” - CNR

Via G. Moruzzi, 1 - 56124 PISA - Italy

{candela, castelli, pagano, simi}@isti.cnr.it

Abstract. The architecture of a digital library service system strongly

influences its capabilities. In this paper we report our experience with the

OpenDLib system, which is based on a service-oriented architecture, and

we describe how, in the attempt to better satisfy the user requirements,

we decided to develop a digital library service-oriented infrastructure on

Grid. We also briefly introduce this infrastructure and present the open

issues related to its development.

1 Introduction

Four years ago, the DLib group at ISTI-CNR began to develop a Digital Library
Service System (DLSS), i.e. a system for creating and managing digital libraries
(DLs). In designing this system, named OpenDLib [2], our aim was to create
a customizable system that, when appropriately configured, could satisfy the
needs of different application frameworks.

Our first step in designing this system was to clarify what we meant for DLs
and to identify the features that a system able to implement DLs should provide.
This analysis brought us to understand that a DLSS is a complex system that
must not only offer powerful user functionalities (e.g. search, browse, annotation)
but it must also implement basic functions for supporting the fruition of the user
functionality and for guaranteing the quality of the overall DL service, e.g. its
availability, scalability, performance. Moreover, it must satisfy a number of other
desiderata, like be extensible, easy to install and to maintain.

In order to create the conditions for achieving the required level of quality
we analyzed a range of possible system architectures and, finally, we decided
to adopt a distributed, dynamically configurable, service-oriented architecture
(SOA). The development of a DL system based on this architecture required
a greater implementation effort with respect to the development of centralized
system since a number of services dedicated to the co-ordination, management
and optimal allocation of the different service instances had also to be provided.
OpenDLib is now an operational system that has been used for building a number
of DLs [13, 14]. Each of these DLs has its own specific distributed architectural
configuration that reflects the needs of the application framework where it op-
erates. In all these different frameworks the distributed service architecture has

14 L. Candela, D. Castelli, P. Pagano, M. Simi

proved to be a valid instrument to satisfy a number of requirements that could
not have been met otherwise. The greater development effort has thus be highly
compensated by the better quality of the DL functionality exposed to the users.

New architectural approaches have emerged, or have been consolidated since
we designed the OpenDLib system, e.g. Web services [4, 12], P2P [11], Grids [9,
10]. These approaches provide features that simplify the implementation of a
distributed DL architecture and offer a number of new possibilities for imple-
menting novel user functionalities and for enhancing the quality of the overall
DL.

The DLib group at ISTI-CNR, with a number of other European research or-
ganizations and software companies, have recently set up a project, DILIGENT,
for creating a DL infrastructure that exploits these new approaches. In particu-
lar, our plan is to built DILIGENT as a service-oriented application of the Grid
infrastructure released by the EGEE Project [6].

In this paper we introduce the OpenDLib architecture by focusing on the
aspects related to the services management and we report our experience in
operating this system. We also describe why we decided to move towards the
new DILIGENT architectural framework, what we expect from it, and the open
research issues that must be addressed before starting its development.

The rest of this paper is structured as follows: Section 2 introduces the main
requirements that motivated our choice of a distributed service architecture
for OpenDLib; Section 3 describes the OpenDLib architecture and the lessons
learned while developing and using it; Section 4 briefly introduces the DILIGENT
DL infrastructure by describing its architecture and highlighting its open issues;
finally, Section 5 concludes.

2 Requirements for a digital library system

The objective of the OpenDLib project was to create a software toolkit that
could be used to set up a digital library according to the requirements of a given
user community by instantiating the software appropriately and then explicitly
submitting new documents or harvesting the content from existing sources.

The design of the system was strongly influenced by the requirements col-
lected from some potential user communities. In particular, the requirements
that mostly influenced the OpenDLib architectural choices are:

1. There is a set of core DL functionalities, such as search, retrieval, access to
information objects, that any DL should provide. The format in which each
of these functionalities is presented to the user is usually different since it
complies with the application specific vocabularies and rules. In addition to
the core functionalities, each DL, usually, must provide other specific func-

tionalities for serving the application-specific requirements.
2. New organizations may ask to participate to the DL during its lifetime and

additional functionalities may be required to satisfy new needs. A DL must

be able to dynamically evolve by adapting itself to these new situations.

Moving Digital Library Service Systems to the Grid 15

3. The handling of a DL can be expensive in terms of financial, infrastructural
and human resources. Many organizations are confident that this problem
can be overcome by adopting a DL federated model. According to this model,
multiple organizations can set up a DL by sharing their resources without
losing, if required, control over their own resources. For example, they can
store their information objects locally or host key services on their comput-
ers.

4. The users of a DL require a good quality of the service (QoS), i.e. an ac-
ceptable level of non-functional properties such as performance, reliability,
availability and security.

5. Access to content and services is usually regulated by policies. These can
specify, for example, that a collection of objects is only visible to a particular
group of users, or that a set of services can only be used free of charge for a
given time interval.

In order to satisfy the above requirements, we decided to adopt a service-based
architecture, i.e. an architecture in which all the functionalities are defined as
independent services, with well-defined invokable interfaces, that can be called
in defined sequences to form business processes. Following this architectural
paradigm, we implemented OpenDLib as a federation of services, each of which
implements a well defined functionality.

The next section describes the DL architectural framework that we designed
following this choice.

3 The OpenDLib architectural framework

The OpenDLib architectural framework consists of an open and networked fed-
eration of cooperating services1. These services cooperate, via message exchange,
in order to implement the OpenDLib functionality. In particular, the federation
comprises a number of services that implement the user functionality. These
services, collectively called application service, are listed in Table 1.

The communication among services is more complex than a simple client-
server application. A service can act both as a provider and as a consumer, and
use relationships may exist a priori among any subset of the services. In fact,
services can be combined in different ways to support different functionality,
and the same services may be used in different ways, in accordance with the
restrictions placed on its use and the goal of use.

The communication among services is regulated by the OpenDLib Protocol
(OLP) [3]. Such protocol imposes a set of rules that a service must follow in
order to communicate with the other services belonging to the federation. OLP
requests are expressed as URLs embedded in HTTP requests. All structured
requests and responses are XML-based.

1 Hereafter, with the term “service” we mean an OpenDLib software module that sup-

plies a certain task via a well-defined interface. Each module is able to communicate

with other OpenDLib modules and can be deployed and hosted on a server.

16 L. Candela, D. Castelli, P. Pagano, M. Simi

Service name Main performed tasks

Repository Storage and dissemination of documents that conform to a docu-

ment model termed DoMDL [1]. These documents can be struc-

tured, multilingual and multimedia.

Multimedia Stor-

age

Storage, streaming and downloading of video manifestation of a

document, dissemination of videos either as whole documents or

as aggregations of scenes, shots and frames.

Library Manage-

ment

Submission, withdrawal and replacement of documents. It is con-

figurable with respect to the metadata formats accepted.

Index Document retrieval parametric w.r.t. the metadata format, the

set of indexed fields, the result set format and the query terms

language.

Query Mediator Document retrieval by dispatching queries to the appropriate In-

dex service instances and by merging the result sets, taking into

account the peculiarities of available Index instances.

Browser Construction and use of appropriate data structures, termed in-

dexes, for browsing the library content, parametric w.r.t. the

metadata formats, the set of browsable fields, and the result set

format.

User Interface Mediations among human user and application services.

Table 1. OpenDLib application services.

The OpenDLib services can be centralized, distributed or replicated on differ-
ent hosting servers. An OpenDLib DL thus usually comprises multiple instances
of the same service type hosted on remote servers of different organizations. This
distribution provides an appropriate context for supporting the DL federated or-
ganizational model and for ensuring quality attributes such as performance and
scalability.

All the OpenDLib services of the current release are highly configurable. It
is possible, for example, to select the accepted metadata formats of an Index,
the query language of a Query Mediator, the publishing and service hosting
institutions, the number of service replica, etc. This provides a great flexibility
and permits to use the system in a variety of different DL application frameworks.

OpenDLib supports three kinds of dynamic expansions: 1) new services can
be added to the federation; 2) new instances of a replicated or distributed service
can be mounted on either an existing or a new hosting server; 3) the configu-
rations of the services can be modified so that they can handle new document
types, new metadata formats and support new usages. By exploiting these kind
of expansions new application specific needs can be easily satisfied.

The management of a dynamic, customizable, independent set of services
aimed at ensuring the desired quality of service is not trivial. It involves many
functions such as: security, e.g. authorization of the request, encryption and
decryption as required, validation, etc.; deployment, allowing the service to be
redeployed (moved) around the network for performance, redundancy for avail-
ability, or other reasons; logging for auditing, metering, etc.; dynamic rerouting

Moving Digital Library Service Systems to the Grid 17

for fail over or load balancing and maintenance, i.e. management of new versions
of the service or new services to satisfy new users needs.

In the rest of this section, we focus our attention on these services man-
agement aspects presenting the approach that has been taken in OpenDLib. In
particular, we describe the two elements that together supply a “basic infras-
tructural layer” for supporting an optimal co-operation among the distributed
services: the Manager Service, which maintains a continuously updated status
of the networked federation of services, checks its consistency and controls the
flow of the communication, and the OpenDLib kernel module that implements
the rules imposed by the protocol embedded in each application service.

3.1 The Manager Service

We have seen that OpenDLib supports different kinds of “on-the-fly” expansions.
Most of these expansions, even when they regard a specific service instance, also
require a change in the configuration of other instances in order to allow them to
consider the new characteristic of the service. For example, when a Repository
instance is modified to accept a new metadata format, at least one Index instance
must be updated to index the new format; when a new Query Mediator instance
is set up to reduce the workload on the existing Query Mediators, then a certain
number of User Interfaces must change their communication flow and address
their service requests to the new instance.

Similar updates are needed when the conditions of the underlying network
change, e.g. when there is a network failure, when the number of requests sent
to a service instance exceeds an established threshold.

All the above updates in the configuration of the federation are controlled
by the Manager Service, which following established algorithms, always derives
the best routing strategy required to achieve a good QoS.

The Manager service is partially configured by the DL administrator at the
start-up of the system. Its configuration parameters contain the minimum in-
formation required to specify the DL topology: e.g. the address of the hosting
servers; the list of the services and whether they are centralized, replicated or dis-
tributed; the number of instances for each service; their allocation to the servers,
etc. Configuration parameters contain also a number of consistency rules that
specify the legal configurations of the service instances in the federation. These
rules strictly depend on the type of service and on the “use” relation that links
them. For example, the language of the terms in a query that is processed by the
Query Mediator must be one of the languages indexed by the used Index services,
the document and metadata descriptions submitted to a Library Management
Service must conform to those managed by the corresponding Repository.

By exploiting the information about the DL architecture acquired at start-up
time, the Manager begins to collect more detailed information about the service
instances by periodically sending them appropriate protocol requests. It then
processes the information gathered, controls its consistency, and takes decisions
about the organization of the federation, such as, for example, the communica-
tion paths among the services instances. These decisions can change over time

18 L. Candela, D. Castelli, P. Pagano, M. Simi

according to the value of different parameters, such as the set of running service
instances, the workload of a server and the status of the connection.

All service instances notify the Manager of any changes in their configuration
and on the status of the service federation. The Manager updates the architec-
tural map and executes the necessary steps to collect information about any new
instance. The service instances periodically harvest information about the feder-
ation from the Manager. For example, each service that uses another replicated
service asks for the address of the instances that can serve its requests.

The instances of the federation can configure themselves either by directly
exploiting the information received from the Manager, or by sending appropriate
service requests to the instances whose addresses have been obtained through
the Manager. Once configured, the various instances can start the co-operation
required to process the DL user requests.

3.2 The OpenDLib kernel

When designing and implementing a service-oriented architecture, a common
task is to provide an high level abstraction of the communication among the
distributed services. This point have been carefully planned in the OpenDlib
system.

The OpenDLib kernel is the basic software layer where the OpenDLib services
are built on and it includes tools and software modules that allow a service to
use the OpenDLib Protocol and to speak to each other no matter what is their
physical location.

In order to meet these needs, a small messages dispatcher module is installed
on each OpenDLib network node. This module is in charge to dispatch the
incoming messages to the appropriate service hosted on the node. When a service
sends a request to a remote service, it actually interacts with the dispatcher
module of the target node. Afterwards, the request is interpreted and converted
in a manner that a generic OpenDLib service is able to manage.

Another main step in this direction is represented by the ProtocolManager

module. This part of the kernel is responsible to build a service request accord-
ing with the rules of the protocol. Moreover, it allows to interact both with
remote and local services in a transparent way. In order to achieve this second
functionality a careful design of the services interface has been conducted. The
study produced a solution that facilitate the conversion of a network message in
a local one if the producer and the consumer of the message are hosted on the
same node.

Finally, the kernel provides a set of utilities that simplify the management
of the configuration and status of the federation of services disseminated by the
Manager Service.

Major results of these efforts are:

– if the communication needs to be changed for any reason, the change is
localized in some specific points only;

Moving Digital Library Service Systems to the Grid 19

– an abstraction layer is provided, so new services can be added more easily,
avoiding to deal with communication details;

– a mechanism that permits an optimization of the network traffic among the
different nodes is provided.

3.3 Lesson Learned

OpenDLib is now a running system. A number of DLs [13, 14] have been built
using it and several others are under construction. The experience made during
this experimentation has validated some of our design choices. In particular, we
now firmly believe in the power of a service-oriented architecture for DLs. This
type of architecture provides an extensible framework where application specific
services can be added to satisfy the local requirements. Moreover, by supporting
a federated maintenance model, it naturally supports the creation of large DLs
obtained by dynamically and progressively aggregating resources provided by
many disperse small organizations.

The experience made so far, however, has also highlighted a number of weak-
ness of the DL system we have built. In particular:

– In the four years that have been spent in implementing and experimenting
OpenDLib both the enabling technologies and the standards evolved. Today,
web services and SOA are highly diffused and quite standard solutions for
web applications. Many specifications dealing with common issues of this
framework, e.g. security, resource description, etc., springs up in the WS-
* family. Grid technology, offering also computational and storage power
on demand, is now meeting these technologies with the WSRF. P2P tech-
nologies, popularized by (music) file sharing and highly parallel computing
applications (e.g. SETI@home), can be employed successfully to reach some
design goals such as scalability, availability, anonymity. Certainly, these new
standards and technologies provide more powerful and advanced solutions
than the ad-hoc one originally implemented by OpenDLib.

– Multimedia and multi-type content information objects are emerging as al-
ternative and more powerful communication vehicles. In OpenDLib, the han-
dling of these objects is limited since, e.g. multimedia documents may require
high computational capacity to be opportunely and fully managed and em-
ployed.

– Many of the user communities that demand for DLs are small, distributed,
and dynamic; they use the DL to support temporary activities such as
courses, exhibitions, projects. Even if a digital library service system like
OpenDLib can be used to setting a DL reducing the cost, these costs are
still too high for certain communities of users. Each time a new DL is cre-
ated appropriate computer and storage resources are needed for hosting the
OpenDLib services. Furthermore, specialized technical staff with appropriate
skills is required to configure, install and maintain the system.

Certainly, the recent advances of the technology makes now possible to propose
better solutions to the requirements presented in Section 2. With this purpose

20 L. Candela, D. Castelli, P. Pagano, M. Simi

in mind and in order to overcome the above limitations, our group, with other
European research and industrial organizations, has recently set up a new EU
FP6 integrated project, DILIGENT, that will start its activity on September
2004. The aim of this project is to design and experiment the development of
a new SOA DL infrastructure on a Grid enabled technology. The objectives of
this project and the expected results are briefly introduced in the next section.

4 The next step: DILIGENT

The main objective of the DILIGENT project is to create a knowledge infras-
tructure that will allow members of dynamic user communities to build-up on-

demand transient virtual DLs (VDLs) that satisfy their needs. These DLs will
be created by exploiting shared resources, where by resources we mean content
repositories, applications, storage and computing elements.

The DILIGENT infrastructure will be an evolution of a DLSS. By exploiting
a wider notion of sharing, this infrastructure has the potential of reducing the
cost of setting up DLs thus enabling a larger adoption and use of these systems.

The DILIGENT infrastructure will be constructed by implementing a number
of DL services in a Grid framework. In particular, DILIGENT will exploit the
efforts of the EGEE project [6] by relying on the Grid infrastructure that will be
released at the end of this project. We expect that by merging a service-oriented
approach with a Grid technology we will be able to exploit the advantages of
both. In particular, the Grid should provide a framework where a better control
of the shared resources is possible. Moreover, it should enable the execution of
very computational demanding applications, such as those required to process
multimedia content.

Our current plan is to develop all the DILIGENT services following the rules
established by the new Web Service Resource Framework (WSRF) [5, 7]. This
framework, which comprises six Web services specifications defining the WS-

Resource approach to modelling and managing state in a Web services context,
is very suitable to satisfy the needs of a DL application where both stateless and
statefull resources cohabit.

The services that will be developed by the DILIGENT infrastructure project
can be logically organized into three main layers:

– Digital Library Layer. This layer consists of a set of reliable and depend-
able production-quality services covering the core functionalities required by
DL applications. This set provides submission, indexing and discovery of
mixed-media objects (documents, videos, images, environmental data, etc.),
and the management and processing of these objects through annotation,
composition, cooperative editing, etc. It also supports the dynamic creation
and access to transient VDLs. Each service of this area will likely represent
an enhancement of the functionalities provided by the equivalent non-Grid-
aware service as it will be designed to take full advantage of the scalable,
secure, and reliable Grid infrastructure.

Moving Digital Library Service Systems to the Grid 21

– Application-Specific Layer. This layer contains the set of services provided
by users communities that have decided to share their legacy content and
application-specific resources.

– DILIGENT Collective Layer. This layer is composed by services that en-
hance existing Grid collective services, i.e. those global services needed to
manage interactions among resources, with functionalities able to support
the complex services interactions required by the Digital Library Layer.

The services of the Collective Layer (see Table 2) and those provided by the Grid
middleware, play the same role of the “basic infrastructural layer” in OpenDLib
as they manage the federation of services and resources that implement a VDL.
In this environment, however, the management is more complex since the set of
servers where the DL services are hosted is not known a priori and it can vary
dynamically during the VDL lifetime.

Service name Main performed tasks

Information Ser-

vice

Discovering and monitoring of a set of distributed resources, en-

abling other services to be aware of the environment, or part of

it, that hosts them. By maintaining a real-time monitoring of the

whole set of available resources, single services and VDLs can

be enabled for self-tuning resource usage and workload-balancing

maximizing the use of available resources.

Broker & Match-

maker

Optimal distribution of services and resources across Grid nodes,

by promoting efficient usage of the infrastructure through the

identification of the best Grid node where to allocate a service or

a resource.

Keeper Bringing together the set of services belonging to a VDL by as-

suring the QoS characteristics required. Create, address, inspect

and manage the lifetime of all the resources needed to satisfy the

definition criteria of the library.

Dynamic VO

Support

Creation of the Grid operational context associating users, user

requests and set of resources that enables VDLs to work accord-

ingly with the resource sharing policies and agreements.

Table 2. DILIGENT Collective Layer services.

This new DL architecture infrastructure, at least from the theoretical point of
view, provides the support required to meet the requirements that we have iden-
tified previously and to overcome the limitations that we have experimented with
OpenDLib. However, combining concepts and techniques belonging to different
research fields and disciplines (DL, Information Retrieval, Grid, data manage-
ment, Web Services, information systems, P2P, etc.), the DILIGENT project
has to solve at least the following open issues:

– Sharing of resources is acceptable only if it is highly controlled. Strong and
valid security and policy mechanisms that take into account the rules of the
DL providers and consumers must be developed.

22 L. Candela, D. Castelli, P. Pagano, M. Simi

– In order to dynamically create a VDL the system must be able to automat-
ically select and retrieve the resources that better match the demand of the
library creator. This requires an appropriate description of the DL resources
and powerful discovery mechanisms.

– The SOA approach proposed for the DILIGENT infrastructure defines only
the higher level structure of the architecture. Each service belonging to the
library can internally adopt a different architecture, e.g. an Index can be
realized both using a P2P technique as well as a centralized service. This
heterogeneity certainly complicates the digital library management and de-
mands for more sophisticated algorithms.

– The different architectural framework in many cases may suggests better al-
gorithms for implementing the DL functionality. For example, a Grid frame-
work, which offers a high computing capacity, may enable the exploitation
of complex but powerful algorithms which were not realistically possible in
the traditional DL frameworks. One of the challenges in DILIGENT will
certainly be to identify new algorithms that exploit the capabilities of this
new DL framework.

5 Conclusion

The paper describe the architecture of the OpenDLib DL service system and it
introduce the main architectural plans for the DILIGENT knowledge infrastruc-
ture.

In carrying out this experience we have learnt that the realization of a DL
system not only requires the implementation of the functionality that are directly
perceived by the users but it also requires the development of what we called
a “basic infrastructural layer”. In this paper we mainly discuss this layer from
the point of view of the management of the DL services, but there are other
important functionalities that a basic infrastructure layer should provide, like
independence from the physical organization of the content, policy control, etc.
The extent of the basic infrastructure layer strongly depends on the underlying
architecture choices. The more distributed, flexible, dynamic, customizable the
architecture framework is, the greater is the layer required to ensure the quality
of the DL services.

In OpenDLib this layer has been constructed from scratch, by adopting ad-
hoc solutions. At the present, however, more standards and powerful solutions
are possible. With the DILIGENT project, our challenge is to build a new DL
service system that takes into account these new openings and to contribute to
the evolution of the architectural infrastructure for future DLs.

References

1. Donatella Castelli and Pasquale Pagano. A flexible Repository Service: the

OpenDLib solution. In J. Á. Carvalho, Arved Hübler, and Anna A. Baptista,

editors, Proc. of the 6th International ICCC/IFIP Conference on Electronic Pub-

lishing, pages 194–202, 2002.

Moving Digital Library Service Systems to the Grid 23

2. Donatella Castelli and Pasquale Pagano. OpenDLib: A Digital Library Service

System. In Proceedings of the 6th European Conference on Digital Libraries

(ECDL2002), pages 292–308. Springer-Verlag, 2002.

3. Donatella Castelli and Pasquale Pagano. The OpenDLib Protocol. Technical

report, Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, 2004.

4. Ethan Cerami. Web Services Essentials (O’Reilly XML). O’Reilly & Associates,

2002.

5. Karl Czajkowski, Donald F. Ferguson, Ian Foster, Jeffrey Frey, Steve Graham,

Igor Sedukhin, David Snelling, Steve Tuecke, and William Vambenepe. The WS-

Resource Framework. White paper, 2004.

6. EGEE Team. EGEE: Enabling Grids for E-science in Europe. http://public.eu-

egee.org.

7. Ian Foster, Jeffrey Frey, Steve Graham, Steve Tuecke, Karl Czajkowski, Donald F.

Ferguson, Frank Leymann, Martin Nally, Tony Storey, William Vambenepe, and

Sanjiva Weerawarana. Modeling Stateful Resources with Web Services. White

paper, 2004.

8. Ian Foster and Adriana Iamnitchi. On Death, Taxes, and the Convergence of

Peer-to-Peer and Grid Computing. In M. Frans Kaashoek and Ion Stoica, editors,

Peer-to-Peer Systems II, Second International Workshop, IPTPS 2003, Revised

Papers, volume 2735, pages 118–128, 2003.

9. Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Integration.

Open Grid Service Infrastructure WG, Global Grid Forum, June 2002.

10. Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: En-

abling scalable virtual organization. The International Journal of High Perfor-

mance Computing Applications, 15(3):200–222, 2001.

11. Nelson Minar, Marc Hedlund, Clay Shirky, Tim O’Reilly, Dan Bricklin, David

Anderson, Jeremie Miller, Adam Langley, Gene Kan, Alan Brown, Marc Waldman,

Lorrie Cranor, Aviel Rubin, Roger Dingledine, Michael Freedman, David Molnar,

Rael Dornfest, Dan Brickley, Theodore Hong, Richard Lethin, Jon Udell, Nimisha

Asthagiri, Walter Tuvell, and Brandon Wiley. Peer-to-Peer: Harnessing the Power

of Disruptive Technologies. O’Reilly & Associates, 2001.

12. Eric Newcomer. Understanding Web Services: XML, WSDL, SOAP, and UDDI.

Addison-Wesley, 2002.

13. OpenDLib Team. e-Library: a public OpenDLib instance.

http://elibrary.isti.cnr.it.

14. OpenDLib Team. The ARTE Library: an OpenDLib instance. http://odl-

server1.isti.cnr.it.

24 L. Candela, D. Castelli, P. Pagano, M. Simi

Hyperdatabase Infrastructure for Management
and Search of Multimedia Collections

Michael Mlivoncic, Christoph Schuler, and Can Türker

Swiss Federal Institute of Technology Zurich
Institute of Information Systems, ETH Zentrum

CH–8092 Zurich, Switzerland
{mlivonci|schuler|tuerker}@inf.ethz.ch

Abstract. Nowadays, digital libraries are inherently dispersed over sev-
eral peers of a steadily increasing network. Dedicated peers may provide
specialized, computationally expensive services such as image similarity
search. Usually, the peers of such a network are uncoordinated in the
sense that their content and services are not linked together. Neverthe-
less, users expect to transparently access and modify all the (multimedia)
content anytime from anywhere not only in an efficient and effective but
also consistent way. To match these demands, future digital libraries re-
quire an infrastructure that combines various information technologies
like (mobile) databases, service-oriented architectures, peer-to-peer and
grid computing. In this paper, we sketch such an infrastructure and il-
lustrate how an example digital library application can work atop it.

1 Introduction

Future digital libraries shall provide access to any multimedia content anytime
and anywhere in a user-friendly, efficient, and effective way. One problem of
nowadays digital libraries is that they are dispersed over a network in an un-
coordinated fashion such that each peer of the network often works isolated
without regarding other peers that manage related content. Another problem is
to efficiently handle the steadily increasing amount of requests for multimedia
content. Besides, the distributed content should be kept consistent and provided
in a personalized way. Hence, an infrastructure is required for digital libraries
that is a reliable, scalable, customizable, and integrated environment.

To build such an infrastructure, the best aspects of (mobile) databases,
service-orientation, peer-to-peer and grid computing must be combined. We refer
to such an infrastructure as a hyperdatabase [1]. Within such an environment,
databases and special servers provide basic services, such as efficient and reli-
able storage for various kinds of multimedia data like image, audio, and video.
Service-orientation [2] helps to describe, customize, and deploy complex services,
such as sophisticated search of images with respect to their content and anno-
tations. The peer-to-peer paradigm [3] allows a loosely-coupled integration of
digital library services and ad-hoc sharing of information, such as recommenda-
tions and annotations. Since certain services within a digital library are compu-
tationally intensive, e.g., the extraction of features from multimedia objects to

26 M. Mlivoncic, C. Schuler, C. Türker

support content-based similarity search, grid technology [4] supports the optimal
utilization of the given computing resources.

In the recent years, we have developed OSIRIS (Open Service Infrastructure
for Reliable and Integrated process Support) [5], which is a prototype of a hyper-
database infrastructure. As common standards like WSDL and SOAP, OSIRIS
helps to access a wide range of service types and allows isolated service calls. In
addition, OSIRIS support processes (compound services) as a means for combin-
ing existing services and executing them under certain (transactional) guaran-
tees. In a digital library, such services can be used, for instance, for the mainte-
nance of dependencies among the various data repositories of the digital library.
In this way, a sophisticated search may benefit from always up-to-date indexes.

In this paper, we describe how to organize such a self-contained application.
The ISIS (Interactive SImilarity Search) application demonstrates an efficient
management and organization of large multimedia collections atop OSIRIS. It
features a wide range of functions that allow for metadata management as well
as efficient and effective content-based similarity search on multimedia objects.
The implementation of ISIS consequently follows the idea of service-orientation.
Specifically, all digital library functionality is encapsulated by services, such
as storage services for arbitrary types of media objects or feature extraction
services for given media types. Such services are used to compose the entire
ISIS application.

The infrastructure monitors the service execution as well as the routing of the
corresponding services. Whenever necessary, it distributes and replicates certain
services on multiple grid peers in order to boost the performance.

In principle, any service can be executed locally in a stand-alone manner, as
with mobile devices, for example. However, due to several reasons, e.g., resource
or license restrictions, some services might be locally unavailable. In such cases,
the service execution depends on external services, which have to be bound
and invoked on demand. On the other hand, in some cases the locally available
services are sufficient to completely execute a compound service. For instance,
even a content-based image similarity search does not require a feature extraction
service provided the reference image is already part of the collection (i.e., is
already indexed).

It is important to note that the entire service execution is transparent to the
service designer. She therefore can fully focus on specifying and implementing
the core service functionality itself. Service runtime environment tasks (startup,
updates,...) and communication with the outside world are handled by the hy-
perdatabase infrastructure. As first experimental evaluations show, this infras-
tructure does not only support dynamic changes of the execution environment
but is also able to scale with the expected huge number of users, services, and
grid peers of future digital libraries.

The rest of this paper is organized as follows: Section 2 gives an overview of
ISIS together with the requirements for the underlying infrastructure. Section 3
describes such an infrastructure, OSIRIS, and discuss various important issues
like service execution and service registration. Finally, Section 4 concludes.

Hyperdatabase Infrastructure for Management and Search 27

2 ISIS – A Service-Oriented Application

ISIS (Interactive SImilarity Search) is a powerful service-oriented application for
efficient management and organization of multimedia collections. The applica-
tion features a wide range of functions that allow meta data management as well
as efficient and effective content-based similarity search on multimedia objects.
The realization of ISIS consequently follows the idea of service-orientation. All
basic functionality is encapsulated by a set of services.

We distinguish five classes of such services:

Storage Services. These services provide storage for arbitrary types of media
objects. A storage service at a certain peer may be dedicated to a certain
content like video clips or images. Storage services can also act as web-
caches for remote content in order to speed-up access to often used data.
A storage service closely monitors its attached repositories for changes. If,
for example, a new object is added to one of its repositories, it will issue a
“new object” event. Likewise, a (local) deletion of an object will lead to an
“object-deleted” event. These events can be handled by the digital library
infrastructure, for example, to keep the consistency between object data and
indexed information.

Metadata Services. Such services maintain keyword annotations, textual de-
scriptions, as well as other object properties, such as the membership in
several (sub)collections, or predicates like “copyrighted”. As an media ob-
ject might be available in different versions at different locations (e.g, as
thumbnail of the image at thumbnail-storage, primary high-resolution im-
age copy at remote storage location), metadata services also keep track of
those locations and corresponding properties of the object versions at the
various locations (e.g. resolution or thumbnail/primary-role). There is no
fixed vocabulary for describing such properties. Hence, ISIS can store arbi-
trary information about the objects. For example, one might want to store
textual information gathered from the surrounding web pages together with
an image or the artist and the song title together with a piece of music. Be-
sides such “per-object” information, metadata services also maintain general
knowledge about the object types themselves. This includes existing feature
descriptors for an object type, the availability of feature extractors and in-
dexing containers within the digital library infrastructure that are able to
manage a given feature descriptor.

Feature Extraction Services. Content-based retrieval depends on features
that describe the raw content of media objects in a certain feature domain.
For example, the pixel information of an image can be described in the color
or texture feature domain [6–8], while a piece of music can be described
in terms of beat and pitch [9]. A feature is therefore a kind of descriptive
fingerprint for an object. In content-based retrieval, object similarity is ex-
pressed as similarity of their descriptors in a given feature domain. For a
given media type, there could be several feature extraction services comput-
ing various kinds of feature descriptors. Also, there is more than one way to

28 M. Mlivoncic, C. Schuler, C. Türker

describe a concept like color. For example, we could use a histogram with 64,
256 or whatsoever bins. We could also use color moments. There are many
meaningful descriptors and variants around. One might want to use several
of them — even in combination. In many cases, the extraction of features
is a computationally very expensive task. Therefore, feature extraction can
profit from grid infrastructures.

Indexing and Search Services. Indexes allow for efficient search of objects.
Different indexes have to handle data from different domains: Besides often
high dimensional feature descriptors, object predicates and numerical values
as well as keyword annotations of the objects should be indexed efficiently.
Searching over an arbitrary combination of those attributes efficiently is a
non-trivial task. Efficient search strategies on this level are however beyond
the scope of this paper. For further information please refer to [10–12]. At
this point, we only state that concept and design of such a service should
be carefully chosen in a way that it allows for massive scalability through
dynamic partitioning of a query onto a set of several search services. Those
services will be spread all over the grid infrastructure, similar to the extrac-
tion services.

Presentation Services. These services provide frontend functionality to browse
and query the multimedia collection and also to initiate some maintenance
and administrative tasks. In ISIS, this task is shared among services for the
interactive part (frontend), the layout part (XML-to-HTML rendering) and
supporting services (session management and template repository).

The entire ISIS application consists of a set of compound services over these basic
services. Once the application logic is divided into such basic services, they can
be distributed and replicated without changing the description (implementation)
of any (compound) service. Figure 1 shows the insertion of a multimedia object
as an example for a compound service. The given service is triggered by the
“new object” event of a storage service mentioned above when a new media
object physically enters the repository.

Separate
Media Types

Store Object

Extract Features

Analyze Context

Store Features

Fig. 1. Compound Service Insert Multimedia Object

The first activity of the compound service is to store the object, i.e., the loca-
tion and available meta information about the object is stored by the metadata
service. Depending on the media type, further information is extracted. In case
of a web document, the object will not only contain an image, but also some
text surrounding this image on the page. By analyzing the HTML source, it is

Hyperdatabase Infrastructure for Management and Search 29

possible to gather some layout information and applying some heuristics in order
to determine textual descriptions that might be relevant for the image. This text
can be indexed later on. Independent of the analysis of the context of the image
and its surrounding, the extract features activity uses the raw pixel information
of the image to extract several descriptors for color and texture. Note that it is
transparent to the user, whether this activity is a single service or a compound
service which is composed of single feature extraction services. The distinction
between a single and a compound service is important for the infrastructure. By
explicitly knowing about the semantics of the various activities of a compound
service, the infrastructure is able to further parallelize the extraction to achieve
better performance. The store features activity hands all gathered object de-
scriptors and metadata information over to the metadata service, which will in
turn care for the indexing and replication of each data item in a suitable way.

Infrastructure Requirements

ISIS performs some complex and sometimes computational expensive tasks. As
ISIS may change over time, e.g., when new feature descriptors are becoming
available, we need an infrastructure that provides us with flexibility in order to
define and modify the logic of the digital library applications, i.e., the corre-
sponding compound services, as necessary. In order to focus on the core digital
library tasks, the infrastructure should support a transparent way of communi-
cation among services. For example, while designing the extraction service, we
do not want to explicitly deal with workload distribution, it should be sufficient
to “solicit” that a certain task, e.g., a feature extraction, should be executed on
any one of the potential service providers. Thus, the infrastructure must also
support service discovery. Service providers should be able to declare what kind
of functionality they are offering and service users should be able to find them.

As mentioned before, it can be useful, if application logic specifies compound
services over the basic services (cf. the feature extraction example). In such cases,
feature extraction as well as search can profit even from a higher degree of par-
allelism. As multimedia content tends to be storage intensive — especially with
large-scale general purpose digital libraries — one might also want to distribute
the storage services and searching facilities over the peers of the grid. Besides this
complexity, we still demand that the overall digital library should be reliable,
i.e. (temporary) unavailability of single service instances shall not jeopardize the
operation of the overall system. Services once invoked (like the insertion of an
object) should lead to a guaranteed execution of the defined activities and thus
ensure the consistency of the data within the metadata and indexing services.
Mentioning consistency, we also want to ensure highest possible “freshness”, i.e.,
changes should be propagated “immediately” instead of monthly updates like in
Google and other major web search engines. On object deletion, references to
that object should be removed immediately from all indexes. Also, changes of
feature data should immediately be propagated to any indexing service related
to that data.

30 M. Mlivoncic, C. Schuler, C. Türker

3 Hyperdatabase Infrastructure for ISIS

In the following, we sketch how a hyperdatabase infrastructure provides us with
all the required functionality as elaborated so far.

3.1 Overview of the Infrastructure

A hyperdatabase supports applications following the ideas of a service-oriented
architecture. Using a distributed peer-to-peer network, service requests are trans-
parently routed along the connected peers. Following the concept of service-
oriented architecture, a service can be atomic or compound. Compound services
are composed of existing services. The composition is realized using the notion
of a transactional process [13]. By defining a data and control flow for pro-
cesses, the involved service calls must appear in the specified application specific
invocation order. Transactional processes allows for providing execution guar-
antees similar to transactions in classical databases. While databases focus on
basic data querying and manipulation operations, a hyperdatabase orchestrates
service calls. These service calls are executed according the description of the
compound service.

Register
Service Description

ExtCol
ExtShp
...

D
B

K

Store
Object

Store
Features

A B C

A
B
...

On
Off
...

129.132.1.2
134.34.3.11

...

Extract
Term

Extract
Color

KK

ZZ

Extract Shape

BB

Extract Color

DD

AA

Load Information

VV

Register
Service Instance

WW

Separate
MTypes

Analyze
Context

CC

Connect Disconnect

FF

Fig. 2. Hyperdatabase Infrastructure

In order to provide this functionality, the hyperdatabase infrastructure consists
of a software layer installed on each peer of the grid (dark gray layers in Fig-
ure 2). This layer integrates the peer into the overall hyperdatabase network.

Hyperdatabase Infrastructure for Management and Search 31

Co
m

m
un

ica
tio

n L
ay

er

Persistent
Storage

Service
Management

Module

Service
Management

Module

Replication ModuleReplication Module

Service
Navigation

Module

Service
Navigation

Module

A B

Load
Balancing

Module

Load
Balancing

Module
Data Flow Module

Co
m

m
un

ica
tio

n L
ay

er

Service
Instance

Fig. 3. Hyperdatabase Layer

Ideally, this layer comes together with the operating system like TCP/IP stack
does (comparable to the .NET framework). By this integration, local available
services can be registered and used by all peers in the grid. Moreover, the local
hyperdatabase layer is now enabled to transparently call remote services.

Figure 3 shows the architecture of the hyperdatabase layer, which we will
discuss in more detail later. Beside communication, the layer also supports man-
agement of compound services and load balancing. This functionality depends
on grid common knowledge accessible via the replication manager available at
every peer.

OSIRIS [14] as an implementation of a hyperdatabase is realized as a service-
oriented application itself. Besides the core hyperdatabase layer, additional sys-
tem functionality is needed to organize the grid and to provide service trans-
parency and the execution of compound services. OSIRIS implements this func-
tionality also in terms of services. As depicted in Figure 2, OSIRIS provides core
services like Register Service Description, Register Service Instance, Connect, and
Disconnect. The figure also shows that there is no distinction between core ser-
vices and atomic application-specific services such as Extract Color or Extract
Term.

3.2 Peer-to-Peer Service Execution

As mentioned before, OSIRIS distinguishes two classes of services: atomic versus
compound services. The execution of an atomic service consists of one call to a
function provided by a service in the grid. A call to a compound service however
initiates a peer-to-peer execution. According to the description of a compound
service, the contained services, i.e., the process activities, are executed sequen-
tially. Although the execution semantics of the two service classes are different,
the invocations of both services are not distinguishable to the caller. In other
words, the caller does not care about whether the service is atomic or compound.

32 M. Mlivoncic, C. Schuler, C. Türker

The same holds for activities of a compound service, which can be compound
services themselves.

OSIRIS provides a transparent way of calling services. A service request that
is sent to any peer of the network is transparently routed by the local hyper-
database layer to an available instance of this service type. For that, OSIRIS
implements a distributed service bus that provides routing and load balancing
over all existing service instances.

Albeit the infrastructure hides the difference between an atomic and a com-
pound service at the call interface, the execution within the infrastructure layer
respects and exploits the differences between atomic and compound services.
While the first has to be routed to a service instance, the latter must be driven
by the infrastructure itself since its activities can spread over multiple peers of
the grid. Therefore, each peer has to provide a minimal service manager that
supports a peer-to-peer service execution. This includes the ability to call local
services, to navigate to the subsequent activity of the compound service, and
to handle execution failures. A compound service consists of a set of ordered
services. These services has to be executed according the order defined by the
service description. This information is available at the local replication man-
ager. After instantiating a new compound service at any peer in the grid, it is
migrated to the hyperdatabase layer of a peer that provides an instance for the
first activity.

Figure 3 shows the flow of the service execution of one single step in a com-
pound service. After the service has migrated to the hyperdatabase layer, it
enters the data flow module. A part of the service data is needed to prepare the
call of the service. The service management module executes a function at the
service instance. After the execution of the service the resulting data is incorpo-
rated into the context of the compound service. The next task is to determine the
service that has to be executed subsequently. Based on the locally replicated part
of the service description, the service navigation module decides which service
type to call next. The load balancing module finally routes the service instance
to an available service instance considering system workload. This routing re-
quires grid configuration information. Therefore, the replication module has also
to provide grid configuration information. During the execution of a compound
service, the service instance migrates from one peer to the next in a truly peer-
to-peer fashion. After executing the last activity of the compound service, the
response is sent back to the caller, as in the case of an atomic service.

Example 1. Assume a multimedia object is inserted into the ISIS digital library
by calling our example compound service Insert Multimedia Object. OSIRIS ini-
tiates a service instance for this particular service call. After initialization, the
instance is routed to the provider of a service for the first activity. In this way,
the service instance reaches peer A in our example in Figure 2. In the context of
the compound service, then a local call to the service Store Object is performed.
After this call, the service instance migrates to peer C in order to execute the
service Separate Media Types. This migration is done directly using a peer-to-
peer connection between A and C. The next two service calls can be performed

Hyperdatabase Infrastructure for Management and Search 33

parallel. This requires that the service instance splits and navigates separately
along the definition paths. The first part of the instance stays at peer C in or-
der to execute the service Analyze Context, while the second part is migrated
to peer K or D. Considering the current workload of the peers D and K, the
service instance migrates to peer K. Finally, the service Store Features has to be
executed on peer A. Since the original service instance was split and distributed
on the network, OSIRIS has to synchronize and join these parts before migrat-
ing to peer A. After finishing the local call, the compound service is completely
executed and the response is sent to the caller.

3.3 Registration of Service Descriptions

In the previous discussion, we have already distinguished between service types
and service instances without explicitly mentioning this. In service-oriented ar-
chitectures, this distinction enables a transparent routing during service exe-
cution. In fact, a service type is called. The infrastructure matches a currently
available service instances to perform the execution of the requested service type.
To enable this behavior — in the literature referred as enterprise service bus [15]
— all available service types have to be registered in the system. While calls to
atomic services just have to be routed through the system, compound services
have to be executed by the infrastructure itself as described in the previous sub-
section. For that, the description of compound services has to be published to
the infrastructure. In OSIRIS, this publication is handled by the service Register
Service Description.

Whenever a service description is published using this service, it is analyzed
and prepared for replication along the peers. Keep in mind that service execution
is done in a peer-to-peer fashion relying on locally replicated information. To
provide exactly the information that is required to perform a completely peer-to-
peer execution, the service description has to be enriched and divided into parts
containing all information concerning the execution of one contained service.
These parts of service description is then replicated to the peers hosting an
instance of the corresponding service type. This strategy allows peer-to-peer
execution to have most information already available at the local replication
module.

Example 2. Assume that the description of the compound service Insert Multi-
media Object is inserted into the system. The service Register Service Description
splits the definition into five parts — one part for each activity of the compound
service. The part concerning the service Extract Features contains all informa-
tion about the parameter handling the call of that service. This information is
needed by the service management module of the hyperdatabase layer at the
peers D, K and B, respectively. In addition, the service navigation module needs
to know about the subsequent services. All this information is replicated to the
peers D and K immediately after inserting the service description. The peer-to-
peer service execution will route every instance of the service Insert Multimedia
Object to one of these peers. Consequently, the corresponding part of the service
description should be replicated there.

34 M. Mlivoncic, C. Schuler, C. Türker

3.4 Registration of Service Instances

A grid infrastructure has to deal with continues changes of the overall system
configuration. Service instances may join and leave the system quite frequently.
Therefore the infrastructure has to keep track of the current configuration.
OSIRIS provides completely transparent service calls by dynamically replicating
information about the available service instances to the corresponding grid peers.
This replication is based on a publish-subscribe mechanism, which is described
in [14]. While the call of a service can occur at any peer, no prior replication
can be performed in order to speed up this routing. However, a temporary repli-
cation is reasonable since the probability that this information will be needed
in the near future is rather high. Beside this temporary replication, information
needed during execution of compound services can be predicted by analyzing the
service descriptions. In addition, the information about the subsequent services
are needed at a particular peer.

Example 3. In the configuration depicted in Figure 3, the peer A holds the repli-
cated information about the current instances of service Separate Media Types
since within the compound service Insert Multimedia Object this service must be
invoked after the service Store Object, which is provided at peer A. This way
a lot of information is replicated along the grid in order to perform and opti-
mize peer-to-peer execution of services. Assume a new instance of the service
Separate Media Types is started at peer B and registered via the service Register
Service Instance. As a consequence, OSIRIS triggers the replication of additional
configuration information to peer B — mainly the part Separate Media Types of
the compound service Insert Multimedia Object and information on available in-
stances of Analyze Context. Extract Features is a compound service and thus has
no location associated with. Since the (parallel) activities of this compound ser-
vice are Extract Color and Extract Shape, the location information about these
two services are replicated to peer B.

3.5 Stand-alone Service Execution

The peer-to-peer execution of compound services relies on the transparent rout-
ing of service calls. OSIRIS can provide this transparent routing only within the
same OSIRIS cell. A cell corresponds to a separate grid environment. Within
such a cell, each service of the registered peers is provided to all peers of that
cell. As a special case, a complete cell can be installed on one peer. This in-
stallation includes OSIRIS core services as well as all services of an application
such as ISIS. This peer can also be a mobile device. Albeit local services can be
used to realize a stand-alone application, some service types like Extract Features
cannot be performed efficiently by the mobile peer. In order to execute such a
service, the peer should join a larger cell to perform this service on a peer having
more resources. We also allow peers to join a cell without registering its available
services to the cell. In this case, the peer acts as a service user. This kinds of a
join can be performed by using a proxy service, which provides a bridge between

Hyperdatabase Infrastructure for Management and Search 35

Extract
Term

Extract
ColorProxy

Extract
Color

Extract
Term

Extract
Shape

Extract
Color

Store
Object Proxy

KKEE

Separate
MTypes
Analyze
Context

Connect

Disconnect

SS LL

DD

Extract
Shape

BB

TT

Store
Features

Fig. 4. Proxy Services for Stand-alone Service User

the two cells. As depicted in Figure 4, two instances of the proxy service can
be linked in order to establish a bridge. A proxy service provides a service stub
and forwards all service calls to the other cell. OSIRIS routes the call to a real
service instance.

Note that this forwarding of service calls works also for compound services.
However, the peer-to-peer service execution cannot use the bridge to migrate. If
the mobile device calls a compound service on the remote cell the proxy service
will forward the service call and the complete service will be executed at the
remote cell. If a local compound service contains an activity for which only a
remote service instance is available, the local proxy service provides a stub for
that service. In the context of the local grid, the proxy service executes the
service. Therefore, the compound service instance will stay at the local device
while executing the service at the proxy service. In this way, the concept of a
proxy allows for exploiting services of a remote grid cell.

4 Conclusions

As we have seen in this paper, service-orientation helps to describe and imple-
ment complex digital library applications like ISIS as compositions of services. A
hyperdatabase infrastructure like OSIRIS, which combines service-orientation
with peer-to-peer and grid computing, is then able to exploit the knowledge
about the services and their composition to execute them in an optimal fash-
ion. Following the idea of grid computing, the execution of service calls respects
parameters like the workload of the peers to dynamically select the best fitting
service instance. Besides, OSIRIS is able to replicate service instances on de-
mand on any peer of the grid, and thus to optimize the utilization of the given

36 M. Mlivoncic, C. Schuler, C. Türker

resources. The peer-to-peer style of service navigation avoids that the naviga-
tion becomes a bottleneck of the overall system, and thus provides the basis
for a scalable infrastructure. The current implementation of ISIS atop OSIRIS
demonstrates this very nicely.

References

1. Schek, H.J., Schuldt, H., Schuler, C., Weber, R.: Infrastructure for Information
Spaces. In: Advances in Databases and Information Systems, Proc. of the 6th East-
European Symposium, ADBIS’2002. Volume 2435 of Lecture Notes in Computer
Science, Springer-Verlag (2002) 23–36

2. Schmid, M., Leymann, F., Roller, D.: Web Services and Business Process Man-
agement. IBM Systems Journal 41 (2002) 198–211

3. Curley, M.G.: Peer-to-Peer Computing Enabled Collaboration. In: Proc. of the
Int. Conf. on Computational Science, ICCS 2002. (2002) 646–654

4. Foster, I., Kesselmann, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. In: Global
Grid Forum, 2002. (2002) http://www.gridforum.org/ogsi-wg.

5. ETH Database Research Group: OSIRIS: an Open Services Infrastructure for
Reliable and Integrated process Support. http://www.osiris.ethz.ch (2004)

6. Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E.H., Petkovic, D.,
Yanker, P., Faloutsos, C., Taubin, G.: The QBIC Project: Querying Images by
Content, using Color, Texture, and Shape. In Storage and Retrieval for Image and
Video Databases. Volume 1908 of SPIE Proceedings (1993) 173–187

7. Stricker, M.A., Orengo, M.: Similarity of Color Images. In: Storage and Retrieval
for Image and Video Databases. Volume 2420 of SPIE Proceedings (1995) 381–392

8. Dimai, A.: Spatial encoding using differences of global features. In: Storage and
Retrieval for Image and Video Databases. Volume 3022 of SPIE Proceedings (1997)
352–360

9. Tzanetakis, G., Cook, P.: Audio Information Retrieval (Air) Tools. In: Proc. Int.
Symposium for Audio Information Retrieval, ISMIR 2000 (2000)

10. Weber, R., Schek, H.J., Blott, S.: A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces. In: Proc. of the 24th
Int. Conf. on Very Large Data Bases, VLDB’98, Morgan Kaufmann Publishers
(1998) 194–205

11. Weber, R., Schek, H.J., Bollinger, J., Gross, T.: Architecture of a Networked
Image Search and Retrieval System. In: Proc. of the 8th ACM CIKM Int. Conf.
on Information and Knowledge Management, ACM Press (1999) 430–441

12. Böhm, K., Mlivoncic, M., Schek, H.J., Weber, R.: Fast Evaluation Techniques for
Complex Similarity Queries. In: Proc. of the 27th Int. Conf. on Very Large Data
Bases, VLDB 2001, Morgan Kaufmann Publishers (2001)

13. Schuldt, H., Alonso, G., Beeri, C., Schek, H.J.: Atomicity and Isolation in Trans-
actional Processes. ACM Transactions on Database Systems 27 (2002) 63–116

14. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Peer-to-Peer Process Execution
with OSIRIS. In: Proc. of the 1st Int. Conf. on Service-Oriented Computing,
ICSOC 2003. Volume 2910 of Lecture Notes in Computer Science, Springer-Verlag
(2003) 483–498

15. Chappell, D.: Enterprise Service Bus. O’Reilly (2004)

Data Stream Management and Digital Library
Processes on Top of a Hyperdatabase and Grid

Infrastructure

Manfred Wurz, Gert Brettlecker, and Heiko Schuldt

University for Health Sciences, Medical Informatics and Technology
Innrain 98 A–6020 Innsbruck Austria

[manfred.wurz|gert.brettlecker|heiko.schuldt@umit.at]

Abstract. Digital libraries in healthcare are hosting an inherently large
collection of digital information. Especially in medical digital libraries,
this information needs to be analyzed and processed in a timely manner.
Sensor data streams, for instance, providing continuous information on
patients have to be processed on-line in order to detect critical situations.
This is done by combining existing services and operators into streaming
processes. Since the individual processing steps are quite complex, it is
important to efficiently make use of the resources in a distributed sys-
tem by parallelizing operators and services. Grid infrastructures already
support the efficient routing and distribution of service requests. In this
paper, we present a novel information management infrastructure based
on a hyperdatabase system that combines the process-based composition
of services and operators needed for sensor data stream processing with
advanced Grid features.

1 Introduction

Digital libraries in healthcare are increasingly hosting an inherently large and
heterogeneous collection of digital information, like electronic journals, images,
audios, videos, biosignals, three dimensional models, gene sequences, protein
sequences, and even health records. Medical digital libraries therefore have to
organize repositories managing this medical information [1] and to provide ef-
fective and efficient access to it. In addition, a central aspect is the collection,
aggregation, and analysis of relevant information.

Due to the proliferation of sensor technology, the amount of continuously
produced information (e.g., biosignals or videos) in medical digital libraries will
significantly grow. These data streams need sophisticated processing support in
order to guarantee that medically relevant information can be extracted and
derived for further storage, but also for the on-line detection of critical situ-
ations. Biosignals, like a ECG recording, contain relevant information derived
from the evaluation of characteristic parameters, e.g., the heart rate, and their
deviance from average. In some cases, even the combination of different biosig-
nals is needed for the extraction of relevant information, such as a comparison

38 M. Wurz, G. Brettlecker, H. Schuldt

of heart rate and blood pressure. Data stream management (DSM) addresses
the continuous process streaming data in real-time. Due to the streaming ori-
gin of parts of the information stored in medical digital libraries, the latter will
significantly benefit from infrastructures incorporating DSM.

Due the service-orientation and the distributed nature of digital libraries
(i.e., information is made available by means of services), Grid infrastructures
are very well suited as basis for digital library applications. The composition of
services and DSM operations can be realized by means of processes. The Grid
then supports the efficient routing of service requests among different service
providers. A very challenging aspect in process-based service composition on
top of a Grid environment is that processes itself can be seen as services and
therefore can be used within other processes again. This, in a way, adds recursive
nature to processes and implements the well known composite pattern [2] for
processes on the Grid. Moreover, also the runtime support for process execution
can be considered as a special, inherently distributed Grid service.

In this paper, we introduce an integrated hyperdatabase and grid infrastruc-
ture that supports the processing of continuous data streams and that is able to
distribute the processing of computationally expensive services within a Grid.
By this, the requirements of efficiently processing continuous data that can be
found in digital medical library applications can be seamlessly supported.

The paper is structured as follows. Section 2 describes a sample telemonitor-
ing application in a digital healthcare library to motivate the need for a joint
hyperdatabase and grid environment. In Section 3, we present a process-based
approach to data stream management. The dynamic process parallelization by
using Grid concepts is introduced in Section 4. Section 5 discusses related work
and Section 6 concludes.

2 A Sample Application in a Digital Healthcare Library

In this section, we introduce a sample healthcare application to motivate the
need for a flexible and reliable information management infrastructure that sup-
ports process management, data stream processing and management, and that
provides Grid computing capabilities.

The left hand side of figure 1 illustrates a telemonitoring system which takes
care of elderly patients suffering from chronic diseases (e.g., diabetes, heart dis-
eases, or other age related problems like Alzheimer). This telemonitoring system
is one of the information providers of the underlying medical digital libraries. Pa-
tients are equipped with an array of sensors, as for example the LifeShirt-System
[3], that continuously measure the patient’s body signals (e.g., ECG). Addition-
ally, sensors integrated in the patient’s home are detecting context information
that describes what the patient is currently doing (e.g., if the patient is sleeping).
This information is important to evaluate the medical meaning of vital signs —
for example, the ECG signal has to be interpreted differently when a person is
sleeping, compared to the case where she is active. In addition to medical mon-
itoring, context information is also used to integrate a patient support system

Data Stream Management and Digital Library Processes 39

Stream
Operation

Process
Activity

Grid-enabled

Stream Operation

Grid-enabled
Process Activity

Process
Activity

Process
Activity

Stream

Operation

Stream
Operation

Data Stream Management

Process
Management

Fig. 1. Data Stream and Process Management in a Medical Digital Library

in this scenario. Patients can be remembered to turn off the oven or take their
pills. In order to make use of the vast amount of sensor information, the incom-
ing sensory data has to be processed in real-time. Medically relevant results may
be stored in a digital library containing the patient’s health record. Results with
unknown characteristics are stored in repositories to support medical research.
Critical results may request immediate intervention by the caregiver. In this
case, appropriate processes (e.g., calling the emergency service or contacting a
physician) have to be triggered.

Access to the contents of a medical digital library is supported by special
services and user defined processes that combine several of these services (il-
lustrated on the right hand side of figure 1). As described above, processes for
contacting the caregiver (e.g., by sending a SMS to a mobile device of a physi-
cian), or even for triggering some rescue activities in case of critical situations
have to be invoked if necessary. If the physician needs more detailed information
or wants to request data on previous treatments or prescriptions, he has to be
served with the data in a timely fashion. For all these purposes, appropriate pro-
cesses have to be available (or have to be defined) and to be executed efficiently
by the underlying infrastructure.

Our infrastructure for telemonitoring applications is based on a combined
hyperdatabase system [4] and Grid environment [5]. It supports the definition
and execution of processes on top of (web) services but also allows to imple-
ment continuously running processes for analyzing, processing, and managing
data streams in real-time. Since processing data streams for evaluating the pa-
tient’s health state requires the invocation of computationally intensive services,
Grid concepts are exploited to support the distributed computation on top of
heterogenous resources. Therefore, the different data streams coming from the
various sensors of a patient are distributed within the Grid for parallel process-
ing. Finally, the streams have to be joined in order to combine different sensor
signals for rating medical relevance. The combination of process management
and Grid concepts allows for the composition of existing services and for the
efficient distribution of single service invocations within the Grid.

40 M. Wurz, G. Brettlecker, H. Schuldt

3 Data Stream Management for Medical Digital Libraries

In this section, we introduce an extended hyperdatabase system for the support
and management of continuous data streams.

3.1 Challenges in Data Stream Management

The main challenges in data stream management (DSM) are imposed by the large
number of sensors, components, devices, information systems and platforms con-
nected by different network technologies, and by the vast amount of continuously
generated data. For processing this data, existing systems and components are
well in place and need to be incorporated into digital libraries. Reliability and
provable correctness are new challenges that are of utmost importance particu-
larly in healthcare applications, where failures may have perilous consequences.
As described in Section 2, DSM has to interact with traditional process man-
agement in order to react to certain results (e.g., calling the ambulance) or to
offer the user appropriate processes for the evaluation of DSM results. These
challenges necessitate an infrastructure that combines the processing of data
streams and process management, i.e., the possibility to combine services (con-
ventional services as offered by digital libraries and services operating on data
streams produced by sensors) and to execute composite services in a reliable
way. Therefore, we propose an integrated information management infrastruc-
ture supporting user-defined processes, both conventional and processes perform-
ing DSM. Hyperdatabase (HDB) systems already provide an infrastructure for
reliable process execution, which we will extend to enable DSM processes.

3.2 Peer-to-Peer Process Execution in the Hyperdatabase OSIRIS

A hyperdatabase (HDB) [6] is an infrastructure that supports the definition and
reliable execution of user-defined processes on top of distributed components
using existing services. Characteristic features of HDB’s are the possibility to i.)
add transactional guarantees to the execution of processes [7], ii.) support reliable
peer-to-peer execution of processes without global control, thereby supporting a
high degree of availability and scalability, and iii.) apply decentralized process
execution in areas of intermitted connectivity.

OSIRIS (Open Service Infrastructure for Reliable and Integrated process
Support) [4] is a prototype of a hyperdatabase, that has been developed at ETH
Zurich and is used as a starting point of our joint HDB and Grid infrastructure.
OSIRIS follows a novel architecture for distributed and decentralized process
management. OSIRIS supports process execution in a peer-to-peer style based
on locally replicated metadata, without contacting any central instance (Peer-to-
Peer Execution of Processes, P2PEP). With P2PEP, a component works off its
part of a process and then directly migrates the instance data to nodes offering
a suitable service for the next step(s) of the process according to its control
flow specification. This is achieved by implementing two layers: the HDB-layer,
a small software layer that is installed on each component providing a service

Data Stream Management and Digital Library Processes 41

Analysis

ECG
Aquisition

ECG
Variability

Critical
Detection

Invocation of
Alarm Processes

Blood Pressure
Aquisition

Blood Pressure
Variability

Patient‘s PDA Patient‘s PC Caregiver‘s PC

Fig. 2. Stream Process Processing ECG and Blood Pressure

and a set of global HDB repositories. These HDB repositories collect metadata
on the processes to be executed, on the available components, and on their load.
This meta information is smoothly distributed to the individual HDB layers –
only metadata needed locally is actually replicated (e.g., only information on
services and providers which might be invoked in some process are required at
the local HDB layer of a component). More information on hyperdatabases and
OSIRIS can be found in [6, 8, 4].

3.3 DSM enabled Extended Hyperdatabases Infrastructure

HDB’s have to be extended in order to enrich their benefits with the capabilities
for DSM [9]. We consider stream-processes, which perform continuous processing
of data streams. The requirements for the execution of these stream processes are
similar to those of conventional processes with respect to important aspects like
distributed execution, load balancing, meta information distribution, or fault
tolerance. Figure 2 illustrates a stream-process, which continuously processes
patient’s ECG and blood pressure. Sensor signals are recorded and preprocessed
by patient’s PDA, which is wirelessly connected to patient’s PC. The PC does
further processing and detects critical health conditions. Processed sensor infor-
mation is continuously forwarded to the caregiver for further analysis.

Operators are the processing units of DSM. Operators perform stream opera-
tions on incoming data streams and produce outgoing data streams. Sensors are
the primary sources of data streams. Sensors can be considered as operators with-
out incoming data streams. DSM is done by combining operators, similar to the
combination of activities in traditional process management. A stream-process is
such a well defined set of logically linked operators continuously processing the
selected input data streams, thereby producing results and having side effects.
Side effects are effects on external systems imposed by processing results (e.g.,
feeding a digital library with medical relevant information gained by the stream
process).

Based on the OSIRIS approach to fault-tolerant distributed peer-to-peer pro-
cess execution, we need to distribute necessary meta information on stream pro-
cesses for DSM in the same way this is done also for process management. This
metadata contains the pieces of the global stream-process definition and a list of

42 M. Wurz, G. Brettlecker, H. Schuldt

offered stream operators of components, which are subject for smooth distribu-
tion among the suitable components offering the corresponding stream operators.
A stream-process is set up by sending an activation message to the HDB-layer of
the component hosting a source operator (e.g., the component is attached to a
sensor or has a data stream input). Due to locally available metadata, the local
HDB-Layer knows the subsequent stream operator and components, which offer
these operators and is able to make the routing decision. Then the component
sends an activation message to the selected subsequent components and provides
them with needed data streams.

Our extended infrastructure also allows for load balancing during the execu-
tion of stream processes. Therefore, the distribution of metadata on the load of
components that are able to host stream operators needs to be published. This
load information is used to choose the best component during the stream-process
activation. In case of high load, the overloaded component is able to transfer a
running stream operator to a component with less load. When stream operations
are affected that accumulate an internal state during their execution, this state
has to be managed and transferred to the new host. Due to this fact, compo-
nents make a backup of internal state of running stream-operators at a regular
basis. Information about the backup location address is metadata, which is also
smoothly distributed.

The previous techniques are also responsible to allow for sophisticated fail-
ure handling. In case a component hosting a stream operator fails, components
hosting preceding parts of the same stream-process will recognize the failure be-
cause the transmission of their outgoing streams is no longer acknowledged. The
infrastructure distinguishes between four failure cases. First, the failed compo-
nent recovers within a certain timeout, then processing is continued in the state
before the failure. This is possible since output queues of preceding components
are used to buffer the data streams until they are acknowledged. Second, the
failed component does not recover within the timeout period. In this case, the
preceding component is in a similar situation as during the setup phase of the
process. The component has to find suitable components that are able to per-
form subsequent stream operators. Due to local metadata, the new component
is able to find the backup location and to load the old internal state for the
continuation of stream processing. If the failed component recovers after the
timeout, it has to be informed that its workload moved and that it is no longer
in charge. Third, the failed component does not recover and there is no other
suitable component. In this case, the stream-process may have an alternative
processing branch (defined in the streaming process), which is now activated by
the preceding component. Fourth, there is no recovery and no possibility to con-
tinue stream processing. If so, a conventional process can be invoked to handle
the failure situation (e.g., calling an administrator to fix the problem).

This extended HDB system is capable of supporting telemonitoring applica-
tions by providing integrated process and data stream management in peer-to-
peer style. Furthermore, it allows to seamlessly cooperate with digital libraries,
e.g., by making use of the services that are provided to access information.

Data Stream Management and Digital Library Processes 43

4 Digital Libraries on the Grid

An important challenge when dealing with service composition, especially with
computationally complex services, is the efficient routing of service requests
among a set of providers. OGSA (Open Grid Services Architecture) [10] com-
pliant Grid systems are rapidly emerging and are widely accepted. These Grid
systems provide support to efficiently invoke and use individual services in the
Grid in a request/reply style. However, they do not support service composition
and process execution. In contrast, the focus of state-of-the-art process support
systems is not at all or only marginally oriented towards a tight integration into
a Grid Environment.

4.1 Bringing Service Composition to the Grid

Although OSIRIS, the starting point of our integrated DSM and Grid Infra-
structure, is quite powerful in doing distributed process management, it does not
yet follow OGSA or WS-RF [11], the de facto standard for Grid Environments. It
does also not make use of the enhanced features offered in the globus toolkit [5]
(the reference implementation of OGSA) like, for example, resource management
and security. In our current work, we aim to bring support for service composition
to the Grid, which is done by extracting some of the ideas that can be found
in OSIRIS, and integrate those with current standards and services which have
recently emerged in the Grid Community. This will result in a set of new OGSA
compliant services enhancing current Grid Infrastructures with the ability of
recursive process composition.

There are several possibilities to decompose an application into smaller parts
that can then be executed in parallel. The most important ones are master/slave
type of applications, as well as the divide and conquer or branch and bound
paradigms. The applicability of these paradigms of course strongly depends on
the semantics of the application to be parallelized. Especially the master/slave
paradigm is very suitable to Grid-enable applications [12], and is therefore widely
used. In case of master/slave parallelization, the main prerequisites are: i) few
or no communication among the sub parts ii) work is dividable among identical
sub parts iii) work can be dis- and reassembled in a central point iv) work can
be parameterized and parallelized and does not need serial iterative processing.

Since the potential for master/slave parallelization can be found in several
applications, we have started to apply this paradigm to enhance the efficiency,
the creation, and the ease-of-use of services in the Grid. Using the master/slave
paradigm, applications developers can focus on the implementation of the prob-
lem specific subparts of the service as well as on the split into and merge of par-
allel subparts, but they do not need to care about the distribuiton of subparts.
This is particularly important since the latter requires dynamic information on
the currently available resources which is not available at build-time, when the
services, their split and merge are defined.

44 M. Wurz, G. Brettlecker, H. Schuldt

4.2 The Frameworks Architecture and Use

To ease the creation of services for tomorrow’s Grid Infrastructures, we are cur-
rently developing a generic framework to handle master/slave applications where
a single master process controls the distribution of work to a set of identically op-
erating slave processes. This framework is designed to accept ordinary Web/Grid
Services as destinations for calls, as well as composite services. The framework
enables application developers to port new master/slave type of applications to
the Grid by just implementing a very limited set of application focused methods,
and declare the so implemented classes as available to the framework in a de-
ployment descriptor file. The framework takes care about all the infrastructure
related functionality like marshaling and unmarshaling, communications, failure
handling and distributed invocation of services depending on availability and
performance considerations. Among this functionality, the framework dynami-
cally takes care about the level of parallelization based on the current status of
the Grid, availability of nodes, and QoS restrictions.

The framework developed is based on GT3 [5]. The core part consists of a
set of classes building the central master and slave services. These are OGSA-
compliant Grid Services [10] bundled with corresponding stubs and some sup-
porting classes for specialized exceptions and encapsulating the input and output
parameters passed around. The work left to the application programmer is to
implement abstract methods which are responsible for the application specific
part, in particular methods for splitting, merging, and the actual application
logic. The ones for splitting and merging used in the master service, and the
calculative method is used to concretely specify what the slave has to do. In
addition, a Web Service deployment descriptor (WSDD) has to be written, as
specified by the Axis framework [13], which GT3 is partly based on. At run-
time, the framework determines which slaves to use, out of the set of all slaves
registered to provide the appropriate service. This is done by accessing an In-
dexService available in the Grid. The request is then forwarded to all the slaves,
after being divided into subtasks. This is shown in the upper right corner of
figure 3 where the service depicted as cross is provided by a set of slave services
executing in parallel.

The current implementation can easily be adopted to more sophisticated dis-
tribution mechanisms based on the Service Data Elements (SDE’s) [5] provided
by each Grid Service. There might be more specialized implementations that dis-
tribute to slaves based on current workload, cost or other metrics available. After
having distributed he work, the MasterService registers for notifications from the
slaves and waits for results. After all slaves have returned, the Master Service
generates the final result by merging the results of the subparts and returns the
completed result to the requestor. An important aspect here is to provide sophis-
ticated failure handling that allows the Master Service to re-distribute requests
when slaves have failed during the execution of their subpart. On the slaves side,
in addition to the implementation of the actual application logic, a deployment
descriptor is needed that specifies where to register this particular slave service.

Data Stream Management and Digital Library Processes 45

Fig. 3. Process containing a dynamically acting Grid Node

In the scenario described in section 2, there is one master Grid Service which
accepts streamed data from the patients life vest and ECG. This service acts,
from the point of the process management system, as an ordinary step in the
process chain. However, in the background it re-directs the data stream to the
slaves available in the system and checks the data against local replicas of digital
libraries holding characteristic pathologic and non pathologic data. The time
intensive comparison of the streamed data with entries in the digital library is
done in a distributed way on the Grid. The slaves report the result of their search
back to the master who is then able to store the data for further usage and to
trigger subsequent services or processes when needed (e.g., in critical situations).

4.3 From Master/Slave to Process Execution

A MasterService can generally be seen as a Grid Service that controls the exe-
cution and dataflow among a set of several services whose availability, number
and distribution is only known during runtime and subject to frequent changes.
Since from the point of view of the OSIRIS process execution engine, it acts just
as any other operator or service, the dynamics of request distribution as well
as the distribution pattern itself is transparent to the process execution engine.
Figure 3 illustrates a process schema as executed by OSIRIS including a dynami-
cally acting Grid Node. One step in this process, shown as a cross, is dispatching
the request to various nodes in the Grid and awaits their feedback. The process
execution engine is not aware of this dispatching behind the scenes. This leads to
the more general idea that the MasterService can be seen as a Process Execution
Service itself, calling arbitrary Grid Services — either in parallel, sequentially
or in any other pattern available to the system.

This Process Execution Services can be deployed to the Grid as highly dy-
namic components. The distribution pattern of an algorithm can be determined
at runtime based on some QoS information provided through the caller or can
be hard wired to a special distribution pattern.

In order to avoid a centralized Process Execution Service that could lead to
a single point of failure, we are currently integrating the distributed process exe-

46 M. Wurz, G. Brettlecker, H. Schuldt

cution engine described in OSIRIS. In OSIRIS, the execution plan for a process
(determined by the control flow) is, prior to its invocation, split up into several
execution steps. Each step consists of a service invocation, and information of all
successors. This allows to move the control from a centralized component to the
responsibility of each node participating in the process. Therefore, this approach
is much more robust to the failure of single nodes execution and triggering the
next step is up and running) than centralized solutions.

5 Related Work

5.1 Data Stream Management

DSM aspects are addressed by various projects like NiagaraCQ [14], STREAM
[15], and COUGAR [16]. The main focus of these projects is on query opti-
mization and approximate query results and data provided by sensor networks.
Aurora [17] allows for user defined query processing by placing and connecting
operators in a query plan. Aurora is a single node architecture, where a central-
ized scheduler determines which operator to run. Extensions like Aurora* and
Medusa [18] also address DSM in distributed environments. TelegraphCQ [19]
is a DSM project with special focus on adaptive query processing. Fjords allow
for inter-module communication between an extensible set of operators enabling
static and streaming data sources. Flux [20] provides load balancing and fault
tolerance. PeerCQ [21] is a system that offers a decentralized peer-to-peer ap-
proach supporting continual queries running in a network of peers. The DFuse
[22] framework supports distributed data fusion. Compared to other projects in
this field, our infrastructure offers two unique characteristics. Firstly, dynamic
peer-to-peer process execution where local execution is possible without cen-
tralized control. Secondly, the combination of DSM and transactional process
management enables sophisticated failure handling.

5.2 Grid Infrastructure

The master/slave paradigm is commonly agreed as valuable asset for the de-
velopment of Grid applications [12]. The master-worker tool [23] provides the
possibility to integrate applications in the Grid by implementing a small num-
ber of user-defined functions concentrating on the applications main purpose.
It is applied to complex problems from the field of numerical optimization [24].
While it is tightly integrated into a former Grid environment, the Globus Toolkit
2, our approach uses more recently emerged technologies and focuses on evolving
into a more generally useable distributed process execution engine.

A similar approach is taken in AppLeS Master-Worker Application Template
(AMWAT) [25] where the main emphasis is on scheduling issues and a workflow
model to select the best locations for the master and worker services. Other
Approaches focusing on other task-parallel models can be found in [26, 27] for
the divide-and-conquer distribution pattern, and [28] for branch-and-bound.

Data Stream Management and Digital Library Processes 47

In [29], BPEL4WS, the Business Process Execution Language for Web Ser-
vices [30] is evaluated for the use within transactional business processes on the
Grid. The authors point out that the usage of single, non-orchestrated Web Ser-
vices is limited, and that there is a need for reliable and coordinated process
execution on the Grid.

6 Conclusion and Outlook

The proliferation of ubiquitous computing and the huge amount of existing in-
formation sources is leading towards a world where sophisticated information
management is becoming a crucial requirement. A digital library for medical
applications not only has to manage discrete data, it has also to support the ac-
quisition, processing, and storage of streaming information that is continuously
produced by sensors. Essentially, both streaming and non-streaming processes
and applications have to be supported. Moreover, due to the complex processing
operators that are used within stream processes, the distribution of work is a
major requirement to efficiently process continuous data streams. By exploiting
the features of a Grid infrastructure, subparts can be executed in parallel by
making use of the resources that are available at run-time. As a paradigm for
the distribution of work within the Grid, we have integrated a master/slave type
of interaction into a stream-enabled HDB system.

Based on this extended HDB system, we are currently building a comprehen-
sive infrastructure that jointly addresses process-based service composition and
streaming processes, and that is enriched by features from an existing Grid in-
frastructure. In terms of the distribution paradigms supported, we are currently
extending the master/slave type of distribution to allow for arbitrary execution
plans. The goal is to define a generic, distributed and OGSA compliant process
execution engine. This engine has to support different control flow specifications
for composite services that are controlled by the Grid-enabled Process Execu-
tion Services so that it can be exploited for process-based applications on top of
medical digital libraries.

References

1. Haux, R., Kulikovski, C.: Digital Libraries and Medicine. Yearbook of Medical
Informatics (2001)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

3. VivoMetrics: VivoMetrics – Continuous Ambulatory Monitoring.
http://www.vivometrics.com/site/system.html (2003)

4. Schuler, C., et al.: Peer-to-Peer Process Execution with OSIRIS. In: Proceedings
of ICSOC 2003, Trento, Italy, Springer LNCS, Vol. 2910 (2003) 483–498

5. The Globus Alliance: The Globus Toolkit Version 3. http://www-
unix.globus.org/toolkit/ (2003)

6. Schek, H.J., Böhm, K., Grabs, T., Röhm, U., Schuldt, H., Weber, R.: Hyper-
databases. In: Proc. of WISE Conf., Hong Kong, China (2000) 28–40

48 M. Wurz, G. Brettlecker, H. Schuldt

7. Schuldt, H., Alonso, G., Beeri, C., Schek, H.J.: Atomicity and Isolation for Trans-
actional Processes. ACM Transactions on Database Systems 27 (2002) 63–116

8. Schek, H.J., Schuldt, H., Schuler, C., Weber, R.: Infrastructure for Information
Spaces. In: Proc. of ADBIS Conf., Bratislava, Slovakia (2002) 22–36

9. Brettlecker, G., Schuldt, H., Schatz, R.: Hyperdatabases for Peer–to–Peer Data
Stream Management. In: Proc. of ICWS Conf., San Diego, USA (2004) to appear

10. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration (2002)

11. Sabbah, D.: Bringing Grid & Web Services Together. Presentation, IBM Software
Group (2004) http://www.globus.org/wsrf/sabbah wsrf.pdf.

12. Foster, I., Kesselman, C., eds.: The Grid 2, Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers (2004)

13. Apache WebServices Project: AXIS. http://ws.apache.org/axis/ (2004)
14. Chen, J., et al.: NiagaraCQ: A Scalable Continuous Query System for Internet

Databases. In: Proc. of SIGMOD Conf., Dallas, TX, USA (2000) 379–390
15. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in

Data Stream Systems. In: Proc. of PODS Conf., Madison, WI, USA (2002) 1–16
16. Yao, Y., Gehrke, J.: Query Processing for Sensor Networks. In: Proc. of CIDR

Conf., Asilomar, CA, USA (2003)
17. Carney, D., et al.: Monitoring Streams - A New Class of Data Management Ap-

plications. In: Proc. of VLDB Conf., Hong Kong, China (2002) 215–226
18. Cherniack, M., et al.: Scalable Distributed Stream Processing. In: Proc. of CIDR

Conf., Asilomar, CA, USA (2003)
19. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World. In: Proc. of CIDR Conf., Asilomar, CA, USA (2003)
20. Shah, M., et al.: Flux: An Adaptive Partitioning Operator for Continuous Query

Systems. In: Proc. of ICDE Conf., Bangalore, India (2003)
21. Gedik, B., et al.: PeerCQ:A Decentralized and Self-Configuring Peer-to-Peer In-

formation Monitoring System. In: Proc. of Distributed Computing Systems Conf.,
Providence, RI, USA (2003) 490–499

22. Kumar, R., et al.: DFuse: a Framework for Distributed Data Fusion. In: Proc. of
SensSys Conf., Los Angeles, CA, USA (2003) 114–125

23. Linderoth, J., et al.: An Enabling Framework for Master - Worker Applications
on the Computational Grid. In: 9th IEEE Int’l Symp. on High Performance Dist.
Comp., Los Alamitos, CA, IEE Computer Society Press (2000) 43–50

24. Anstreicher, K., et al.: Solving Large Quadratic Assignment Problems on Compu-
tational Grids. In: Mathematical Programming 91(3). (2002) 563–588

25. Shao, G.: Adaptive Scheduling of Master/Worker Applications on Distributed
Computational Resources. PhD thesis, University of California - San Diego (2001)

26. Foster, I.: Automatic Generation of Self - Scheduling Programs. In: IEEE Trans-
actions on Parallel and Distributed Systems 2(1). (1991) 68–78

27. v. Nieuwpoort, R., et al.: Efficient Load Balancing for Wide - Area Divide - And
- Conquer Applications. In: 8th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. (2001) 34–43

28. Iamnitchi, A., et al.: A Problem-specific Fault-tolerance Mechanism for Asyn-
chronous Distributed Systems. In: Int’l Conference on Parallel Processing. (2000)

29. Leymann, F., Güntzel, K.: The Business Grid: Providing Transactional Business
Processes via Grid Services. In: Proc. of ICSOC 2003, (Springer)

30. Andrews, T., et al.: Business Process Execution Language for Web Services
(BPEL4WS) 1.1. BEA, IBM, Microsoft, SP, Siebel. (2003)

Supporting Information Access in Next Generation
Digital Library Architectures⋆

Ingo Frommholz, Predrag Kneževíc, Bhaskar Mehta, Claudia Niederée, Thomas Risse,
and Ulrich Thiel

Fraunhofer IPSI
Integrated Publication and Information Systems Institute

Dolivostrasse 15, 64293 Darmstadt, Germany
{frommholz|knezevic|mehta|niederee|risse|thiel}@ipsi.fhg.de

Abstract. Current developments on Service-oriented Architectures,Peer-to-Peer
and Grid computing promise more open and flexible architectures for digital li-
braries. They will open DL technology to a wider clientele, allow faster adaptabil-
ity and enable the usage of federative models on content and service provision.
These technologies rise new challenges for the realizationof DL functionalities,
which are rooted in the increased heterogeneity of content,services and metadata,
in the higher degree of distribution and dynamics, as well asin the omission of a
central control instance. This paper discusses these opportunities and challenges
for three central types of DL functionality revolving around information access:
metadata management, retrieval functionality, and personalization services.

1 Introduction

Currently, there is a considerable amount of R&D activity indeveloping viable strate-
gies to use innovative technologies and paradigms like Peer-to-Peer Networking, Grid,
and Service-oriented Architectures in digital libraries (see e.g. the European Integrated
Projects BRICKS [1] and DILIGENT). The promise is that theseefforts will lead to
more open and flexible digital library architectures that:

– open up digital library (DL) technology to a wider clientele by enabling more cost-
effective and better tailored digital libraries,

– allow faster adaptability to developments in DL services and IT technologies, and
– enable usage of dynamic federative models of content and service provision involv-

ing a wide range of distributed content and service providers.

The use of Service-oriented Architectures, Grid infrastructures, and the Peer-to-
Peer approach for content and service provision has implications for the realization of
enhanced DL functionality. These implications are mainly rooted in increased hetero-
geneity of content, services and metadata, in the higher degree of distribution and dy-
namics, as well as in the omission of a central control instance. On one hand, these are
opportunities for better and more multifarious DL services; on the other hand, these are

⋆ This work is partly funded by the European Commission under BRICKS (IST 507457), COL-
LATE (IST-1999-20882), DILIGENT and VIKEF (IST-507173)

50 I. Frommholz, P. Knězevíc, B. Mehta, C. Niederée, T. Risse, U. Thiel

new challenges to ensuring long-term, reliable, and quality-ensured DL service provi-
sion that also exploits the technology promises. This paperdiscusses these opportunities
and challenges for three central types of DL functionality revolving around information
access: metadata management, retrieval functionality, and personalization services.

The rest of this paper is structured as follows: Section 2 presents the key ideas of
next generation DL architectures based on exemplary RTD projects. Section 3 discusses
how these new ideas influence information access in the areasof metadata management,
information retrieval, and personalization support. Related work in these areas is con-
sidered in section 4. The paper concludes with a summary of the paper’s key issues.

2 Next Generation Digital Library Architectures

Current plans for next generation DL architectures are aiming for a transition from the
DL as an integrated, centrally controlled system to a dynamic configurable federation of
DL services and information collections. This transition is inspired by new technology
trends and developments. This includes technologies like Web services and the Grid
as well as the success of new paradigms like Peer-to-Peer Networking and Service-
oriented Architectures. The transition is also driven by the needs of the ”DL market”:

– better and adaptive tailoring of the content and service offer of a DL to the needs
of the respective community as well as to the current serviceand content offer;

– more systematic exploitation of existing resources like information collections,
metadata collections, services, and computational resources;

– opening up of DL technology to a wider clientele by enablingmore cost-effective
digital libraries.

To make these ideas more tangible we discuss three RTD projects in the field and
discuss the relationship to upcoming e-Science activties.

2.1 Virtual Digital Libraries in a Grid-based DL Infrastructure

DILIGENT1 is an Integrated Project within the IST 6th Framework Programme. It’s
objective is ”to create an advanced test-bed that will allowmembers of dynamic vir-
tual e-Science organizations to access shared knowledge and to collaborate in a secure,
coordinated, dynamic and cost-effective way.”

The DILIGENT testbed will enable the dynamic creation and management of Vir-
tual Digital Libraries (VDLs) on top of a shared Grid-enabled DL infrastructure, the
DILIGENT infrastructure. VDLs are DLs tailored to the support of specific e-Science
communities and work groups. For creating a VDL, DL services, content collections,
metadata collections are considered as Grid resources and are selected, configured, and
integrated into processes using the services of the DILIGENT infrastructure. This in-
frastructure builds upon an advanced underlying Grid infrastructure as it is currently
evolving e.g. in the EGEE project2. Such a Grid infrastructure will already provide
parts of the functionality required for DILIGENT. This includes the dynamic allocation

1 DILIGENT - A DIgital Library Infrastructure on Grid ENabledTechnology
2 http://public.eu-egee.org

Supporting Information Access in Next Generation Digital Library Architectures 51

of resources, support for cross-organizational resource sharing, and a basic security
infrastructure. For effectively supporting DLs, additional services like support for re-
dundant storage and automatic data distribution, metadatabroker, metadata and content
management, advanced resource brokers, approaches for ensuring content security in
distributed environments and the management of content andcommunity workflows
are rquired in addition to services that support the creation and management of VDLs.
A further project challenge are systematic method to make the treasure of existing DL
services and collections utilizable as Grid resources in the DILIGENT infrastructure.

The DILIGENT project will result in a Grid-enabled DL testbed that will be vali-
dated by two complemtary real-life application scenarios:one from the Cultural Her-
itage domain and one from the environmental e-Science domain.

2.2 Service-oriented and Decentralized DL Infrastructure

The aim of the BRICKS3 Integrated Project [1] is to design, develop and maintain a user
and service-oriented space to share knowledge and resources in the Cultural Heritage
domain. The target audience is very broad and heterogeneousand involves cultural
heritage and educational institutions, research community, industry, and citizens.

Such high level of heterogeneity cannot be handled with the existing centralized
DL architectures. The BRICKS architecture will reduce the cost to join the system, i.e.
the system will reuse existing communication channels and content of already installed
DLs. Also, the BRICKS membership will be flexible, such that parties can join or leave
the system at any point in time without administrative overheads. The BRICKS project
will define a decentralized, service-oriented infrastructure that uses Internet as a back-
bone and fulfills the requirements of expandability, scalability and interoperability.

With respect to access functionality, BRICKS provides appropriate task-based func-
tionality for indexing/annotation and collaborative activities e.g. for preparing a joint
multimedia publication. An automatic annotation service will enable users to request
background information, even if items have not been annotated by other users yet. By
selecting appropriate items, such as definitions of concepts, survey articles or maps of
relevant geographical areas, the service exploits the currently focussed items and the
user’s goals expressed in the user profile. In addition, the linking information, which is
generated dynamically, must be integrated into the documents. The design of the access
functionality is influenced by our experiences in the 5th Framework project COLLATE.

2.3 COLLATE: A Web-based environment for document-centered collaboration

Designed as a content- and context-based knowledge workingenvironment for dis-
tributed user groups, the COLLATE system supports both individual work and col-
laboration of domain experts with material in the data repository. The example applica-
tion focuses on historic film documentation, but the developed tools are designed to be
generic and as such adaptable to other content domains and application types. This is
achieved by model-based modules.

3 BRICKS - Building Resources for Integrated Cultural Knowledge Services

52 I. Frommholz, P. Knězevíc, B. Mehta, C. Niederée, T. Risse, U. Thiel

The system supports collaborative activities such as creating a joint publication or
assembling and creating material for a (virtual) exhibition, contributing unpublished
parts of work in the form of extended annotations and commentaries. Automatic index-
ing of textual and pictorial parts of a document can be invoked. Automatic layout analy-
sis for scanned documents can be used to link an annotation ofindividual segments. As
a multifunctional means of in-depth analysis, annotationscan be made individually but
also collaboratively, for example in the form of annotationof annotations, collaborative
evaluation, and comparison of documents. Through interrelated annotations users can
enter into a discourse on the interpretation of documents and document passages.

The COLLATE collaboratory is a multifunctional software package integrating a
large variety of functionalities that are provided by cooperating software modules re-
siding on different servers. It can be regarded as a prototypical implementation of a
decentralized, Service-oriented DL architecture which serves as a testbed for the collab-
orative use of documents and collections in the Humanities.The collaborative creation
of annotation contexts for documents offers new opportunities for improving the access
functionality, as we will illustrate later on.

2.4 Next Generation DL Architectures and e-Science

Scientific practice is increasingly reliant on data-intensive research and international
collaboration enabled by computer networks. The technology deployed in such sce-
narios allows for high bandwidth communication networks, and by linking computers
in ”Grids” places considerably more powerful computing resources is at their disposal
than a single institution could afford. If we view e-Scienceas being primarily motivated
up to now by notions of resource sharing for computationallyintensive processes (e.g.
simulations, visualisation, data mining) a need is emerging for new approaches, brought
up by ever more complex procedures, which, on the one hand, assume the reuse of
workflows, data and information and, on the other hand, should be able to support col-
laboration in virtual teams. Future concepts of e-Science will be less focussed on data
and computing resources, but will include services on the knowledge and organizational
levels as well. Embedding future DL architectures in an emerging e-Science infrastruc-
ture will meet these requirements by providing access to information and knowledge
sources, and appropriate collaboration support on top of the Grid-based infrastructure.

3 Information Access in Next Generation DL Architectures

A decentralized, service-oriented architecture poses newchallenges to the technologies
employed for information access. DLs based on such an architecture should, for exam-
ple, not only provide access and retrieval functionality for the documents residing on
the local peer, but should also consider other peers which might host relevant document
w.r.t. a query. In the following, we will outline possible approaches for enhanced ser-
vices for information access. Such services will utilize the functions of a decentralized
metadata management ensuring the availability of all documents (and their parts) while
reducing overhead costs. Retrieval functions can be improved by taking into account

Supporting Information Access in Next Generation Digital Library Architectures 53

P2P-DOM

DHT Abstraction Layer

Index Manager

DHT

Network Layers

Query Engine

Applications

Fig. 1. Decentralized XML Storage Architecture

the annotational contexts of documents emerging for the collaborative process of in-
terpreting and discussing items of interests by a group of users. In addition, individual
users‘ contexts can be used to personalize the access services.

3.1 Decentralized Metadata Management

DLs usually like to keep content under control in their localrepositories. On the con-
trary, metadata should be available for all parties, storedin some central place accessible
for everybody. Decentralized architectures by definitionsavoid having central points,
for the following reasons: they are candidate single point of failure and performance
bottleneck. Therefore, metadata must be spread in the community. A näıve approach
for metadata searching would be to distribute queries to allmembers, but it is obvious
that the solution is unscalable. Hence, efficient metadata access and querying are very
important challenges withing the new decentralized settings.

Our proposal to these challenges is a decentralized Peer-to-Peer datastore that will
be used for managing XML-encoded metadata. It balances resource usage within the
community, has high data availability (i.e. data are accessible even if creator disappears
from the system, e.g. system fault, network partitioning, or going offline), is updateable
(i.e. stored data can be modified during the system lifetime), and supports a powerful
query language (e.g XPath/XQuery).

XML documents are split into finer pieces that are spread within the community.
The documents are created and modified by the community members, and can be ac-
cessed from any peer in a uniform way, e.g. a peer does not haveto know anything
about the data allocation. Uniform access and balanced storage usage are achieved by
using a DHT (Distributed Hash Table) Overlay [2] and having unique IDs for different
document parts.

Figure 1 shows the proposed storage architecture, where alllayers exist on every
peer. The datastore is accessed through the P2P-DOM component or by using the query
engine that could be supported by an optional index manager.A more detailed discus-
sion about the proposed approach, challenges and open issues can be found in [3].

In the rest of the subsection, we are giving more details how the proposed datas-
tore could be used for managing service metadata, which are an additional type of DL
metadata introduced by Service-oriented Architectures.

54 I. Frommholz, P. Knězevíc, B. Mehta, C. Niederée, T. Risse, U. Thiel

Service metadata describe service functionalities, interfaces and other properties.
These meta-information are usually encoded by using WSDL (Web Service Descrip-
tion Language [4]) and published to an UDDI (Universal Description, Discovery and
Integration [5]) service directory. Service discovery queries are usually more complex
than simple name matching, i.e. they contain qualified, range and/or boolean predicates.

In order to realize a decentralized service directory with advanced query mecha-
nisms, the community of service providers will create and maintain in the decentralized
P2P data store a pool of the service descriptions. Every service will be able to modify
its description during the lifetime and to search for neededservices. Query execution
will be spread at many peers, the query originator will only get the final result back.

At the same time, due to uniform data access, new community members can start us-
ing the service directory immediately after joining the system without additional setup
and administration. A member decision to leave the community will not make any influ-
ence for the rest of the system, because data are replicated.Even if network partitioning
happens, the service directory would provide access to service metadata available in the
partition allowing some parties to continue with work without interruption.

For details about the use of the decentralized datastore in other scenarios see [6].

3.2 Decentralized Context-based Information Retrieval

DLs based on a decentralised architecture should not only provide access and retrieval
functionality for the documents residing on the local peer,but should also consider other
peers which might host relevant document w.r.t. a query. It is clear that for a scenario
like described above appropriate search functionality hasto be defined. In the following,
we will outline possible approaches for enhanced retrievalservices.

Services In order to be able to abstract from the underlying infrastructure, retrieval
functionality should be implemented as a service with a predefined API and behaviour.
This has the advantage that other peers are able to query the local repository, which
is an important feature for enabling P2PIR. An example Web Service specification for
search and retrieval is SRW4. It considers content-based retrieval functionality, butlacks
context-based features as proposed above. When performingretrieval based on the an-
notation context (see below), such context information should be contained in the result
set in order to elucidate why an item was retrieved. So a common API for queries, re-
sults and indexing requests has to be identified which is capable of taking advanced
queries and context information into account.

Annotation Context Annotations are a certain kind of metadata providing some
information about the annotated document. They can containcontent about content
(e.g., interpretations, comments), other information like judgements, or references to
other documents [7]. Annotations can be either manually or automatically created.

Manual annotations range from personal to shared to public ones. They can include
personal notes, e.g., for comprehension, and whole discussions about documents [8, 9].
Annotations are building blocks for collaboration. In a distributed, decentralized envi-
ronment, especially shared and public annotations pose a challenge to the underlying

4 http://www.loc.gov/z3950/agency/zing/srw/

Supporting Information Access in Next Generation Digital Library Architectures 55

services. Users can create shared and public annotations residing on their peers, but this
data has to be spread to other peers as well.

By automatic annotations, we mean the automatic creation and maintenance of an-
notations consisting of links to and summaries of documentson other peers which are
similar to documents residing on the local peer. Such annotations constitute a con-
text in which documents on a peer are embedded. For each document, agents could be
triggered to periodically update the information at hand, similar to the internal link-
ing methods like similarity search, enrichment and query generation proposed in [10].
P2PIR methods can possibly be applied for this. The underlying assumption is that
a user stores potential interesting documents on her peer and is interested in similar
publications. Automatic annotations can be created w.r.t.several aspects. For instance,
topical similar documents can be sought after. Another interesting kind of automatic
annotation can be extracted from the surroundings of a citation. If a document residing
on another peer cites a document on the local peer, the surroundings of this citation
usually contain some comments about the cited document (similar as reported in [11]).
Since only annotations to documents residing on the peer arecreated, storage costs can
be kept low. Regular updates performed by agents keep the user informed.

Annotations, either manual or automatic ones, constitute acertain kind ofdocu-
ment context. Annotation-based retrieval methods [8] can employ the annotation con-
text without the need to actual access other peers. Since annotations, being manually
or automatically created, contain additional informationabout the document, we assert
that annotation-based retrieval functions boost retrieval effectiveness. Future work will
show if this assumption holds. Using annotations for information retrieval in a decen-
tralized environment has the advantage that annotations are locally available, but reflect
information lying on other peers. In this way, annotations create new access structures
which help adressing problems arising when performing information retrieval on an
underlying P2P infrastructure.

3.3 Cross-Service Personalization

Personalization approaches in DLs dynamically adapt the community-oriented service
and content offerings of a DL to the preferences and requirements of individuals [12].
They enable more targeted information access by collectinginformation about users
and by using these user models (also called user profiles) in information mediation.

Personalization typically comes as an integral part of a larger system. User profiles
are collected based on a good knowledge about the meaning of user behavior and per-
sonalization activities are tailored to the functionalityof the respective system. Within
a next-generation distributed DL environment, which is rather a dynamic federation of
library services than a uniform system, there are at least two ways to introduce person-
alization. In the simple case, each service component separately takes care of its person-
alization independently collecting information about users. A more fruitful approach,
however, is to achieve personalization across the boundaries of individual services, i.e.,
cross-system or, more precisely, cross-service personalization. In this case, personaliza-
tion relies on a more comprehensive picture of the user collected from his interaction
with different library services.

56 I. Frommholz, P. Knězevíc, B. Mehta, C. Niederée, T. Risse, U. Thiel

Cross-service Personalization Challenges Cross-service personalization raises the
following challenges: How to bring together the information about a user and his inter-
actions collected by the different services in a comprehensive way and make up-to-date
information about the user available? How to manage, update, and disseminate user
models to make them accessible to the different services? How to support (at least
partial) interpretation of the user model in a heterogeneous, and dynamically chang-
ing DL service environment? This requires a shared underlying understanding of the
user model. Furthermore, it raises issues of privacy and security, since personal data is
moved around in a distributed system.

Approaches to Cross-Service Personalization We identified two principle ap-
proaches which differ from each other in their architecture. A flexible and extensible
user model that can capture various characteristics of the user and his/her context is
in the core of both approaches. We call the operationalization of such a modelcontext
passport [13] in what follows, implying that it is accompanies the user and is ”pre-
sented” to services to enable personalized support. The idea of the context passport is
discussed in more detail after presenting the two approaches:

Adaptor approach: The adaptor approach relies on the ideas of wrapper architectures.
A kind of wrapper is used to translate information access operations into person-
alized operations based on the information collected in thecontext passport. The
advantage of this approach is that personalization can alsobe applied to services
that themselves do not support personalization. The disadvantage is that every ser-
vice will need its own wrapper. Unless there is a high degree of standardization
in service interfaces, creating wrappers for every individual services may not be
practical and does not scale well in dynamic service environments.

Connector approach: In contrast to the adaptor approach, the connector approachre-
lies on the personalization capabilities of the individualservices. It enables the bi-
directional exchange of data collected about the user between the context passport
and the personalization component of the respective service. The context passport
is synchronized with individual user models/profiles maintained by services. The
advantage here is that personalization of one service can benefit from the personal-
ization efforts of another.

The context passport [13] is positioned as a temporal memoryfor information about
the user. It covers an extensible set of facets modeling different user model dimensions,
including cognitive pattern, task, relationship, and environment dimension. The context
passport acts as an aggregated service-independent user profile with services receiving
personalization data from the context passport. Services also report to the context pass-
port based on relevant user interaction which add up-to-date information to the user’s
context. The context passport is maintained by an active user agent which communi-
cates with the services via a specific protocol.

A flexible protocol is required for this communication between context passport and
the service-specific personalization component. Such a protocol has to support the ne-
gotiation of the user model information to be exchanged and the bidirectional exchange
of user information. As the services require different metadata about a user, there has
to be a negotiation and an agreement between the service and the context passport about

Supporting Information Access in Next Generation Digital Library Architectures 57

what information is required. In order to keep the context passport up-to-date, the ser-
vices needs to inform the context passport about tnew knowledge gained about the user.
There is thus a requirement from bidirectional informationexchange so that other ser-
vices may benefit from up-to-date information about the user.

4 Related Work

Metadata Management Decentralized and peer-to-peer systems can be considered
as a further generalization of distributed systems. Therefore, decentralized data man-
agement has much in common with distributed databases, which are already well ex-
plored [14, 15]. However, some important differences exist. Distributed databases are
made to work in stable, well connected environments (e.g. LANs) with the global sys-
tem overview, where every crashed node is eventually replaced by a new proper one.
Also, they need some sort of administration and maintenance.

On the contrary, the P2P systems are deployed mostly on the highly unreliable Inter-
net. Some links can be down, network bandwidths are not guaranteed. The P2P systems
allow disconnection of any peer at any time, without a need for replacement, and none
of the peers is aware of the complete system architecture. Therefore, the system must
self-organize in order to survive such situations.

Many distributed databases like Teradata, Tandems NonStopSQL, Informix Online
Xps, Oracle Parallel Server and IBM DB2 Parallel Edition [16] are available on the
market. The first successful distributed filesystem was Network File System (NFS) suc-
ceeded by Andrew File System (AFS), Coda and xFS, etc.

Current popular P2P file-sharing systems (e.g. KaZaA, Gnutella, eDonkey, Past [2])
might be a good starting point for enabling decentralized data management. However,
these systems have some important drawbacks: file-level granularity and write-once
access, i.e. files are non-updateable after storing. Storing a new version requires a new
filename. Usually, a file contains many objects. As a consequence, retrieving a specific
object would require getting the whole file first. If a object must be updated, then a
whole new file version must be created and stored. In current systems it is not possible
to search for a particular object inside the files. The query results contain the whole
files, not only requested objects. Advanced searching mechanism like qualified, range
or boolean predicates search is not supported. Usually, metadata have rich and complex
structure and queries on them are more than simple keyword match. Also, metadata
should be updateable. Thus, the presented P2P systems are not suitable for decentralized
metadata management.

There are some attempts [17] to extend Gnutella protocols tosupport other types of
queries. It would be quite possible to create a Gnutella implementation that understands
some variant of SQL, XPath or XQuery. However, such networkswould have problems
with system load, scalability and data consistency, e.g. only locally stored data could be
updated and mechanisms for updating other replicas do not exist.

Information Retrieval Typical Peer-to-peer information retrieval (P2PIR) methods are
working decentralized, as proposed by the P2P paradigm [2].No server is involved as
it would be in a hybrid or client-server architecture. Common P2PIR approaches let the

58 I. Frommholz, P. Knězevíc, B. Mehta, C. Niederée, T. Risse, U. Thiel

requesting peer contact other peers in the network for the desired documents. In the
worst case, the query is broadcast to the whole network resulting in lots of communi-
cation overhead. Another approach would be to store all index information on every
peer and search for relevant documents locally. Peers wouldrequest the required infor-
mation during the inital introduction phase, and updates would be spread from time to
time. However, this approach is not feasible since the expected storage costs would be
quite high. Intermediate approaches which try to balance communication and storage
costs work with peer content representations like the clustering approach discussed in
[18]. Such a peer content representation does not need the amount of data a snapshot
of the whole distributed index would need, but conveys enough information to estimate
the probability that a documents relevant to the query can befound on a certain peer.

Some annotation systems [19] provide simple full-text search mechanisms on an-
notations. The Yawas system [20] offers some means to use annotations for document
search, e.g. by enabling users to search for a specific document type considering anno-
tations. Golovchinskyet al. [21] use annotations as markings given by users who judge
certain parts of a document as being important when emphasizing them. Their approach
gained better results than classic relevance feedback, as experiments showed. Agostiet
al. [7] discuss facets of annotations and propose an annotation-based retrieval function
based on probabilistic inference. The idea of automatic annotations is motivated by the
internal linking methods described in [10] by Thielet al.

Personalization Support The most popular personalization approaches in digital li-
braries or more general in information and content management systems are recom-
mender systems and methods that can be summarized under the term personalized infor-
mation access. Recommender systems (see e.g. [22]) give individual recommendations
for information objects following an information push approach, whereas personalized
information access (personalized newspapers, etc.) is realized as part of the information
pull process, e.g. by filtering retrieval results or refiningthe queries themselves.

Personalization methods are based on modeling user characteristics, mainly cogni-
tive pattern like user interests, skills and preferences [23]. More advanced user models
also take into account user tasks [24] based on the assumption that the goals of users
influence their needs. Such extended models are also referred to as user context mod-
els [25]. A flexible user context model that is able to capturean extensible set of user
model facets as it is required for cross-service personalization can be found in [13].
Information for the user models (also called user profiles) are collected explicitly or
implicitly [26], typically by tracking user behavior. These user profiles are used for per-
sonalized filtering in information dissemination (push) aswell as in information access
(pull) services. An important application area is personalized information retrieval. The
information about the user is used for query rewriting [27],for the filtering of query
results [28] as well as for a personalized ranking of query results [29].

5 Conclusions and Future Work

In this paper, we discussed opportunities and challenges for information access support
resulting from the transition of more traditional, centrally controlled DL architectures

Supporting Information Access in Next Generation Digital Library Architectures 59

to DLs as dynamic federations of content collections and DL services. The discussion
focussed on metadata management, information retrieval, and personalization support.
In addition to discussing the central challenges, an advanced approach has been dis-
cussed for each of the three aspects: For metadata management a decentralized P2P
data store solves the problem of systematic and efficient decentralized metadata man-
agement. Applications of annotations and annotation-based retrieval in the P2P context
is considerd as a way to improved information retrival support in a decentralized en-
vironment. Finally, cross-service personalization is discussed as an adequate way to
handle personalization in a dynamic service-oriented environment.

The list of the considered information access issues discussed is not meant to be
exhaustive. Further challenges raise within next-generation DL architectures like ef-
fective metadata brokering and advanced methods for ensuring content security and
quality. The envisaged support for information access needs to combine the approaches
mentioned above in a balanced way to ensure that users will benefit from decentral-
ized architectures, while at the same time, maintaining thehigh level of organization
and reachability that users of DL systems are used to. Such issues are addressed in
the BRICKS and the DIIGENT project in which our institute is involved together with
partners from other European countries.

References

1. BRICKS Consortium: BRICKS - Building Resources for Integrated Cultural Knowledge
Services (IST 507457). (2004)http://www.brickscommunity.org/.

2. Miloji čić, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J.,Richard, B., Rollins, S.,
Xu, Z.: Peer-to-peer computing. Technical report (2002)http://www.hpl.hp.com/
techreports/2002/HPL-2002-57.pdf.

3. Knězevíc, P.: Towards a reliable peer-to-peer xml database. In Lindner, W., Perego, A.,
eds.: Proceedings ICDE/EDBT Joint PhD Workshop 2004, P.O. Box 1527, 71110 Heraklion,
Crete, Greece, Crete University Press (2004) 41–50

4. W3C: Web Services Description Language (WSDL) 1.1. (2001) http://www.w3.org/
TR/wsdl.

5. OASIS: Universal Description, Discovery and Integration (UDDI). (2001)http://www.
uddi.org/.

6. Risse, T., Knězevíc, P.: Data storage requirements for the service oriented computing. In:
SAINT 2003 - Workshop on Service Oriented Computing. (2003)67–72

7. Agosti, M., Ferro, N., Frommholz, I., Thiel, U.: Annotations in digital libraries and collab-
oratories – facets, models and usage. In: Proc. 8th EuropeanConference on Research and
Advanced Technology for Digital Libraries (ECDL). (2004) To appear.

8. Frommholz, I., Brocks, H., Thiel, U., Neuhold, E., Iannone, L., Semeraro, G., Berardi, M.,
Ceci, M.: Document-centered collaboration for scholars inthe humanities - the COLLATE
system. [30] 434–445

9. Agosti, M., Ferro, N.: Annotations: Enriching a Digital Library. [30] 88–100
10. Thiel, U., Everts, A., Lutes, B., Nicolaides, M., Tzeras, K.: Convergent software technolo-

gies: The challenge of digital libraries. In: Proceedings of the 1st Conference on Digital
Libraries: The Present and Future in Digital Libraries, Seoul, Korea (1998) 13–30

11. Attardi, G., Gulĺı, A., Sebastiani, F.: Automatic Web page categorization bylink and context
analysis. In Hutchison, C., Lanzarone, G., eds.: Proceedings of THAI-99, 1st European
Symposium on Telematics, Hypermedia and Artificial Intelligence, (Varese, IT)

60 I. Frommholz, P. Knězevíc, B. Mehta, C. Niederée, T. Risse, U. Thiel

12. Neuhold, E.J., Niederée, C., Stewart, A.: Personalization in digital libraries:An extended
view. In: Proceedings of ICADL 2003. (2003) 1–16

13. Niedeŕee, C., Stewart, A., Mehta, B., Hemmje, M.: A multi-dimensional, unified user model
for cross-system personalization. In: Proceedings of Advanced Visual Interfaces Interna-
tional Working Conference (AVI 2004) - Workshop on Environments for Personalized Infor-
mation Access, Gallipoli (Lecce), Italy, May 2004. (2004)

14. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice Hall (1999)
15. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurency Control and Recovery in

Database Systems. Addison-Wesley (1997)
16. Brunie, L., Kosch, H.: A communications-oriented methodology for load balancing in par-

allel relational query processing. In: Advances in Parallel Computing, ParCo Conferences,
Gent, Belgium. (1995)

17. GPU: A gnutella processing unit (2004)http://gpu.sf.net.
18. Müller, W., Henrich, A.: Fast retrieval of high-dimensionalfeature vectors in P2P networks

using compact peer data summaries. In: Proceedings of the 5th ACM SIGMM international
workshop on Multimedia information retrieval, ACM Press (2003) 79–86

19. Ovsiannikov, I.A., Arbib, M.A., McNeill, T.H.: Annotation technology. Int. J. Hum.-
Comput. Stud.50 (1999) 329–362

20. Denoue, L., Vignollet, L.: An annotation tool for web browsers and its applications to infor-
mation retrieval. In: Proceedings of RIAO 2000, Paris, April 2000. (2000)

21. Golovchinsky, G., Price, M.N., Schilit, B.N.: From reading to retrieval: Freeform ink anno-
tations as queries. In Gey, F., Hearst, M., Tong, R., eds.: Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, New York, ACM Press (1999) 19–25

22. Bouthors, V., Dedieu, O.: Pharos, a collaborative infrastructure for web knowledge sharing.
In Abiteboul, S., Vercoustre, A.M., eds.: Research and Advanced Technology for Digital Li-
braries, Proceedings of the Third European Conference, ECDL’99, Paris, France, September
1999. Volume LNCS 1696 of Lecture Notes in Computer Science., Springer-Verlag (1999)
215 ff.

23. McTear, M.: User modeling for adaptive computer systems: A survey of recent develop-
ments. In: Artificial Intelligence Review. Volume 7. (1993)157–184

24. Kaplan, C., Fenwick, J., Chen, J.: Adaptive hypertext navigation based on user goals and
context. In: User Modeling and User-Adapted Interaction 3.Kluwer Academic Publishers,
The Netherlands (1993) 193–220

25. Goker, A., Myrhaug, H.: User context and personalization. In: Proceedings of the European
Conference on Case Based Reasoning (ECCBR 2002) - Workshop on Personalized Case-
Based Reasoning, Aberdeen, Scotland, 4-7 September 2002. Volume LNCS 2416 of Lecture
Notes in Artificial Intelligence., Springer-Verlag (2002)

26. Pretschner, A., Gauch, S.: Personalization on the web. Technical Report ITTC-FY2000-TR-
13591-01, Information and Telecommunication Technology Center (ITTC), The University
of Kansas, Lawrence, KS (1999)

27. Gulla, J.A., van der Vos, B., Thiel, U.: An abductive, linguistic approach to model retrieval.
Data & Knowledge Engineering23 (1997) 17–31

28. Casasola, E.: Profusion personalassistant: An agent for personalized information filtering on
the www. Master’s thesis, The University of Kansas, Lawrence, KS (1998)

29. Meng, X., Chen, Z.: Personalize web search using information on client’s side. In: Pro-
ceedings of the Fifth International Conference of Young Computer Scientists, August 17-20,
1999, Nanjing, P.R.China, International Academic Publishers (1999) 985–992

30. Koch, T., Sølvberg, I.T., eds.: Proc. 7th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL), Lecture Notes in Computer Science (LNCS) 2769,
Springer, Heidelberg, Germany (2003)

Towards Collaborative Search in Digital
Libraries Using Peer-to-Peer Technology

Matthias Bender, Sebastian Michel, Christian Zimmer, Gerhard Weikum
{mbender, smichel, czimmer, weikum}@mpi-sb.mpg.de

Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. We consider the problem of collaborative search across a
large number of digital libraries and query routing strategies in a peer-
to-peer (P2P) environment. Both digital libraries and users are equally
viewed as peers and, thus, as part of the P2P network. Our system
provides a versatile platform for a scalable search engine combining local
index structures of autonomous peers with a global directory based on a
distributed hash table (DHT) as an overlay network.

1 Introduction

The peer-to-peer (P2P) approach, which has become popular in the context of
file-sharing systems such as Gnutella or KaZaA, allows to handle huge amounts
of data in a distributed way. In such a system, all peers are equal and all of the
functionality is shared among all peers so that there is no single point of failure
and the load is balanced across a large number of peers. These characteristics
offer potential benefits for building a powerful search engine in terms of scala-
bility, resilience to failures, and high dynamics. In addition, a P2P search engine
can potentially benefit from the intellectual input of a large user community, for
example, prior usage statistics, personal bookmarks, or implicit feedback derived
from user logs and click streams.

Our framework combines well-studied search strategies with new aspects of
P2P routing strategies. In our context of digital libraries, a peer can either be a
library itself or a user that wants to benefit from the huge amount of data in the
network. Each peer is a priori autonomous and has its own local search engine
with a crawler and a corresponding local index. Peers share their local indexes (or
specific fragments of local indexes) by posting the meta-information into the P2P
network, thus effectively forming a large global, but completely decentralized
directory. In our approach, this directory is maintained as a distributed hash
table (DHT). A query posed by a user is first executed on the user’s own peer,
but can be forwarded to other peers for better result quality. Collaborative search
strategies use the global directory to identify peers that are most likely to hold
relevant results. The query is then forwarded to an appropriately selected subset
of these peers, and the local results obtained from there are merged by the query
initiator.

62 M. Bender, S. Michel, C. Zimmer, G. Weikum

2 Related Work

Recent research on P2P systems, such as Chord [25], CAN [22], Pastry [24], or
P-Grid [1], is based on various forms of distributed hash tables (DHTs) and sup-
ports mappings from keys, e.g., titles or authors, to locations in a decentralized
manner such that routing scales well with the number of peers in the system.
Typically, an exact-match key lookup can be routed to the proper peer(s) in at
most O(log n) hops, and no peer needs to maintain more than O(log n) routing
information. These architectures can also cope well with failures and the high
dynamics of a P2P system as peers join or leave the system at a high rate and
in an unpredictable manner. Earlier work on scalable distributed storage struc-
tures, e.g., [16, 28], addressed similar issues. However, in all these approaches
searching is limited to exact-match queries on keys. This is insufficient for text
queries that consist of a variable number of keywords, and it is absolutely inap-
propriate when queries should return a ranked result list of the most relevant
approximate matches [6]. Our work makes use of one of these systems, namely
Chord, for efficiently organizing a distributed global directory; our search engine
is layered on top of this basic functionality.

PlanetP [10] is a publish-subscribe service for P2P communities and the first
system supporting content ranking search. PlanetP distinguishes local indexes
and a global index to describe all peers and their shared information. The global
index is replicated using a gossiping algorithm. The system, however, is limited
to a few thousand peers.

Odissea [26] assumes a two-layered search engine architecture with a global
index structure distributed over the nodes in the system. A single node holds
the entire index for a particular text term (i.e., keyword or word stem). Query
execution uses a distributed version of Fagin’s threshold algorithm [11]. The
system appears to cause high network traffic when posting document metadata
into the network, and the query execution method presented currently seems
limited to queries with one or two keywords only.

The system outlined in [23] uses a fully distributed inverted text index, in
which every participant is responsible for a specific subset of terms and manages
the respective index structures. Particular emphasis is put on three techniques
to minimize the bandwidth used during multi-leyword searches: Bloom filters
[3], caching, and incremental result gathering. Bloom filters are a compact rep-
resentation of membership in a set, eliminating the need to send entire index
lists across servers. Caching reduces the frequency of exchanging Bloom filters
between servers. Incremental result gathering allows search operations to halt
after finding a certain number of results.

[18] considers content-based retrieval in hybrid P2P networks where a peer
can either be a simple node or a directory node. Directory nodes serve as super-
peers, which may possibly limit the scalability and self-organization of the overall
system. The peer selection for forwarding queries is based on the Kullback-
Leibler divergence between peer-specific statistical models of term distributions.
The approach that we propose in this paper also uses such statistical measures
but applies them in a much more light-weight manner for better scalability,

Towards Collaborative Search in Digital Libraries 63

primarily using bookmarks rather than full index information and building on a
completely decentralized directory for meta-information.

Strategies for P2P request routing beyond simple key lookups but without
considerations on ranked retrieval have been discussed in [30, 8, 7], but are not
directly applicable to our setting. The construction of semantic overlay networks
is addressed in [17, 9] using clustering and classification techniques; these tech-
niques would be orthogonal to our approach. [27] distributes a global index onto
peers using LSI dimensions and the CAN distributed hash table. In this approach
peers give up their autonomy and must collaborate for queries whose dimensions
are spread across different peers.

In addition to this recent work on P2P Web search, prior research on dis-
tributed IR and metasearch engines is potentially relevant, too. [4] gives an
overview of algorithms for distributed IR like result merging and database con-
tent discovery. [12] presents a formal decision model for database selection in net-
worked IR. [21] investigates different quality measures for database selection. [13,
19] study scalability issues for a distributed term index. GlOSS [14] and CORI
[5] are the most prominent distributed IR systems, but neither of them aimed at
very-large-scale, highly dynamic, self-organizing P2P environments (which were
not an issue at the time these systems were developed).

A good overview of metasearch techniques is given by [20]. [29] discusses spe-
cific strategies to determine potentially useful local search engines for a given
user query. Notwithstanding the relevance of this prior work, collaborative P2P
search is substantially more challenging than metasearch or distributed IR over a
small federation of sources such as digital libraries, as these approaches mediate
only a small and rather static set of underlying engines, as opposed to the high
dynamics of a P2P system.

3 Chord - A Scalable P2P Lookup Service

The efficient location of nodes in a P2P architecture is a fundamental problem
that has been tackled from various directions. Early (but nevertheless popular)
systems like Gnutella or KaZaA rely on unstructured architectures in which a
peer forwards messages to all known neighbors. Typically, these messages include
a Time-to-live (TTL) tag that is decreased whenever the message is forwarded
to another peer. Even though studies show that this message flooding (or gos-
siping) works remarkably well in most cases, there are no guarantees that all
relevant nodes will eventually be reached. Additionally, the fact that numer-
ous unnecessary messages are sent interferes with our goal of a highly scalable
architecture.

Chord [25] is a distributed lookup protocol that addresses this problem. It
provides the functionality of a distributed hash table (DHT) by supporting the
following lookup operation: given a key, it maps the key onto a node. For this
purpose, Chord uses consistent hashing [15]. Consistent hashing tends to balance
load, since each node receives roughly the same number of keys. Moreover, this
load balancing works even in the presence of a dynamically changing hash range,
i.e., when nodes fail or leave the system or when new nodes join.

64 M. Bender, S. Michel, C. Zimmer, G. Weikum

Chord Ring

p1

p8p56

p51

p48

p42

p38
p32

p21

p14

k38

k54

k30

k24

k10

Lookup(54)

Figure 1. Chord Architecture

Chord not only gurarantees to find the node responsible for a given key, but
also can do this very efficiently: in an N -node steady-state system, each node
maintains information about only O(log N) other nodes, and resolves all lookups
via O(log N) messages to other nodes. These properties offer the potential for
efficient large-scale systems.

The intuitive concept behind Chord is as follows: all nodes pi and all keys ki

are mapped onto the same cyclic ID space. In the following, we use keys and
peer numbers as if the hash function had already been applied, but we do not
explicitly show the hash function for simpler presentation. Every key ki is now
assigned to its closest successor pi in the ID space, i.e. every node is responsible
for all keys with identifiers between the ID of its predecessor node and its own
ID.

For example, consider Figure 1. Ten nodes are distributed across the ID space.
Key k54, for example, is assigned to node p56 as its closest successor node. A
naive approach of locating the peer responsible for the key is also illustrated:
since every peer knows how to contact its current successor on the ID circle,
a query for a key k54 initiated by peer p8 is passed around the circle until it
encounters a pair of nodes that straddle the desired identifier; the second in the
pair (p56) is the node that is responsible for the key. This lookup process closely
resembles searching a linear list and has an expected number of hops of O(N)
to find a target node, while only requiring O(1) information about other nodes.

Towards Collaborative Search in Digital Libraries 65

Chord Ring

p1

p8p56

p51

p48

p42

p38
p32

p21

p14

k54

p8 + 4

p8 + 8

p8 + 16

p8 + 2

p8 + 32

p8 + 1

p14

p21

p32

p14

p42

p14

p8 + 4

p8 + 8

p8 + 16

p8 + 2

p8 + 32

p8 + 1

p14

p21

p32

p14

p42

p14fingertable
p8

p42 + 4

p42 + 8

p42 + 16

p42 + 2

p42 + 32

p42 + 1

p48

p51

p1

p48

p14

p48

p42 + 4

p42 + 8

p42 + 16

p42 + 2

p42 + 32

p42 + 1

p48

p51

p1

p48

p14

p48

fingertable
p42

Lookup(54)

p51 + 4

p51 + 8

p51 + 16

p51 + 2

p51 + 32

p51 + 1

p56

p1

p8

p56

p21

p56

p51 + 4

p51 + 8

p51 + 16

p51 + 2

p51 + 32

p51 + 1

p56

p1

p8

p56

p21

p56 fingertable
p51

Figure 2. Scalabe Lookups Using Finger Tables

To accelerate lookups, Chord maintains additional routing information: each
peer pi maintains a routing table called finger table. The m-th entry in the table
of node pi contains a pointer to the first node pj that succeeds pi by at least
2m−1 on the identifier circle. This scheme has two important characteristics.
First, each node stores information about only a small number of other nodes,
and knows more about nodes closely following it on the identifier circle than
about nodes farther away. Secondly, a node’s finger table does not necessarily
contain enough information to directly determine the node responsible for an
arbitrary key ki. However, since each peer has finger entries at power of two
intervals around the identifier circle, each node can forward a query at least
halfway along the remaining distance between itself and the target node. This
property is illustrated in Figure 2 for node p8. It follows that the number of
nodes to be contacted (and thus the number of messages to be sent) to find a
target node in an N -node system is O(log N).

Chord implements a stabilization protocol that each peers runs periodically in
the background and which updates Chord’s finger tables and successor pointers
in order to ensure that lookups execute correctly as the set of participating peers
changes. But even with routing information becoming stale, system performance
degrades gracefully. Chord can also guarantee correct lookups if only one piece
of information per node is correct.

Chord can provide lookup services for various applications, such as distributed
file systems or cooperative mirroring. However, Chord by itself is not a search
engine, as it only supports single-term exact-match queries and does not support
any form of ranking.

66 M. Bender, S. Michel, C. Zimmer, G. Weikum

4 Design Fundamentals

Figure 3 illustrates our new approach which closely follows a publish-subscribe
paradigm. We view every library as autonomous. Peers, i.e. libraries acting as
peers, can post meta-information at their discretion. Our conceptually global
but physically distributed directory does not hold information about individual
documents previously crawled by the peers, but only very compact aggregated
information about the peers’ local indexes and only to the extent that the in-
dividual peers are willing to disclose to other peers. We use a distributed hash
table (DHT) to partition the term space, such that every peer is responsible for
a randomized subset of terms within the global directory. For failure resilience
and availability, the entry for a term may be replicated across multiple peers.

Every peer publishes a summary (Post) for every term in its local index to the
underlying overlay network. A Post is routed to the peer currently responsible
for the Post’s term. This peer maintains a PeerList of all postings for this term
from across the network. Posts contain contact information about the peer who
posted this summary together with local IR-style statistics (e.g., TF and IDF
values [6]) for a term and other quality-of-service measures (e.g., length of the
index list for a given term, or average response time for remote queries).

Users wishing to pose a query are equally modelled as peers. Their poten-
tial input to the global directory consists of local bookmarks that conceptually
represent high-authority documents within the overall document space.

The querying process for a multi-term query proceeds as follows: First, the
querying peer retrieves a list of potentially useful libraries by issuing a PeerList
request for each query term to the global directory. Next, a number of promising
libraries for the complete query is selected from these PeerLists (e.g., based
on the quality-of-service measures associated with the Posts). Subsequently, the
query is forwarded to these carefully selected libraries and executed based on the
their local indexes. Note that this communication is done in a pairwise point-
to-point manner between the peers, allowing for efficient communication and
limiting the load on the global directory. Finally, the results from the various
libraries are combined at the querying peer into a single result list.

Distributed Directory
Term List of Peers

P1

P5

P6 P4

P2

P3

Step 0:
Post per-term

summaries of local indexes

Distributed Directory
Term List of Peers

P1

P5

P6 P4

P2

P3

Step 1:
Retrieve list of peers
for each query term

Step 2:
Retrieve and combine local

query results from peers

P5

P1

P2

P3

P4

P6

Figure 3. P2P Query Routing

Towards Collaborative Search in Digital Libraries 67

We have chosen this approach for the following reasons:

– The goal of finding high-quality search results with respect to precision and
recall cannot easily be reconciled with the design goal of unlimited scalability,
as the best information retrieval techniques for query execution rely on large
amounts of document metadata. In contrast, posting only aggregated infor-
mation about local indexes and executing queries at carefully selected peers
exploits extensive local indexes for good query results while, at the same time,
limiting the size of the global directory and, thus, consuming only little net-
work bandwidth.

– If each peer were to post metadata about each and every document it has
crawled, the amount of data moved across the network and, thus, the amount
of data held by the distributed directory would increase drastically as more
and more peers enter the network. In contrast, our design allows each peer to
publish merely a concise summary per term representing its local index. As
new peers enter the network, we expect this approach to scale very well as more
and more peers jointly maintain this moderately growing global directory.

This approach can easily be extended in a way that multiple distributed di-
rectories are created to store information beyond local index summaries, such as
information about user bookmarks or relevance assessments derived from peer-
specific query logs, click streams, or explicit user feedback. This information
could be leveraged when executing a query to further enhance result quality.

5 System Model

In this section we formalize the design that we have previouly presented. Let
P := {pi|1 ≤ i ≤ r} be the set of peers currently attached to the system. Let
D := {di|1 ≤ i ≤ n} be the global set of all documents; let T := {ti|1 ≤ i ≤ m}
analogously be the set of all terms.

Each peer pi ∈ P has one or more of the following local data available:

– Local index lists for terms in Ti ⊆ T (usually |Ti| � |T |).
The local index lists cover all terms in the set of locally seen documents
Di ⊆ D (usually |Di| � |D|).

– Bookmarks Bi ⊆ Di (|Bi| � |D|)
Bookmarks are intellectually selected links to selected documents or other peer
profile information and, thus, are a valuable source for high-quality search
results as well as for the thematic classification of peers.

– Cached documents Ci ⊆ D
Cached documents are readily available from a peer.

Separate hash functions hashterms : T → ID, hashbookmarks : D → ID, and
hashcached : D → ID can be used in order to build conceptually global, but
physically distributed directories that are well-balanced across the peers in the
ID space.

Given hash functions that assign identifiers to keys using idk,j := hashj(k)
with j ∈ {terms, bookmarks, ...}, the underlying distributed hash table offers a
function lookup : ID → P that returns the peer p currently responsible for an
id.

68 M. Bender, S. Michel, C. Zimmer, G. Weikum

Building on top of this basic functionality, different PeerList requests plrj can
be defined as functions plrterms : T × P → 2P , plrbookmarks : D × P → 2P , and
plrcache : D×P → 2P that, from a peer p previously determinded using lookup,
return lists of peers that have posted information about a key id in dimension j.
Note that idk,j for a specific key k is unambiguously defined across the directory
using hashj(k).

In order to form a distributed directory, each peer pi at its own discretion
globally posts subsets T ′

i ⊆ Ti, B′
i ⊆ Bi, and C ′

i ⊆ Ci ⊆ D
(potentially along with further information or local QoS statistics) forming

the corresponding global directories:

– systerms : T → 2P with systerms(t) = plrterms(t, lookup(hashterms(t)))
This directory provides a mapping from terms to PeerLists and can be used
to identify candidate peers that hold index information about a specific term.

– sysbm : D → 2P with sysbm(d) = plrbookmarks(d, lookup(hashbookmarks(d)))
This function provides information about which peers have bookmarked spe-
cific documents and is a combination of the above methods analogously to
systerms.

– syscd : D → 2P with syscd(d) = plrcached(d, lookup(hashcached(d)))
This function provides information about the availability of documents in the
caches of local peers, which is a valuable information for the efficient gathering
of results.

We consider a query q as a set of (term,weight)-pairs and the set of available
queries as Q := 2T×R. In order to process a query q, first a candidate set of peers
that are confronted with the query has to be determined. This can be done us-
ing the functions selectionterms : Q → 2P , selectionbookmarks : 2D → 2P , and
selectioncached : 2D → 2P that select candidate subsets for each dimension by
appropriately combining the results returned by systerms, sysbm, and syscd, re-
spectively. These candidate subsets are combined (e.g., by intersection or union)
using a function comb : 2P × 2P × 2P → 2P .

Combining the above, the final candidate set is computed using a function

selection : Q× 2D × 2D → 2P

selection(q, B′′
0 , C ′′

0) := comb(selectterms(q), selectbookmarks(B′′
0), selectcached(C ′′

0))

where B′′
0 ⊆ B0 and C ′′

0 ⊆ C0 are the bookmarks and cached documents, re-
spectively, that the querying peer has chosend to support query execution. For
example, a peer may choose its own bookmarks and a sample of its cached
documents as B′′

0 and C ′′
0 , respectively.

The execution of a query is a function exec : 2P × Q → 2D that combines
the local results returned by the peers that are involved in the query execution
into one single final result set. Finally, we can define the global query execution
function result : Q× 2D × 2D → 2D that is evaluated as

result(q, B′′
0 , C ′′

0) := exec(selection(q, B′′
0 , C ′′

0), q)

= exec(comb(selectterms(q), selectbookmarks(B′′
0), selectcached(C ′′

0)), q)

Towards Collaborative Search in Digital Libraries 69

6 Implementation

Figure 4 illustrates the architecture of a single library peer as part of our dis-
tributed system. Each peer works on top of our globally distributed index which
is organized as a distributed hash table (DHT) that provides a mapping from
terms to peers by returning a PeerDescriptor object representing the peer cur-
rently responsible for a term. A Communicator can be established to send mes-
sages to other peers. Every peer has an Event Handler that receives incoming
messages and forwards them to the appropriate local components.

Local QProcessor

Event Handler

Distributed Hashtable

Communicator

Global QProcessor

Peer Descriptor

Poster

Peer Descriptor

PeerList Processor

Term PeerList

Local
Index

Figure 4. System Architecture

Every peer has its own local index that can be imported from external crawlers
and indexers. The index is used by the Local QueryProcessor component to an-
swer queries locally and by the Poster component to publish per-term summaries
(Posts) to the global directory. To do so, the Poster uses the underlying DHT to
find the peer currently responsible for a term; the PeerList Processor at this peer
maintains a PeerList of all Posts for this term from across the network. When the
user poses a query, the Global QueryProcessor component analogously uses the
DHT to find the peer responsible for each query term and retrieves the respec-
tive PeerLists from the PeerList Processors using Communicator components.
After appropriately processing these lists, the Global QueryProcessor forwards
the complete query to selected peers, which in turn process the query using their
Local QueryProcessors and return their results. Finally, the Global QueryPro-
cessor merges these results and presents them to the user.

We have built a prototype system that handles the above procedures. Our sys-
tem uses a Java-based reimplementation of Chord [25] as its underlying DHT,
but can easily be used with other DHT’s providing a lookup(key) method. Com-
munication is conducted socket-based, but Web-Service-based [2] peers can easily
be included to support an arbitrarily heterogeneous environment. The local index
is stored in a database. It consists of a collection of standard IR measures, such
as TF and IDF values. Result ranking is based on a smoothed TF*IDF quality
measure. Figure 5 shows a screenshot of the user interface of our prototype. The
user creates a peer by either creating a new Chord ring or by joining an existing

70 M. Bender, S. Michel, C. Zimmer, G. Weikum

system. Both actions require the specification of a local Chord port for commu-
nication concerning the global directory and a local application port for direct
peer-to-peer communication. The join operation requires additional information
on how to find an already existing peer. Status information regarding the Chord
ring is displayed. The Posts section provides information about the terms that a
peer is currently responsible for, i.e., for which it has received Posts from other
peers. The button Post posts the information contained in the local index to the
DHT. The Queries section can be used to execute queries. Similar to Google,
multiple keywords can be entered into a form field. After query execution, the
results obtained from the system are displayed.

Figure 5. Prototype GUI

7 Ongoing and Future Work

Our prototype implementations allows for the easy exchange of strategies for
query routing (i.e., selecting the peers to which the query is sent) as well as
for merging the results returned by different peers. We are currently analyzing
different strategies and are preparing extensive comparative experiments. We
want to contact as few peers as possible to retrieve the best possible results,
i.e., we want to estimate a benefit/cost ratio when deciding on whether to
contact a specific peer. While a typical cost measure could be based on expected
response time (network latency, current load of remote peer), meaningful benefit
measures seem harder to find. Possible measures could follow the intuition that
good answers are expected to come from peers that are similar to the query,
but at the same time have only little overlap with our local index and, thus,
can potentially contribute new results. We also take a closer look at existing

Towards Collaborative Search in Digital Libraries 71

strategies for combining local query results from metasearch engine research
and try to fit those with our P2P environment.

We investigate the trade-offs of not storing all Posts for a term, but only the
top-k posts (based on some quality measure) to reduce space consumption of
the global directory. While this seems intuitive at first sight (good results should
come from good peers), early experiments indicate that this strategy might be
dangerous for multi-term queries, as good combined results are not necessarily
top results for any one of the search terms.

Due to the dynamics typical for P2P systems, Posts stored in the PeerLists
become invalid (peers may no longer be accessible, or the responsibility for a
specific term may have moved to another peer). A possible mechanism to handle
these problems is to assign a TTL (Time-to-live) stamp to every Post in the
list. Every peer periodically revalidates its Posts. Stale Posts will eventually
be removed from the PeerList. We address the question of choosing a good time
period for refreshing the Posts and compare this strategy to a strategy of actively
moving Posts to other peers as responsibilities change.

References

1. K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving data access in
p2p systems. IEEE Internet Computing, 6(1):58–67, 2002.

2. G. Alonso, F. Casati, and H. Kuno. Web Services - Concepts, Architectures and
Applications. Springer, Berlin;Heidelberg;New York, 2004.

3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

4. J. Callan. Distributed information retrieval. Advances in information retrieval,
Kluwer Academic Publishers., pages 127–150, 2000.

5. J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with in-
ference networks. In Proceedings of the 18th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 21–28.
ACM Press, 1995.

6. S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco, 2002.

7. E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer to peer networks:
Harnessing latent semantics. In Proceedings of the IEEE INFOCOM’03 Confer-
ence, April 2003, April 2003.

8. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
Proc. of the 28th Conference on Distributed Computing Systems, July 2002.

9. A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems.
Technical report, Stanford University, October 2002.

10. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Com-
munities. Technical Report DCS-TR-487, Rutgers University, Sept. 2002.

11. R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci., 58(1):83–99, 1999.

12. N. Fuhr. A decision-theoretic approach to database selection in networked IR.
ACM Transactions on Information Systems, 17(3):229–249, 1999.

13. T. Grabs, K. Böhm, and H.-J. Schek. Powerdb-ir: information retrieval on top
of a database cluster. In Proceedings of the tenth international conference on
Information and knowledge management, pages 411–418. ACM Press, 2001.

72 M. Bender, S. Michel, C. Zimmer, G. Weikum

14. L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss: text-source discovery over
the internet. ACM Trans. Database Syst., 24(2):229–264, 1999.

15. D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In ACM Symposium on Theory of Computing,
pages 654–663, May 1997.

16. W. Litwin, M.-A. Neimat, and D. A. Schneider. Lh* – a scalable, distributed data
structure. ACM Trans. Database Syst., 21(4):480–525, 1996.

17. A. Löser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic overlay
clusters within super-peer networks. In Proceedings of the International Workshop
on Databases, Information Systems and Peer-to-Peer Computing, 2003 (DBISP2P
03), pages 33–47.

18. J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
Proceedings of the twelfth international conference on Information and knowledge
management, pages 199–206. ACM Press, 2003.

19. S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a distributed
full-text index for the web. ACM Trans. Inf. Syst., 19(3):217–241, 2001.

20. W. Meng, C. T. Yu, and K.-L. Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys, 34(1):48–89, 2002.

21. H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval, pages 290–
297. ACM Press, 2003.

22. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM 2001, pages 161–
172. ACM Press, 2001.

23. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Proceed-
ings of International Middleware Conference, pages 21–40, June 2003.

24. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

25. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, pages 149–160. ACM Press, 2001.

26. T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and K. Shan-
mugasunderam. Odissea: A peer-to-peer architecture for scalable web search and
information retrieval. Technical report, Polytechnic Univ., 2003.

27. C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pages 175–186. ACM Press, 2003.

28. R. Vingralek, Y. Breitbart, and G. Weikum. Snowball: Scalable storage on networks
of workstations with balanced load. Distributed and Parallel Databases, 6(2):117–
156, 1998.

29. Z. Wu, W. Meng, C. T. Yu, and Z. Li. Towards a highly-scalable and effective
metasearch engine. In World Wide Web, pages 386–395, 2001.

30. B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In Pro-
ceedings of the 22 nd International Conference on Distributed Computing Systems
(ICDCS’02), pages 5–14. IEEE Computer Society, 2002.

Web Services for Peer-to-Peer
Resource Discovery on the Grid

Domenico Talia and Paolo Trunfio

DEIS, University of Calabria
Via P. Bucci 41c, 87036 Rende, Italy
{talia,trunfio}@deis.unical.it

Abstract. Several features of today’s Grids are based on centralized or
hierarchical services. However, as Grid sizes increase, some of their func-
tions should be decentralized to avoid bottlenecks and guarantee scala-
bility. A way to provide Grid scalability is to adopt Peer-to-Peer (P2P)
models and protocols to implement non hierarchical decentralized Grid
services and systems. A core Grid functionality that could be effectively
redesigned using the P2P model is resource discovery. This paper pro-
poses an architecture for resource discovery that adopts a P2P approach
to extend the model of the Globus Toolkit 3 information service. The
Open Grid Services Architecture is exploited to define a P2P Layer of
specialized Grid Services that support resource discovery across different
Virtual Organizations in a P2P fashion. The paper discusses also a pro-
tocol, named Gridnut, designed for communication among Grid Services
at the P2P Layer.

1 Introduction

The Grid computing model offers an effective way to build high-performance
computing systems, allowing users to efficiently access and integrate geograph-
ically distributed computers, data, and applications. Several features of today’s
Grids are based on centralized or hierarchical services. However, as Grids used
for complex applications increase their size from tens to thousands of nodes, it
is necessary to decentralize their services to avoid bottlenecks and ensure scal-
ability. As argued in [1] and [2], a way to provide Grid scalability is to adopt
Peer-to-Peer (P2P) models and techniques to implement non-hierarchical de-
centralized Grid systems.

In the latest years, the Grid community has undertaken a development effort
to align Grid technologies with Web Services. The Open Grid Services Archi-
tecture (OGSA) defines Grid Services as an extension of Web Services and lets
developers integrate services and resources across distributed, heterogeneous,
dynamic environments and communities [3]. Web Services define a technique for
describing software components to be accessed, methods for accessing these com-
ponents, and discovery methods that enable the identification of relevant service
providers. Web Services and OGSA aim at interoperability between loosely cou-
pled services independently from implementation, location or platform. Recently

74 D. Talia, P. Trunfio

the Web Services Resource Framework (WSRF) has been proposed for a more
complete integration between Web and Grid Services [4]. OGSA defines standard
mechanisms for creating, naming and discovering persistent and transient Grid
Service instances, provides location transparency and multiple protocol bindings
for service instances, and supports integration with underlying native platform
facilities. The OGSA effort aims to define a common resource model that is an ab-
stract representation of both real resources, such as processors, processes, disks,
file systems, and logical resources. It provides some common operations and
supports multiple underlying resource models representing resources as service
instances. The OGSA model provides an opportunity to integrate P2P models
in Grid environments since it offers an open cooperation model that allows Grid
entities to be composed in a decentralized way.

A core Grid functionality that could be effectively redesigned using the P2P
model is resource discovery. Resource discovery is a key issue in Grid environ-
ments, since applications are usually constructed by composing hardware and
software resources that need to be discovered and selected. In the OGSA frame-
work each resource is represented as a Grid Service, therefore resource discovery
mainly deals with the problem of locating and querying information about useful
Grid Services.

In Globus Toolkit 3 (GT3) - the current implementation of the OGSA -
information about resources is provided by Index Services. An Index Service is
a Grid Service that holds information (called Service Data) about a set of Grid
Services registered to it. A primary function of the Index Service is to provide an
interface for querying aggregate views of Service Data collected from registered
services. There is typically one Index Service per Virtual Organization (VO).
When a VO consists of multiple large sites, very often each site runs its own
Index Service that indexes the various resources available at that site. Then
each of those Index Services is included in the VO’s Index Service [5].

This paper proposes an architecture for resource discovery that adopts a P2P
approach to extend the model of the GT3 information service. In particular, a
P2P Layer of specialized Grid Services is defined to support discovery queries
on Index Services of multiple VOs in a P2P fashion. The paper outlines also a
modified Gnutella protocol, named Gridnut, designed for communication among
Grid Services at the P2P Layer. Gridnut uses appropriate message buffering
and merging techniques to make Grid Services effective as a way to exchange
messages in a P2P fashion.

The remainder of the paper is organized as follows. Section 2 describes the
architecture of the framework. Section 3 discusses the Gridnut approach and its
performances. Finally, Section 4 concludes the paper.

2 The P2P Architecture

From the perspective of the GT3 information service, the Grid can be seen as a
collection of VOs, each one indexed by a different Index Service. As mentioned
before, Index Services of different sites can be included in a common higher-

Web Services for Peer-to-Peer Resource Discovery on the Grid 75

level Index Service that holds information about all the underlying resources.
However, for scalability reasons, a multi-level hierarchy of Index Services is not
appropriate as a general infrastructure for resource discovery in large scale Grids.
Whereas centralized or hierarchical approaches can be efficient to index resources
structured in a given VO, they are inadequate to support discovery of resources
that span across many independent VOs. The framework described here adopts
the P2P model to support resource discovery across different VOs.

P2P Layer

PS

PS

VO-G

IS

IS IS IS

VO-H

IS

IS IS IS

VO-F

IS

IS IS

VO-D

IS

IS IS IS

VO-E

IS

IS IS IS

VO-A

IS

IS IS IS

VO-C

IS

IS IS

VO-B

IS

IS IS IS

CS

Client

Applic.

global query

local query

PSPS

PS PS

CS

PS PS

CS

PS

IS

= Contact Service

= Peer Service

= Index Service

Fig. 1. Framework architecture.

Figure 1 shows the general architecture of the framework. Some independent
VOs are represented; each VO provides one top-level Index Service (IS) and a
number of lower-level Index Services.

A P2P Layer is defined on top of the Index Services’ hierarchy. It includes two
types of specialized Grid Services: Peer Services (PS), used to perform resource
discovery, and Contact Services (CS), that support Peer Services to organize
themselves in a P2P network.

There is one Peer Service per VO. Each Peer Service is connected with a set of
Peer Services, and exchanges query/response messages with them in a P2P mode.
The connected Peer Services are the neighbors of a Peer Service. A connection
between two neighbors is a logical state that enables they to directly exchange
messages. Direct communication is allowed only between neighbors. Therefore,
a query message is sent by a Peer Service only to its neighbors, which in turn
will forward that message to their neighbors. A query message is processed by
a Peer Service by invoking the top-level Index Service of the corresponding VO.

76 D. Talia, P. Trunfio

A query response is sent back along the same path that carried the incoming
query message.

To join the P2P network, a Peer Service must know the URL of at least
one Peer Services to connect to. A convenient number of Contact Services is
distributed in the Grid to support this issue. Contact Services cache the URLs
of known Peer Services; a Peer Service may contact one or more well known
Contact Services to obtain the URLs of registered Peer Services.

As shown in Figure 1, a Client Application can submit both local and global
queries to the framework. A local query searches for information about resources
in a given VO. It is performed by submitting the query to the Index Service of
that VO. A global query aims to discover resources located in possibly different
VOs, and is performed by submitting the query to a Peer Service at the P2P
Layer. As mentioned before, the Peer Service processes that query internally
(through the associated Index Service), and will forward it to its neighbors as in
typical P2P networks.

The main difference between a hierarchical system and the framework de-
scribed here is the management of global queries. Basically, in a hierarchical
information service two alternative approaches can be used:

– the query is sent separately to all the top-level Index Services, that must be
known by the user;

– the query is sent to one (possibly replicated) Index Service at the root of the
hierarchy, that indexes all the Grid resources.

Both these approaches suffer scalability problems. In the P2P approach, con-
versely, global queries are managed by a layer of services that cooperate as
peers. To submit a global query, a user need only to know the URL of a Peer
Service in the Grid.

In the next subsection the design of the Peer Service and Contact Service
components is discussed.

2.1 Services Design

Both Peer Service and Contact Service instances are identified by a globally
unique handle. This handle is a URL - called grid service handle (GSH) in the
OGSA terminology - that distinguishes a specific Grid Service instance from all
other Grid Service instances.

The Peer Service supports four operations:

– connect : invoked by a remote Peer Service to connect this Peer Service. The
operation receives the handle of the requesting Peer Service and returns a
reject response if the connection is not accepted (for instance, because the
maximum number of connections has been reached).

– disconnect : invoked by a remote Peer Service to disconnect this Peer Ser-
vice. The operation receives the handle of the requesting Peer Service.

– deliver : invoked by a connected Peer Service to deliver messages to this Peer
Service. The operation receives the handle of the requesting Peer Service and
an array of messages to be delivered to this Peer Service.

Web Services for Peer-to-Peer Resource Discovery on the Grid 77

– query : invoked by a client application to submit a global query to this Peer
Service. Query responses are returned to the client through a notification
mechanism.

The Contact Service supports one operation:

– getHandles: invoked by a Peer Service to register itself and to get the
handles of one or more registered Peer Services.

The Web Services Description Language (WSDL) is used in OGSA to expose
the interfaces of Grid Services to remote clients. Figure 2, for instance, shows
the Contact Service WSDL definition.

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="ContactService"

 targetNamespace="http://www.gridnut.org/namespaces/1.0/contact/ContactService"

 ... >

...

<gwsdl:portType name="ContactServicePortType" extends="ogsi:GridService">

 <operation name="getHandles">

 <input message="tns:GetHandlesInputMessage"/>

 <output message="tns:GetHandlesOutputMessage"/>

 <fault name="Fault" message="ogsi:FaultMessage"/>

 </operation>

</gwsdl:portType>

<message name="GetHandlesInputMessage">

 <part name="parameters" element="tns:getHandles"/>

</message>

<message name="GetHandlesOutputMessage">

 <part name="parameters" element="tns:getHandlesResponse"/>

</message>

<types>

<xsd:schema

 targetNamespace="http://www.gridnut.org/namespaces/1.0/contact/ContactService"

 ... >

 <xsd:element name="getHandles">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="handle" type="xsd:string"/>

 <xsd:element name="numHandles" type="xsd:int"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getHandlesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="getHandlesReturn" type="soapenc:Array"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

</types>
</definitions>

Fig. 2. Contact Service WSDL definition.

Figure 3 and Figure 4 describe, respectively, the main software components
of Peer Services and Contact Services.

78 D. Talia, P. Trunfio

Peer

Service

Connection

Manager

Contact

Services

create/remove
connections

Peer Service

connect

disconnect

deliver

query

Peer

Manager

Client

Manager

connection request

disconnection request

messages

query

Index

Service

Peer Connection

Peer Connection

Peer Connection

Peer

Service

Peer

Service
…

…

connect/disconnect

query

deliver

getHandles

deliver

deliverClient

Applic.
response
notification

Peer

Services

Fig. 3. Peer Service software components.

The Peer Service (see Figure 3) is composed by three main modules: Con-
nection Manager, Peer Manager, and Client Manager.

The goal of the Connection Manager is to maintain a given number of connec-
tions with neighbor Peer Services. A Peer Connection object is used to manage
the connection and the exchange of messages with a given Peer Service. A Peer
Connection includes the grid service reference (GSR) of a given Peer Service,
and a set of transmission buffers for the different kinds of messages directed to
it. The Connection Manager both manages connection/disconnection requests
from remote Peer Services, and performs connection/disconnection requests (as
a client) to remote Peer Services. Moreover, it may invoke one or more Contact
Services to obtain the handles of Peer Services to connect to.

The Peer Manager is the core component of the Peer Service. It both man-
ages the messages delivered from other Peer Services, and interacts with the
Client Manager component to manage client requests and to provide responses.
It performs different operations on delivered messages: some messages are simply
forwarded to one or more Peer Connections, whereas query messages need also a
response (that in general is obtained by querying the local Index Service). More-
over, the Peer Manager generates and submits query messages to the network
on the basis of the Client Manager requests.

The Client Manager manages the query requests submitted by client appli-
cations. It interacts with the Peer Manager component to submit the query to
the network, and manages the delivery of query results to the client through a
notification mechanism.

The Contact Service (see Figure 3) is composed by two software modules:
Contact Manager and Cache Manager.

The Contact Manager manages the execution of the getHandles operation.
Basically, it receives two parameters: the handle h of the invoker, and the number

Web Services for Peer-to-Peer Resource Discovery on the Grid 79

Contact Service

getHandles
Peer

Manager

request/responsePeer

Services

Cache
Cache

Manager

maint. oper.

put/get

handles

Fig. 4. Contact Service software components.

n of handles requested by the invoker. The Contact Manager first inserts (or
updates) the handle h into a Cache, then it extracts (if available) n distinct
handles from the Cache and returns them to the invoker. The handles can be
extracted from the Cache on the basis of a given policy (e.g., randomly). If a
Peer Service does not receive the requested number of handles, it can try to
invoke the Contact Service later.

The Cache Manager performs maintenance operations on the Cache. For
instance, it removes oldest (not recently updated) handles, performs content
indexing, etc.

3 A P2P Grid Services-Based Protocol

Although Grid Services are appropriate for implementing loosely coupled P2P
applications, they appear to be inefficient to support an intensive exchange of
messages among tightly coupled peers. In fact, Grid Services operations are sub-
ject to an invocation overhead that can be significant both in terms of activation
time and memory/processing consumption [6]. The number of Grid Service op-
erations that a peer can efficiently manage in a given time interval depends
strongly on that overhead. For this reason, standard P2P protocols based on a
pervasive exchange of messages, such as Gnutella [7], are inappropriate on large
OGSA Grids where a high number of communications take place among hosts.

To overcome this limitation, in [8] we proposed a modified Gnutella protocol,
named Gridnut, which uses appropriate message buffering and merging tech-
niques to make Grid Services effective as a way for exchanging messages among
Grid nodes in a P2P fashion. The Gridnut protocol is designed for communica-
tion among Peer Services to support resource discovery across many independent
VOs.

There are two main differences between Gnutella and Gridnut:

1. In Gnutella, messages are sent as a byte stream over TCP sockets, whereas
in Gridnut messages are sent through a Grid Service invocation (by means
of the Peer Service’s deliver operation).

80 D. Talia, P. Trunfio

2. In Gnutella, each message is forwarded whenever it is received, whereas in
Gridnut messages are buffered and merged to reduce the number of Grid
Service invocations and routing operations executed by each Peer Service.

In particular, the basic principles adopted by Gridnut to reduce communica-
tion and routing overhead are

– Message buffering : messages to be delivered to the same Peer Service are
buffered and sent in a single packet at regular time intervals.

– Message merging : messages with the same header (i.e, same type, identifier,
and receiver) are merged into a single message with a cumulative body.

Similarly to Gnutella, Gridnut defines both a protocol to discover active Peer
Services on the network, based on a Ping/Pong mechanism, and a protocol for
searching the distributed network, based on a Query/QueryHit mechanism. We
implemented and evaluated the Gridnut discovery protocol, even if we are also
designing a general Gridnut search protocol.

In the following subsection we briefly compare the performance of Gridnut
and Gnutella discovery protocols under different network and load conditions.
Further details about performance measurements can be found in [8].

3.1 Performance Evaluation

The goal of our tests is to verify how significantly Gridnut reduces the workload
- number of Grid Service operations - of each Peer Service. In doing this, we
compared Gridnut and Gnutella by evaluating two parameters:

1. ND, the average number of deliver operations processed by a Peer Service
to complete a discovery task. In particular, ND = P / (N * T), where:
P is the total number of deliver operations processed in the network, N is
the number of Peer Services in the network, and T is the overall number of
discovery tasks completed.

2. ND(d), the average number of deliver operations processed by Peer Services
that are at distance d from the Peer Service S0 that started the discovery
task. For instance: ND(0) represents the number of deliver operations pro-
cessed by S0 ; ND(1) represents the number of deliver operations processed
by a Peer Service distant one hop from S0.

Both ND and ND(d) have been evaluated considering different network
topologies. We distinguished the network topologies using a couple of numbers
{N,C}, where N is the number of Peer Services in the network, and C is the
number of Peer Services directly connected to each Peer Service (i.e., each Peer
Service has exactly C neighbors).

Number of Deliver Operations

Figure 5 compares the values of ND in Gridnut and Gnutella in five network
topologies: {10,2}, {30,3}, {50,4}, {70,4} and {90,4}, under different load con-
ditions. A parameter R is used to define the load of the network. In particular,

Web Services for Peer-to-Peer Resource Discovery on the Grid 81

1

2

3

4

5

6

7

{10,2} {30,3} {50,4} {70,4} {90,4}

Gnutella R=*

Gridnut R=1

Gridnut R=3

Gridnut R=5

Gridnut R=10

Network topology

ND

Fig. 5. ND versus the network topology.

R indicates the number of simultaneous discovery tasks that are initiated in the
network at each given time interval. For Gridnut networks the values of ND
when R = 1, 3, 5, and 10 are represented, whereas for Gnutella networks the
average of the ND values measured when R = 1, 3, 5, and 10 is represented.

We can see that the number of deliver operations is lower with Gridnut in
all the considered configurations. In particular, when the load of the network
increases, the Gridnut strategy maintains the values of ND significantly low in
comparison with Gnutella.

Distribution of Deliver Operations

Figure 6 compares the values of ND(d) in Gridnut and Gnutella in five network
topologies, with d ranging from 0 to 2, and R fixed to 1.

We can see that Gridnut implies a much better distribution of deliver oper-
ations among Peer Services in comparison with Gnutella. In Gnutella, the Peer
Service that started the discovery task and its closest neighbors must process a
number of Grid Service operations that becomes unsustainable when the size of
the network increases to thousands of nodes. In Gridnut, conversely, the number
of Grid Service operations processed by each Peer Service remains always in the
order of the number of connections per peer.

This Gridnut behavior results in significantly lower discovery times since
communication and computation overhead due to Grid Services invocations are
considerably reduced as shown in Figure 6.

82 D. Talia, P. Trunfio

0

10

20

30

40

50

60

70

80

90

{10,2} {30,3} {50,4} {70,4} {90,4}

Gnutella d=0

Gnutella d=1

Gnutella d=2

Gridnut d=0

Gridnut d=1

Gridnut d=2

Network topology

ND(d)

Fig. 6. ND(d) versus the network topology.

4 Conclusions

Resource discovery is a key issue in Grid environments, since applications are
usually constructed by composing hardware and software resources that need to
be discovered and selected. This paper proposed a framework for resource dis-
covery that adopts a P2P approach to extend the model of the Globus Toolkit
3 information service. It defines a P2P Layer of specialized Grid Services that
support resource discovery across different Virtual Organizations in a P2P fash-
ion.

The paper discussed also a protocol, named Gridnut, designed for communi-
cation among Grid Services at the P2P Layer. Gridnut uses message buffering
and merging techniques to make Grid Services effective as a way for exchang-
ing messages among Grid nodes in a P2P mode. Experimental results show that
appropriate message buffering and merging strategies produce significant perfor-
mance improvements, both in terms of number and distribution of Grid Service
operations processed.

Acknowledgements

This work has been partially funded by the Italian MIUR project “Grid.it”
(RBNE01KNFP).

References

1. Foster, I., Iamnitchi, A.: On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. Proc. of the 2nd International Workshop on Peer-to-Peer
Systems (2003)

Web Services for Peer-to-Peer Resource Discovery on the Grid 83

2. Talia, D., Trunfio, P.: Toward a Synergy between P2P and Grids. IEEE Internet
Computing, vol. 7, n. 4 (2003) 94-96

3. Foster, I., Kesselman, C., Nick, J. M., Tuecke, S.: The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
http://www.globus.org/research/papers/ogsa.pdf

4. Czajkowski, K. et al.: From Open Grid Services Infrastructure to
WS-Resource Framework: Refactoring & Evolution. http://www-
106.ibm.com/developerworks/library/ws-resource/ogsi to wsrf 1.0.pdf

5. The Globus Alliance: MDS Functionality in GT3.
http://www.globus.org/ogsa/releases/final/docs/infosvcs/4.html

6. The Globus Alliance: Globus Toolkit 3.0 - Performance Tuning Guide.
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/performance guide.html

7. Clip2: The Gnutella Protocol Specification v.0.4.
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf

8. Talia, D., Trunfio, P.: A P2P Grid Services-Based Protocol: Design and Evaluation.
Proc. of the European Conference on Parallel Computing - EuroPar 2004 - (in
press)

84 D. Talia, P. Trunfio

Collaboration of loosely coupled repositories using
peer-to-peer paradigm

András Micsik1, László Kovács1, Robert Stachel2

1MTA SZTAKI DSD,
Lágymányosi utca 11, H-1111 Budapest, Hungary

{micsik,laszlo.kovacs}@sztaki.hu
2Team Teichenberg,

Operngasse 22, A-1050 Vienna, Austria
robert@teichenberg.at

Abstract. A distributed digital library has been designed and implemented for
the support of community radios. This framework, developed by the
StreamOnTheFly IST project of the EU, provides a common background for
preparation, archival, exchange and reuse of radio programmes and supports
radio personalization. The architecture is based on a decentralized and self-
organizing network, which uses a new common metadata schema and exchange
format and automatic metadata replication. Local, regional and Internet-based
radios are expected to join the network all over Europe.

1 Introduction
Nowadays many community radio stations (non-profit, independent stations) exist,
but there is little cooperation among those. One of the causes for this is the lack of
technical support for easy exchange of radio programmes. A significant part of the
programmes produced at community radio stations are of high quality and worth to be
broadcast more than once, and listened to by a larger number of people in a wider
geographical range.

The StreamOnTheFly IST project [7] was set out to find and demonstrate new
ways for archival, management and personalization of audio content. Within the
project Public Voice Lab (Austria) and MTA SZTAKI DSD (Department of
Distributed Systems at the Computer and Automation Research Institute of the
Hungarian Academy of Sciences) are development partners and Team Teichenberg
(Austria) provides connections to community radio stations and associations.

The project team envisioned a network of digital archives and helper tools for radio
stations. The general aim of this network was to foster alternative, self-organized and
independent media by new ways of content distribution, international community
based presentation platforms and many added values for local production and
organizational work. In the following we will give an overview on the world of radio,
describe self-organizing systems on the Internet, present the StreamOnTheFly
network and the work done so far.

86 A. Micsik, L. Kovács, R. Stachel

2 Community Radios in Europe
Community radio stations developed during the past 30 years in most countries of

Europe, enriching the existing media world with a “third sector”, next to public
broadcasting as the first and commercial media as the second. Community radios are
non-profit-oriented, open to the general population and have a local or regional range.
They provide access to radio production facilities for organizations, groups and
individuals who aim to make their own radio shows. There are over 1500 non-profit
stations in the whole of Europe, an estimated third of them is provided with a full and
permanent 24 hour broadcasting license on their own frequency.

 The global umbrella organization AMARC defines community radio as “which is
for, by and about the community, whose ownership and management is representative
of the community, which pursues a social development agenda, and which is non-
profit.” The success of a community radio cannot be measured by audience ratings
and revenues. What is important here is the effect that a broadcast series has on the
targeted community. A radio show in a language spoken by a small minority will be
highly appreciated by this group of people, although they would not be considered a
big enough market to be targeted by other media.

There is a number of projects existing that aim to foster production of programmes
for an international audience that can be aired all over Europe or even world wide.
With AMARC's “Radio voix sans frontieres” (Radio without frontiers), more than 30
stations in Europe share a full day of live broadcasting once a year on the UN anti-
racism day. Many exchange projects are oriented around themes of an international
meaning, like migration, sustainable development or Human Rights.

What keeps programme exchange from becoming a day-to-day routine, is the
technical and structural thresholds. The existing programme exchange platforms on
the Internet are not connected to each other and do not follow a common metadata
scheme and user interface, which makes it harder to search and offer content on an
international scale, as every programme needs to be uploaded and indexed in different
standards for every country. The user might not even be able to understand the
language a sharing platform's website is written in.

Building on the experiences made at Orange 94.0 in Vienna and in other
community radio stations in Austria, we researched the requirements of producers and
editors for easy access to online archiving and content sharing. A common metadata
scheme and the ability to search in all databases at once is a main criteria, the other is
making access to the repositories as convenient as possible. Participating in exchange
of audio content needs to work as easy as sending an email or using a search engine,
with programme recording and uploading being done automatically.

Only an easy-to-use system that encourages more people to enter their day-to-day
programmes into an international platform will create a critical mass of content that
can be searched and re-used in local production. Such a platform would certainly help
to strengthen the position of community radio and foster international cooperation in
Europe.

3 The StreamOnTheFly Network
The project aims to create a network of radio content that develops in an organic and
dynamic way, in decentralized structures that build synergies on an international,

Collaboration of loosely coupled repositories using peer-to-peer paradigm 87

community-based level. The content is offered by local producers or stations to the
network, but it’s the international communities who choose which content is
presented and how it is presented. International publishing on the net is not a form of
archiving or recycling anymore, but a motivation to communicate with a whole new
group of people.

The StreamOnTheFly network consists of the following elements: nodes, stations
and portals (Fig. 1). Nodes together can be seen as a distributed digital library
specialized for audio content. Stations send content to the nodes for archival, and
portals present thematic selections of the contents of nodes.

For example, Orange 94.0, a community radio in Vienna, may send some of its
broadcast material on the node running in Austria. These programmes are archived at
the node and become accessible for the whole StreamOnTheFly network for a given
period of time. A German radio may find a programme on the German node that they
want to rebroadcast locally. They find the contact for this programme, in this case
Radio Orange and ask for their permission for rebroadcast. If there is a portal in
France for the Turkish people, its portal editor may include some of the Turkish
programmes of Radio Orange in the recommendation list. Users may also go directly
to a node, query/browse the whole content of the network, and listen to selected
programmes.

3.1 Services of the Network

The StreamOnTheFly network tries to serve the whole lifecycle of a radio
programme, starting with the creation and ending with various (re) uses and
discussions of the programme.

Fig. 1. Example for a StreamOnTheFly network

88 A. Micsik, L. Kovács, R. Stachel

Nodes. Nodes implement the basic digital library infrastructure for the network. Each
node hosts a set of radio stations. For each station the node archives radio
programmes with a rich set of metadata and other associated content. For example,
the content may be present in several formats of audio, or photos may be attached to
the audio content.

Users get transparent access to the contents of the whole network at any node.
They can browse through radio stations or in topic trees or search in the archive.
There is an advanced query facility, which enables registered users to construct and
save complex queries to be executed frequently. Interesting items can be collected
into a playlist. These playlists can also be seen as a kind of personalized radio. Users
may listen or download audio content in different formats (e.g. MP3, Ogg/Vorbis) and
in different bit rates or quality.

The network gathers and forwards information about radio programmes back to
their creators. This involves the collection of various statistics (download, listen, etc.),
the collection of comments, references and rating information.

Editors have a comfortable ‘console screen’ where they get an overview about all
their programmes, they can publish new programmes and manage existing ones.
Access privileges can be controlled on various objects: stations, series, programmes
etc.

Stations. A station management tool has been developed by the project, which
connects radio stations to the network. This tool provides an easy way to feed a node
with radio programmes. Furthermore, it helps in the scheduling work of the station,
and leads the creators’ hands before and after the broadcast of a radio programme.
Authors may add metadata to their programmes and publish them on a node.
Programmes are sent to the node using XBMF format (see 3.2).

In the case when no prerecorded audio is available for a radio programme (e.g. live
shows), a recording tool can be used. This software records the broadcasted audio of a
station, and automatically cuts the stream into individual radio programmes.

Portals. In the StreamOnTheFly project a radio portal offers a selection of radio
programmes in a custom design. Portals may serve ethnical groups, topics or
geographical regions by selecting relevant content from the whole network.
Additionally, a portal can offer editorials and more readings or pictures about the
selected programmes. Visitors of a portal may listen to programmes individually or
listen to a continuous stream playing the list of selected programmes over and over
again. Visitors may also rate, comment and discuss programmes. Comments and
ratings made on portals are forwarded to the nodes, and the comments are delivered to
the creators of the programme via e-mail.

Editors can select programmes for the portal either one by one or using queries. In
the first case editors assemble a playlist on the node and send it to the portal. In the
second case a saved query from the node can be displayed in a box of the portal. The
contents of such boxes will always be refreshed to show the current results of the
query as executed on the node.

3.2 Issues on Metadata

At the time of the design phase the project team found many emerging activities for
attaching metadata to multimedia. These solutions provide schemas for metadata and

Collaboration of loosely coupled repositories using peer-to-peer paradigm 89

methods to attach or embed metadata into the content (see SMPTE [1], AAF [2],
MPEG-7 [3]). Schemas often contain an object hierarchy for metadata description and
controlled vocabularies for the values of object properties. We found that these
activities were overlapping and were all targeted at large radio and television stations
and associations, with a highly detailed and complex format and structure. The project
received feedback from various forums and radios that thought the use of these
metadata formats is not practical for them and they would welcome a simpler and
more suitable recommendation for metadata usage.

The European Broadcasting Union (EBU) prepared a recommendation on a core
metadata set for radio archives [5] based on Dublin Core [4]. This document defines
how to use the Dublin Core elements in the area of radio archives. StreamOnTheFly
project participated in the launch of an initiative called Shared Online Media Archive
(SOMA). The SOMA Group (consisting of AMARC, OneWorld, CMA and Panos)
published the SOMA Metadata Element Set [6], which builds upon the EBU Core
Metadata Set.

 The SOMA metadata set became the part of the new exchange format called
XBMF (Exchange Broadcast Binary and Metadata Format) defined by the project.
XBMF is designed for transfer and archival of radio programmes coupled with
metadata. This is a simple container format, in which metadata (in XML format),
content files, and other associated files can be packaged together. XBMF may contain
the main content in several audio formats, and any other files connected to the content
(e.g. photos, documents, logos). XBMF can also be applied for video. The concept of
XBMF was presented at community radios, and received a positive response.

StreamOnTheFly will use and support both the SOMA and the XBMF standards.
Within the SOMA metadata standard, StreamOnTheFly will need to store some
additional data. To assure compatibility there is an “additional data” field integrated
into the SOMA standard by request of the StreamOnTheFly consortium.

3.3 The Operation of the Network

Unified access to the audio content was one of the main considerations in the
network. In order to provide fast and robust search functionalities we decided to
automatically replicate all metadata on each node of the network. As audio can take a
large amount of disk space, the content is only available at the node where it has been
published (its ‘home node’). Each object in the network receives a globally unique
identifier, which also provides information about the location and type of the object.

Transparent listening of audio content was solved with the help of an XML-RPC
controlled streaming engine called Tamburine [8] and ‘icecast’, the well-known open
source streaming server. When the user starts listening to a programme, the node asks
Tamburine to handle the task of streaming. Tamburine then contacts the other
Tamburine instance running on the home node of the programme, which starts to
stream the audio to the user node. This transparent routing solution creates the
possibility to provide a more reliable streaming solution with the use of caching and
other optimization techniques.

Another requirement was to build the StreamOnTheFly network in a distributed,
decentralized and self-organizing way. Most of the archives or digital libraries for
audio and video in the world are not distributed. An example for a centralized service
with similar goals to StreamOnTheFly is the Open Meta Archive

90 A. Micsik, L. Kovács, R. Stachel

(http://oma.sourceforge.net/). Learning from distributed digital libraries (e.g.
NCSTRL) and peer-to-peer file-sharing networks (e.g. Napster, Gnutella),
StreamOnTheFly network goes further towards self-organization (described in more
detail in section 4).

There is no central server in the network, each node has a set of neighbours, and
nodes periodically exchange new and modified metadata with their neighbours. These
neighbour connections draw the graph of the whole network. If a node is down, the
rest of the network is still functional, and data flow can still find another way in the
graph if there are enough ‘redundant’ connections. Multiple neighbour connections
also help to speed up metadata propagation and correct data loss or errors in
replication. On the other hand, nodes with a low budget can lower their network
traffic by decreasing frequency of metadata exchange.

Nodes accept data exchange requests only from allowed neighbours, a list
maintained by the node administrators. In this way authorization is decentralized as
well: if a node wants to be the part of a network, it needs to establish a neighbour
relationship with at least one node from that network.

The network uses a few controlled vocabularies for descriptive metadata, e.g. topic
or genre names. Users at any node with proper privileges can translate entries into
local languages or add new entries to vocabularies. The propagation of the changes is
done with the same mechanism as metadata replication.

The framework was implemented using PHP and Postgres DBMS. All user
interfaces are accessible via web browsers. HTTP and XML-RPC are used for
communication between components. The framework was built using open source
and free software components and tools, and the framework itself will also be made
available to the public.

4 Principles of Self-organization
StreamOnTheFly network architecture is based on the principles of self-

organization. Self-organization in community life (such as within the community of
radios stations in Europe) means that the (social) rules governing the activities within
the community evolve in time in order to adapt the community to the new challenges
appearing within this sector. In system theory the field of self-organization seeks
general rules about the growth and evolution of systemic structure, the forms it might
take, and finally methods that predict the future organization that will result from
changes made to the underlying components. [9]

Distributed data repositories based on the principles of self-organization should
reflect the community (social) structure and it is important that repositories could be
adapted according to their evolutions. Key features for self-organizing networks are
the following: this type of networks encourages users to contribute information. The
StreamOnTheFly network helps editors to contribute radio shows. The network can
thus be considered as a virtual platform for collaborative, community-based radio
content production, distribution, and evaluation. Of equal importance, self-organizing
networks aggregate and qualify the most relevant information in (semi-) automated
fashion. The results are twofold: users of the systems can find quality information
with confidence, while administrators and developers require less work to manually
sift through large amounts of information. StreamOnTheFly network provides

Collaboration of loosely coupled repositories using peer-to-peer paradigm 91

services for content rating (and other statistical information about the actual use of
audio content) and backward propagation of this information to the authors. Self-
organizing networks create a community-like environment, and attempt to emphasize
and visualize relationships between users thus increase user participation [10].
StreamOnTheFly network users are clustered according to their roles (e.g. station
manager, editor, series editor, metadata classification scheme editor, general listener,
etc.) and system is structured according to their feature requirements. The lack of
central control within StreamOnTheFly network reflects the actual rather chaotic
community structure of European community radios, and the easy way of joining and
leaving the network mimics the dynamics of movements in this sector.

The StreamOnTheFly system is a special example that is also based on the general
principles of computational self-reflection [11] but the self-reflected system
architecture (in which the self description of the actual system is an active part of the
system itself) is substituted by a live human community and its social structure. An
active (social) community (the community radios in Europe) is thus in the loop, the
system is structured according to their (social) relationships. The community mimed
system (service) structure emphasize the openness, thus the system is rather an open
infrastructure than a closed and static network, in which users can change and adapt
the system itself to their own patterns of usage. Adaptation is possible on both
syntactic and semantic level via the portal and the metadata related service
components. Dynamics within the community can also be reflected easily. New
StreamOnTheFly nodes can join or leave according to the actual changes in the
community. A new classification scheme or evolution of the actual classification
scheme can immediately be embedded in an automatic way.

Summarizing the needs for a self-organizing collaborative media-sharing network,
the following principles were used:

• No central role, server or governance, rather provision of an open, evolving
infrastructure

• Easy to join and leave, but keep the possibility to limit or exclude partners
• Free and unified access and content publishing
• Support for personalization on several levels (e.g. content, user interface,

community)
• Support for information (e.g. awareness, rating) propagation also back to the

authors

5 Conclusions and future work
The project is after the second validation scenario. In this scenario everyday work in a
radio station was simulated with the software. These test sessions justified the
requirement of a station management tool, in order to minimize the effort needed to
publish a programme on the network. Using this tool can also be an incentive for
radio stations operating with home-brewn station management solutions to join the
network. Several radio stations are waiting to become part of the network, and some
existing networks with simpler infrastructure are also considering joining in. In order
to connect the network into a wider but simpler level of distribution, an Open Archive
Initiative compliant gateway will be added to StreamOnTheFly.

92 A. Micsik, L. Kovács, R. Stachel

With StreamOnTheFly being fully implemented and tested, we will start to set up a
number of nodes all over Europe, together with partners and regional umbrella
organizations. Existing platforms will be encouraged to participate in the network, by
changing to the StreamOnTheFly system or by creating interfaces to it. Several series
and broadcasts, especially those for an international target audience, will be uploaded
and presented in showcases on our own radio portals, to show the potentials of
StreamOnTheFly and encourage more editors to participate.

6 Acknowledgements
Authors would like to thank to the participants of the project for support and help in
the design and development of StreamOnTheFly software: Roland Alton-Scheidl,
Thomas Hassan and Alexey Kulikov from Public Voice Lab, Jaromil, an independent
audio/streaming expert, Thomas Thurner, Wolfgang Fuchs and Roland Jankowski
from Team Teichenberg, Tamas Kezdi, Mate Pataki and Gergo Kiss from MTA
SZTAKI DSD.

This work is supported by the EU under contract IST-2001-32226.

References
1. Society of Motion Picture and Television Engineers (SMPTE),

http://www.smpte.org
2. AAF (Advanced Authoring Format) Association, http://www.aafassociation.org/
3. MPEG-7, http://www.mpeg-industry.com/
4. Dublin Core Metadata Initiative, http://dublincore.org/
5. EBU Core Metadata Set for Radio Archives (Tech3293),

http://www.ebu.ch/tech_32/tech_t3293.pdf
6. Shared Online Media Archive (SOMA) metadata format 1.0

http://soma-dev.sourceforge.net/
7. StreamOnTheFly project homepage, http://www.streamonthefly.org
8. Tamburine: http://tamburine.dyne.org
9. Self-Organizing Systems (SOS), http://www.calresco.org/sos/sosfaq.htm
10. Hisham Alam: Self-Organizing Sites.

http://www.newarchitectmag.com/archives/2002/01/alam/
11. Paul Dourish: Developing A Reflective Model of Collaborative Systems. ACM

Transactions on Computer-Human Interaction, Vol. 2, No. 1, pages 40-63, 1995

A P2P and SOA Infrastructure for Distributed
Ontology-Based Knowledge Management

Nektarios Gioldasis, Nikos Pappas, Fotis Kazasis, George Anestis,

Stavros Christodoulakis

Lab. Of Distributed Multimedia Information Systems
Technical University of Crete (MUSIC/TUC)

University Campus, Kounoupidiana, Chania, Greece
[nektarios,nikos,fotis,ganest,stavros]@ced.tuc.gr

Abstract. The Digital Business Ecosystem Integrated Project funded by the EU
aims at the development of a Europe-Wide virtual economic environment
where European SMEs will advertise themselves and their service offerings
with the purpose of competing, collaborating and co-evolving with other SMEs.
One of the main strategic goals for this project is to model, design and
implement such an environment based on observations made on biological
ecosystems where several species live together, compete and co-evolve as the
physical environment of the ecosystem changes. From a technical point of
view, the DBE will provide a Distributed Open-Source Infrastructure which
will be the glue that will bring together the European SMEs and will enable
knowledge sharing and intelligent discovery of partners and services. The focus
of this paper is on the Knowledge Management Infrastructure of the DBE. We
firstly discuss the problem, we then present the proposed approach, and finally
we identify some of the research issues that we will concentrate on.

1 Introduction

J.F. Moore describes a Business Ecosystem as “An economic community
supported by a foundation of interacting organizations and individuals - the organisms
of the business world. This economic community produces goods and services of
value to customers, who are themselves members of the ecosystem. Over time, they
co-evolve their capabilities and roles, and tend to align themselves with the future
directions...” [1]. The Digital Business Ecosystem is the enabling technology for the
Business Ecosystem. A Digital Business Ecosystem is defined as "evolutionary self-
organising system aimed at creating a digital software environment for small
organisations" that support regional and local development by empowering open,
distributed and adaptive technologies and evolutionary business models for the
growth of small organisations.

The Digital Business Ecosystem vision is in fact based on two fundamental ideas:
those of self-organisation and biological evolution. The concept of self-organisation
implies intelligent behaviour and the ability to learn on a short time scale, whereas

94 N. Gioldasis, N. Pappas, F. Kazasis, G. Anestis, S. Christodoulakis

evolution implies an ability of the system to optimise itself through differentiation and
selection of its components on a long time scale. These ideas can be only realized if
the (eco) system as a whole is able to learn over time and adapt to this knowledge that
itself produces as well as to knowledge that it is derived from its biosphere.

Thus, a fundamental objective of DBE is that it aims to build an infrastructure for
supporting Knowledge-Based Business Communities. The Knowledge Base of such a
system is one of its core infrastructural components and it will be the enabling factor
for the advanced features that were previously described. Within the DBE the purpose
of Knowledge Base is to provide a common and consistent description of the DBE
world and its dynamics, as well as the external factors of the biosphere affecting it.
The Knowledge Base will provide a consistent Knowledge Representation Model for
storing Business and Service Ontologies, Business and Service Descriptions,
Regulatory Framework, and usage history regarding the day-to-day activities in the
DBE. This knowledge will be exploited by other core components for many purposes.
One of the main usages of the Knowledge Base is for enabling valuable
recommendations (in terms of partnerships and evolutionary actions) by the
recommendation infrastructural service to the SMEs “living” in the ecosystem.
Personalized recommendations are provided by a special system component, the
recommender, which takes into account business and service models, usage histories,
and fitness parameters, in order to recommend best-suited partners and services for
the user SMEs. The knowledge Base will store the suggestions made by the
recommender, in order to provide feedback for the evolutionary procedures, which
will lead to the long-term study and adaptation.

This paper presents ongoing work done in the DBE project. Its focus is on the
knowledge modelling and management requirements and the architectural approach
envisioned for DBE Knowledge Base Infrastructure.

2 The DBE Knowledge Base Requirements

The DBE Knowledge Base (KB) provides a common and consistent description of
the DBE world and its dynamics, as well as the external factors of the biosphere
affecting it.

Its content includes, among others, representations of the SME’s Business Models
and Ontologies, the Service Models and Ontologies, the SME views of the ecosystem,
the user models, and models for gathering statistics. The KB is being used in order to
provide a consistent knowledge model and input for the Service Description /
Business Modeling Language, the recommendation process and the Service
Composition process.

An important aspect of the KB management is to support the sharing of its content.
For that it should follow a scalable design/implementation that can support virtually
any number of DBE users as well as organization-wide transactions and/or
cooperation. The KB provides a variety of advanced content services (and tools) that
include the following:

A P2P and SOA Infrastructure for Ontology-Based Knowledge Management 95

• Content management services:
these services provide functionality for storing, finding, retrieving and presenting
any type(s) of the aforementioned content that it hosts.

• Content personalization services:
the services of this type utilize DBE user profiles and content access patterns to
create and/or present customized content to each DBE user.

• Content group services:
such services provide scheduled delivery of content according to predefined
business rules, as well as packaging the content for individual DBE users (e.g.
services for DBE users that participate to a special cooperation schema).

• Content aggregation services:
These services include automatic combination of content from a variety of content
sources and (probably) formats (i.e. other KBs and/or legacy systems).
Another important aspect of the KB management is to support the sharing of its

content in a P2P environment. At first glance, many of the challenges in designing
P2P systems seem to fall clearly under the banner of the distributed systems
community. However, upon closer examination, the fundamental problem in most
P2P systems is the placement and retrieval of data. Indeed, current P2P systems focus
strictly on handling semantics-free, large-granularity requests for objects by identifier
(typically a name), which both limits their utility and restricts the techniques that
might be employed to distribute the data. These current content sharing systems are
largely limited to applications in which objects are large, opaque, and atomic, and
whose content is well-described by their name; for instance, today’s P2P systems do
not emphasize content-based retrieval of text files or fetching only the abstracts from
a set of text documents. Moreover, they are limited to caching, pre-fetching, or
pushing of content at the object level, and know nothing of overlap between objects.

These limitations arise because the current P2P world is lacking in the areas of
semantics, data transformation, and data relationships, yet these are some of the core
strengths of the data management community. Organizational Information is complex
and has complex relationships in the real business world, and the DBE seeks to
capture and manage such information. Queries, views, and integrity constraints can be
used to express relationships between existing objects and to define new objects in
terms of old ones. Complex queries can be posed across multiple sources, and the
results of one query can be materialized and used to answer other queries. Data
management techniques can be used to develop better solutions to the data placement
problem at the heart of any P2P system design: data must be placed in strategic
locations and then used to improve query performance. On the other hand businesses
in the real world are independent and they may cooperate, but at the same time
compete. The environment is clearly a P2P environment where some, but not all the
information of the business is revealed to the outside world. From the above, it
becomes clear that the use of relational database management technology for
managing the DBE KB content is very important , and it can leverage the increased
scalability, reliability, and performance of a successful P2P architecture for the DBE
project.

The DBE KB supports the Recommendation Services that will act as an
autonomous processes that manage SME preferences (either business preferences or
service preferences) and matches theses preferences with available business

96 N. Gioldasis, N. Pappas, F. Kazasis, G. Anestis, S. Christodoulakis

descriptions and service descriptions. An important assumption and investigation
focus of DBE which is used in the design and implementation of the
Recommendation mechanisms is the existence of powerful business and service
Ontologies that capture the semantics of business models and service descriptions.
These Ontologies are used to define the corresponding preferences for businesses and
services. These preferences are attached to the business model of each SME in the
DBE environment. The Ontologies within DBE are described in an XML based
language (XMI) and mapping mechanisms will be used to ensure the transformation
from different Ontology languages to the standard Ontology descriptions used in the
DBE. The DBE Ontologies can thus be used by the recommendation mechanisms
regardless of the particular models used by each SME in the DBE environment.

3 A Preliminary Knowledge Management Architecture

In this section we present a preleminary conceptual architecture (i.e. a set of logical layers and
components and relationships) for the DBE Knowledge Base Infrastructure and other system
components that directly or indirectly exploit this infrastructure. The purpose of this
architecture is to show how the DBE Knowledge Base will be perceived by the rest DBE
System Components and how it will be exploited by them.

DBE DEVELOPMENT ENVIRONMENT

KNOWLEDGE MANAGER

SERVICE
PUBLISHER

BML
EDITOR

ONTOLOGY
EDITOR

MANUAL
COMPOSER

PREFERENCES
EDITOR

SERVICE
BROWSING/
DISCOVERY

TOOL

SEMANTIC
REGISTRY SERVICE

RECOMMENDER
SERVICE KB SERVICE

P
er

si
st

en
cy

 T
ie

r
M

id
dl

e
Ti

er
E

nt
er

pr
is

e
Ti

er
Pr

es
en

ta
tio

n
Ti

er

ONTOLOGY
MANAGEMENT

SDL/BML
MANAGEMENT

PREFERENCES
MANAGEMENT

REGULATORY
MANAGEMENT

REGISTRY
MANAGEMENT

FILTERING
MECHANISMS

RECOMMENDATION
MECHANISMS

ACCOUNTING
MANAGEMENT

SERVICE
MANIFEST
CREATOR

DATA MANAGEMENT
SYSTEM (RDBMS)

SERVICE
ONTOLOGIES

BUSINESS
ONTOLOGIES

SERVICE
MANIFEST

BUSINESS
DESCRIPTION

REGISTRY PREFERENCESRECOMMENDATIONS

SERVICE ORCHESTRATION
SPECIFICATIONS

ACCOUNTING
DATA

MOF Repository

JDBCJMI

Figure 1 : Conceptual Architecture of the DBE KB Infrastructure

The abstract architecture of the DBE Knowledge Base illustrated in Figure 1
clearly distinguishes between the client modules (front-end applications that provide

A P2P and SOA Infrastructure for Ontology-Based Knowledge Management 97

GUIs with which one can create and access knowledge), the enterprise-level services
(a set of core services that expose the functionality of the KB to the client modules),
the middle-tier management modules (which implement the core logic of the
Knowledge Base) and the back-end persistency infrastructure that permanently stores
the DBE Knowledge.

3.1 System Components

In this section we briefly describe the main components that appear in Figure 1 and
in particular their use with respect to Knowledge Base Infrastructure. We start by
describing the Core DBE Services that are used to export the functionality of the DBE
Knowledge Base Infrastructure to the rest System and then we describe several
components that exploit the aforementioned services and are used to create, store,
modify, and present Knowledge which is finally stored in the DBE Knowledge Base.

From a technical point of view, the DBE KB will implement a MOF-Based
Repository utilizing the Java Metadata Interface (JMI) [15] specification. This
approach will provide a standard and flexible mechanism for handling different
knowledge models. The persistency of the KB contents will be achieved through a
java-based relational database management system providing this way a fully
platform independent solution. Thus, meta-data browsing can be done through
standard interfaces (JMI) while advanced recommendation mechanisms (requiring
powerful querying features) can be implemented on-top of the RDBMS where the real
contents are stored.
• KB SERVICE:The KB Service is a Core DBE Service that encapsulates all the

functionality of the DBE Knowledge Base and provides a standard interface
through which the other DBE components can use this functionality in a coherent
and consistent manner. Each higher level application that wants to exploit the
Knowledge Base has to invoke the required KB Service operations. The core logic
of the KB service is implemented by the Knowledge Base Manager which is
responsible for semantically organizing and managing the various KB Data as well
as handling the requests for accessing those data that are coming through the KB
Service. In the distributed DBE environment, although the KB Service will be
perceived as a single service, it will actually be a set of KB Service Instances (each
instance will be hosted in an SME node) that will be self-coordinated and will
operate as a whole over a P2P network following this way a SOA approach.

• RECOMMENDER SERVICE:The Recommender Service is a Core DBE Service
responsible of handling SME preferences that specify the needs of each
independent SME in the DBE environment in terms of partnerships with other
SMEs as well as services needed to compose more complex services for its
customers. It provides a standard interface that hides the technical details of the
underlying Recommendation Mechanisms that implement powerful matching
algorithms using the DBE Business and Service Ontologies. The produced
recommendations are permanently stored in the Data Management System
(Persistency Tier). As with the KB Service, in the distributed DBE environment,
this service will be a set of Recommender Service Instances over a P2P network.

98 N. Gioldasis, N. Pappas, F. Kazasis, G. Anestis, S. Christodoulakis

• SEMANTIC REGISTRY SERVICE: It provides a standard interface capable to
implement a Semantic Registry Service functionality required in the DBE
environment. The Semantic Registry Service provides standard representation
hierarchies and query facilities provided by the standard registries. It should be
noted that this service simulates the functionality of a Semantic Registry and it is
not a repository itself. On the contrary, it exploits the Data Management System
(Persistency Tier) for the storage and retrieval of its contents. At the Middle-Tier a
Registry Manager is used to implement the advanced functionality of this Service
and to handle the requests for retrieving and accessing the stored content. The
Semantic Registry Service is a Core DBE service and from a technical point of
view is a set of Semantic Registry Service instances that are hosted on special
peers (super peers) over a P2P network.

• ONTOLOGY EDITOR: The Ontology Editor is a component that provides a GUI
to the end user and it is used for the management (creation/update/retrieve) of the
Ontologies (Service and Business Ontologies) that are developed and used in the
DBE environment. In order to import a new ontology in the DBE an extension of
the DBE Knowledge Base is required. Such a task is under the responsibility of the
Ontology Editor. It accesses the KB by “talking” to the (local instance of the1) KB
Service for manipulating the various Ontologies (store/retrieve/update Ontologies).
The mechanisms that perform the real manipulation of the Ontologies are
implemented at the Middle-Tier by the Ontology Management Module. The final
modifications are stored in the persistent Data Management System.

• BML EDITOR: It is a Tool that resides on each DBE node (at least on the Nodes
that provide DBE Services) and it uses the Business Ontologies (created with the
Ontology Editor) in order to describe SMEs according to their business models,
policies, assets, competencies, partners, etc. It also uses the Service Ontologies in
order to describe the services that are offered by the SMEs. It interacts with the KB
Service for accessing Business Ontologies and storing/updating/retrieving Business
Descriptions and Service Descriptions.

• SERVICE MANIFEST CREATOR: It is a Tool that resides on each DBE node (at
least on the Nodes that provide DBE Services) and it is used to integrate the BML
Description and SDL Description of DBE Services producing their Service
Manifest. It interacts with the local instance of the KB Service to
store/update/retrieve Service Manifests.

• SERVICE PUBLISHER: It is a tool that is used to publish a Service Manifest to
the Semantic Registry. It “talks” with the KB Service in order to retrieve Service
Manifests and with the Semantic Registry Service in order to
publish/update/remove Service Manifests (the published ones). The Semantic
Registry Service is based on the Data Management System for the storage of this
content.

• SERVICE BROWSING/DISCOVERY TOOL: It is a Tool that resides on each
SME node and it is used to contact the Semantic Registry Service through its local
instance in order to browse and retrieve the contents of the Semantic Registry of
the DBE. This tool has two modes: The simple one, where it just browses the

1 Local Instance means that both the KB Service Client (e.g. the Ontology Editor) and the
Service Instance are running on the same host.

A P2P and SOA Infrastructure for Ontology-Based Knowledge Management 99

registry for Services, and the advanced one where using Business and Service
Ontologies it provides guidance for query formulation when a user looks for
particular services. In this mode, the discovery of services is actually an iterative
process through which the user is guided to form the query request that expresses
his/her needs in the best possible way. After the query formulation the user submits
the query and gets a ranked set of results (Published Service Manifests). Beyond
the interaction with the Semantic Registry Service, this tool needs to interact with
the KB Service in order to retrieve (parts of) Business and Service Ontologies for
guiding the user in formulating queries.

• PREFERENCES EDITOR: Using Service and Business Ontologies an SME
describes its preferences for desired services. SMEs are also able to describe
business requirements that must be satisfied by the providers of those services (e.g.
business policies, accounting policies, etc.). The SME may ask explicitly for
recommendations according to its preferences or may browse the recommendations
that the Recommender Service had automatically produced. The Preferences Editor
is a tool that provides a GUI and uses the KB Service for storing/retrieving and
updating preferences, and accessing Ontologies. It also uses the Recommender
Service in order to ask for explicit recommendations according to the defined
preferences. At the middle-tier special management modules implement the
advanced functionality that is required for the realization of the aforementioned
behavior.

• MANUAL COMPOSER: The Manual Composer component provides a GUI
through which the end-user can compose new services. It interacts with the
Semantic Registry Service or explores the suggestions made by the Recommender
Service in order to discover candidate constituent services and to publish the newly
created (composite) services. Also it interacts with the KB Service in order to
store/retrieve/update Orchestration Specifications and Service Manifests of
Composite Services and to retrieve the Required Ontologies for performing the
required Service Matchmaking.

4 Knowledge Management in P2P Environment

In the DBE environment a large number of SME nodes will be pooled together to
share their resources, information and services while keeping themselves fully
autonomous. The SMEs will share data that will have rich structure and semantics,
and thus advanced mechanisms for querying and discovering knowledge from these
data are needed.

Taking these into account above, the DBE knowledge base should be built upon an
efficient P2P data management system. The tasks during the development of the DBE
KB include conceptual modeling, exhaustive study of current P2P data sharing
technologies and investigation of strategies for deploying data management systems
over P2P networks.

The design of the DBE KB should take into account the benefits of the P2P
networks that can be concluded in adaptation, self-organization, load balancing, fault

100 N. Gioldasis, N. Pappas, F. Kazasis, G. Anestis, S. Christodoulakis

tolerance and high availability. Despite these benefits the deployment of P2P
networks can introduce in many cases performance and consistency problems. Also
current P2P solutions do not support advanced mechanisms for data management.

The challenge in designing and developing the DBE KB is to enable the effective
support of rich semantics, data transformation, data relationships, data constrains and
complex queries across multiple sources in the DBE network. KB will have to place
data in strategic locations in order to improve the performance of the retrieval
mechanisms, since the data sharing of enormous amounts of data is useless without
advanced search mechanisms that will allow SMEs to quickly locate and use the
desired information.

Current service oriented architectures and standards almost completely ignore the
modeling of the business environment including business models, business processes,
business environment models, domain specific specializations, instantiations etc. In
addition many of the service oriented standards proposed are too close to a centralized
or “one-owner” environment, and not a real P2P environment. The objective of the
DBE KB is to organize, store, and efficiently retrieve description metadata about
businesses and services. The KB will have to handle a lot of metadata that follow
different schemas, since a great variety of business and service models will exist.
Thus, techniques and strategies for message and query routing in schema-based P2P
systems (should be investigated and deployed([8],[9],[10] The KB is responsible for
matching and accessing semantic data across the DBE network nodes by offering to
the SME users a set of Core Services for transparently searching and accessing DBE
Knowledge.

The search mechanism to be deployed determines the behavior of peers in three
areas: Topology (how peers are connected to each other), Data placement (how data
or metadata are distributed across the network of peers) and Message routing (how
messages are propagated through the network) [2].

While designing the search mechanism and defining the peer behavior, the query
language, the returned results and the autonomy of peers (e.g. an SME may wish to
define what data wants to store, or share data only within a group of SMEs) should
also be considered.

A P2P model can either be pure or it can be hybrid. In a pure model, there is no
centralized server (e.g. Gnutella and Freenet). In a hybrid model, a server is
approached first to obtain meta-information, such as the identity of the peer on which
some information is stored, or to verify security credentials. From then on, the P2P
communication is performed. Examples of a hybrid model include Napster, Groove,
Aimster. There also intermediate solutions with Super Peers, such as KaZaa. Super
Peers contain some of the information that others may not have. Other peers typically
lookup information at Super Peers if they cannot find it otherwise.

Pure P2P systems tend to flood the network with query messages and the limited
capabilities of some peers cause performance bottlenecks. So, pure P2P systems
present efficiency weaknesses that make them unsuitable for the DBE. On the other
hand hybrid systems perform better but they are not scalable and fault tolerant.

Super peer systems are trying to combine the two previous approaches to take
advantage of the efficiency of a centralized search and the autonomy, load balancing
and robustness of a distributed search. Super-peer based P2P infrastructures usually
exploit a two-phase routing architecture, which queries first in the super-peer

A P2P and SOA Infrastructure for Ontology-Based Knowledge Management 101

backbone, and then distributes them to the peers connected to the super peers. Super-
peer routing is based on different kinds of indexing and routing tables [6], [7]

The DBE KB architecture follows the super peer network paradigm for the
efficiency benefits that it presents and its capability of taking advantage of the
heterogeneity of the peers by assigning greater responsibility to those peers that are
more capable to handle it [3]. However the choice of the super peer model does not
solve all the problems that the DBE KB will face, since the design should consider
several of challenging issues like: dynamic self-organization of peers and super peers,
performance trade offs, load-balancing among equivalent peers and among simple
peers and super peers, avoidance of single-point of failure in the super peers, search
performance using super peers, data placement and indexing across super peers and
other research issues.

In the DBE environment many IT systems will have to be integrated in a common
network. These systems will be developed, managed and integrated using a range of
methodologies, tools and middleware. We have witnessed during the last few years,
especially as a result of efforts at OMG and W3C a gradual move to more complete
semantic models as well as data representation interchange standards. OMG’s Model
Drivel Architecture (MDA) provides an open, vendor-neutral approach to the
challenge of interoperability, building upon and leveraging the value of OMG's
established modeling standards: Unified Modeling Language (UML), Meta-Object
Facility (MOF), XML Metadata Interchange XMI etc. [12,13,14].

M2

M1 m.1 m.2 m.3

BML Metamodel

m.1 m.2 m.3

Super Peer
Routing Index

Peer
Routing Index

Business Model
Registries

Model Specific
Instances (M0)

M3 MOF Meta-metamodel

Figure 2: The DBE KB P2P Infrastructure

One of the most challenging objectives for the DBE is to enable common business

understanding and at the same time to provide for differentiation between businesses
and organisations. From a technical point of view, this means that while each SME
may have its own model for service or business description, at the same time it needs

102 N. Gioldasis, N. Pappas, F. Kazasis, G. Anestis, S. Christodoulakis

to communicate with other SMEs and to understand each other. We have decided to
follow a multi-layered approach in the Knowledge Modelling and Representation
where each level in a top-down fashion adds more semantics into knowledge
modelling concepts through specialization. For that, we are adhering to the rules of
the MDA technology [12]. The top layer (M3) in MDA is the MOF meta-meta-model
[13] that provides a mechanism for defining meta-models (meta-meta-data) which are
actually residing at the M2 layer. M2 meta-models are used to provide specific
models (meta-data) of representing knowledge (data). Thus the various types of
content included in the KB are represented via XMI [14] so that multiple participants
can query the stored content in a standardized and consistent manner. The KB
Manager is responsible for the implementation of the appropriate structures for
managing contents described with XMI. The manager uses the metamodel
descriptions to determine how to manage contents that are actually instances of these
meta-models. Figure 2 shows the DBE approach to metadata layering.

The P2P Knowledge Base infrastructure is shown in Figure 3. Three instances of
core DBE services run at each SME node that belongs to the DBE network: the
Recommender Service (RS), the Semantic Registry Service (SRS), and the KB
Service (KBS). These services cooperate with the other instances in the peer network
to perform the distributed knowledge update or retrieval tasks. These core services
export a transparent common interface to DBE applications that need access in the
DBE KB and hide the complexity of the necessary P2P communications between the
service instances.

As we have described above, the distributed KB will follow the super peer network
paradigm. Some SME peers that have enough bandwidth and processing capabilities
will have more responsibilities than other SME peers. These SMEs will also run the
three core service instances (of the KB infrastructure) that will behave differently than
the service instances of the simple SME peers. The SME super peers will form a
network among them and will be aware of the topology. These super peers act as
servers to a group of SMEs are accepting recommendation, knowledge extraction and
service discovery requests from their clients and based on the information distribution
strategy that will be applied, forward the requests to the appropriate super peers that
are able to satisfy or can reference to simple nodes that can satisfy the submitted
requests.

For example the Service Publisher application (as shown in Figure 3) publishes the
Service Manifest Advertisement (probably a summary of the Service Manifest that
contains the most valuable information of a Service Description) accessing the local
instance of the Semantic Registry Service. The local instance communicates with the
respective service instance of the super peer that the SME is connected to and sends
the advertisement. The super peer Service processes the Service Manifest
Advertisement and based on the distribution strategy either it stores the service
description in the local registry node (data management system) or it forwards the
advertisement to the appropriate super peer Semantic Registry Service where it should
be stored. The KB service acts in the same way as the Semantic Registry service. For
example, BML descriptions produced by the BML Editor are pushed to the local KB-
Service. This Service processes the description and forwards the public description to
the super peer KB-service.

A P2P and SOA Infrastructure for Ontology-Based Knowledge Management 103

RS

Recommender

RS KB

DMS

SRS

 Service
Publisher

RS KB

DMS

SRS KB

DMS

SRS

KB Service

 Service
Discovery

RS KB

DMS

SRS

Ontology
Editor

Semantic Registry

Recommender

KB Service

Semantic Registry

Data
Management

System

Data
Management

System

BML
Editor

Manual
Composer

Figure 3: The Core Service Components of the DBE KB Infrastructure

The super peer KB service identifies the appropriate super peer that will handle the
storage of the public information to the data management systems contributed by
other SME peers. On the other hand the Recommender service acts autonomously.
Periodically the local Recommender Service Instance asks the super peer
Recommender Service for new system recommendations. The super peer
Recommender service based on declared or automatically produced SME preferences
in cooperation with other super peers identifies a group of SMEs that might contain
information or services that should be recommended to the SME. The
recommendation request is forwarded then to the Recommender Service instances of
the qualified SMEs where is being processed and the recommendation results are sent
(in P2P manner) back to the SME Recommender Service that requested them.

5 Conclusions and Open Issues

The previously described infrastructure for knowledge management will be an
ontology-based P2P meta-data management system that its architecture can be used in
many different environments. Some of the research issues related to the P2P
Knowledge Management that will be examined during the project are the following:
• Ontology management (insertion, maintenance, conflict resolution and

utilization) in P2P systems with the use of Relational Databases at each peer
following a Service Oriented Architecture.

• Business model ontologies, business process ontologies, environmental
ontologies, domain specific ontologies and their use and interplay in a dynamic
service environment.

• Distributed Semantic Recommendation and Service Composition mechanisms

104 N. Gioldasis, N. Pappas, F. Kazasis, G. Anestis, S. Christodoulakis

• Self-organization of the P2P network.

6 Acknowledgements

This work is being carried out in the scope of the DBE Integrated Project
(IP:507953) funded by EU under FP6.

References

1. J.F Moore, The Death of Competition, 1996, pag.6-7
2. Neil Daswani, Hector Garcia-Molina, Beverly Yang “Open Problems in Data-Sharing

Peer-to-Peer Systems” International Conference on Database Theory, ICDT 2003
3. Beverly Yang, Hector Garcia-Molina “Designing a Super-Peer Network” IEEE

International Conference on Data Engineering 2003
4. Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, Dan Suciu. “What Can

Databases Do for Peer-to-Peer?” WebDB Workshop on Databases and the Web,
2001.

5. W. Nejdl, W. Siberski, M. Sintek" Design Issues and Challenges for RDF- and
Schema-Based Peer-to-Peer Systems" Technical Report, July 2003

6. B.Yang, H. Garcia-Molina “Improving search in peer-to-peer systems”. Proceedings
of the 22nd International Conference on Distributed Computing Systems 2002

7. Crespo, H. Garcia-Molina “Routing indices for peer-to-peer systems”. Proceedings of
the International Conference on Distributed Computing Systems 2002

8. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson. M. Palmer,
T. Risch “EDUTELLA: A P2P Networking Infrastructure Based on RDF”.
Proceedings of the International World Wide Web Conference 2002

9. W. Nejdl, M.Wolpers, W.Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, A. Loser
“Super-peer-based routing and clustering strategies for RDF-based peer-to-peer
networks. Proceedings of the International World Wide Web Conference 2003

10. M.Schlosser, M.Sintek, S. Decker, W. Nejdl “HyperCup – Hypercubes, Ontologies
and Efficient Search on P2P Networks. International Workshop on Agents and Peer-
to-Peer Computing 2002

11. OWL Services Coalition: OWL-S:Semantic Mark-Up for Web Services”,
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

12. Object Management Group: “Model Driven Architecture a Technical Perspective”,
http://www.omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf

13. Object Management Group: “Meta Object Facility Specification”,
http://www.omg.org/cgibin/apps/doc?formal/02-04-03.pdf

14. Object Management Group: “XML Metadata Interchange Specification”,
http://www.omg.org/technology/documents/formal/xmi.htm

15. Java Community Process “Java Metadata Interface Specification”,
http://www.jcp.org/aboutJava/communityprocess/review/jsr040/”

A Hierarchical Super Peer Network for

Distributed Artifacts

Ludger Bischofs1, Wilhelm Hasselbring1, Jürgen Schlegelmilch2, and Ulrike
Steffens2

1 University of Oldenburg, FK-2, Software Engineering Group, PO Box 2503, 26111

Oldenburg, Germany

{ludger.bischofs|hasselbring}@informatik.uni-oldenburg.de
2 OFFIS, Escherweg 2, 26121 Oldenburg, Germany

{ulrike.steffens|juergen.schlegelmilch}@offis.de

Abstract. The transition from traditional paper libraries to digital li-

braries enables new strategies for the use and maintenance of artifact col-

lections. Distributed software development can be regarded as a special

case of digital library utilization, where developers or groups of develop-

ers are working on the same software geographically dispersed in time

zones which might differ. We present a hierarchical super peer network

which represents the organizational structures of distributed software de-

velopment in a natural way and is able to integrate distributed resources

like version control systems as well as local devices. This approach is

then generalized to support the self-organization of widely distributed,

loosely coupled, and autonomous digital library systems.

1 Introduction

The transition from traditional paper libraries to digital libraries enables new
strategies for the use and maintenance of artifact collections. Collections are
globally distributed and maintained by different organizations and even private
persons. Digital binding techniques allow for the construction of project specific
reference libraries by reorganizing existing library material and for the reintegra-
tion of project results [1]. As production, storage and classification of documents
are now accomplished digitally, library support for intermediate and final results
of collaborative writing can be achieved. Furthermore the collection and organi-
zation of assets other than documents, as for example works of art or services,
is possible by referencing them from within the digital library.

Taking advantage of digital libraries in the described manner calls for a flex-
ible support by a system architecture which enables the combination of collec-
tions against the background of different organizational, topical, and technical
contexts, offering simple access to potential library users on the one hand and
guaranteeing autonomy to library patrons on the other hand.

Distributed software development can be regarded as a special case of digital
library utilization, where developers or groups of developers are working on the
same software geographically dispersed in time zones which might differ. As the

106 L. Bischofs, W. Hasselbring, J. Schlegelmilch, U. Steffens

use of a central repository for shared artifacts might have substantial drawbacks
like slower and less reliable network connections, software developers rely on
distributed artifact collections, or in other words on distributed digital libraries
of software engineering artifacts.

In this paper we introduce a hierarchical super peer network for software
development as an example for a flexible distributed digital library architec-
ture. Distributed teams, in particular for open source software projects, can be
regarded as peer-to-peer systems themselves. The support granted to them by
the super peer network begins with the formation of new developer groups and
projects and enables the flexible self-organization of the involved organizational
units and their respective relationships. Apart from artifacts, distributed re-
sources like version control systems as well as local devices can be integrated, so
that developers are able to access and use shared artifacts any time and anywhere
within the network.

Beyond the context of software engineering, hierarchical super peer networks
can be regarded as a general approach to achieve flexibility and autonomy for a
loose coupling of digital library collections. For this purpose, the organizational
units and their relationships in the area of software engineering have to be re-
considered and transformed to more general units applicable to digital libraries
in general.

This paper is organized as follows. Section 2 describes peer types representing
the four central organizational units in the area of software engineering and
maps the structures of distributed software development projects into a peer-
to-peer architecture. The integration of additional resources like version control
systems is demonstrated in section 3. Section 4 shows how peers can be organized
in a hierarchical peer-to-peer network and how an appropriate lookup service
can be designed. Section 5 generalizes the presented approach and describes a
super peer network to support cooperation between arbitrary distributed digital
libraries and collections. After presenting related work in section 6 we conclude
and outline some future work in section 7.

2 Organizational Units and their Relationships

Peer-to-peer architectures are often characterized as the opposite of Client/Server
architectures. The most distinctive difference is that in peer-to-peer networks the
peers are capable of acting as client and server at the same time. Furthermore,
peers are accessible by other peers directly without passing intermediary entities
[2].

In case of distributed software development each developer can be considered
a peer. A developer peer can offer and access artifacts within the peer-to-peer
network. Developers are often organized in groups which are managed by spe-
cial group peers. Beyond, developers and groups of developers are organized
in projects to reach a common goal. A project peer offers the needed project
management services. Organizations (e.g. an enterprise or institution) consist of
projects, groups and developers and are managed by organization peers. The en-

A Hierarchical Super Peer Network for Distributed Artifacts 107

tirety of the described organizational units constitutes a hierarchical structure.
Figure 1 depicts a logical view of a possible structure of peers which does not
necessarily reflect the physical structure of the involved computers. P2 and G3

for example could physically reside on the same computer.

O1

P1 P2

G1 G2 G3S2

S3 S4 S5

S1

-cooperates with

-cooperates with

S7 S8 S9

-cooperates with

S6 G4

S

G

O

P

Organization Peer

Project Peer

Group Peer

Single Peer

Association

Aggregation

Composition

S10 S11

Fig. 1. Hierarchical structure of organizational units

In order to model the relationships between the different peer types the UML
notation for aggregation, composition and association is used (cf. figure 1):

– Aggregation and composition describe a close cooperation between or-
ganizational units or peers, respectively, and can also be used to describe
their hierarchical order. Typically, to establish an aggregation or composi-
tion relationship a peer registers at a superior peer. The superior peer has the
special ability to control its registered peers. In figure 1 for example group
peer G1 has control over the single peers S3 to S5. The group peers G2 and
G4 are connected by a composition relationship. This means that peer G4

cannot exist without group peer G2 whereas in an aggregation relationship
the partners of the aggregation can exist without each other.

– The association describes a loosely coupled cooperation with widely au-
tonomous partners. No clear hierarchical structure can be extracted from an
association relationship. The groups G1 and G2 in figure 1 cooperate. The
same is true for the developers within these groups so that access to resources

108 L. Bischofs, W. Hasselbring, J. Schlegelmilch, U. Steffens

of the respective other group can be granted to them. The developer at sin-
gle peer S9 is associated to group peer G3 which means that he cooperates
with the group G3. Since an association signifies a loose connection only, a
developer can be associated to more than one group at a time.

3 Resource Integration

For cooperative software development developer groups typically use a number of
tools like version control systems (e.g. CVS or subversion) and CSCW systems. In
the following such tools, storages, or services are understood as resources. In the
context of a tight cooperation organizational units share resources among each
other. A project peer for example usually shares its resources with the involved
groups, i.e. the group peers are granted access to these resources. Group peers
typically share their resources with single peers, i.e. all developers in a project
can use the resources which are connected to the appropriate project peer.

B

A

S1

Resource Peer

Project Peer

Connection

Provides-

Interface

R

R

Resource A

Resource B

P

P

Single PeerS

S2

S3

Requires-

Interface

Resource

B

B

A

Fig. 2. Resource peer

Resources can directly be integrated into a peer-to-peer network as can be
seen in figure 2. The resource peer R connects to the resources A and B in
an application specific way. Externally another interface (e.g. in form of a web
service) is offered to the rest of the peers. The peers connect to a resource
through a special adapter which uses the corresponding external interface of the
resource peer. The resource peer either manages access control lists of the peers
which have access to the resources or queries another peer, like the project peer
P in figure 2, whether to grant access to the requesting peer. All in all, the
following steps are necessary to connect to a resource which is integrated into a
peer-to-peer network:

A Hierarchical Super Peer Network for Distributed Artifacts 109

1. The requesting peer (e.g. S2) asks the resource peer for access to a resource.
2. The resource peer asks the responsible peer for access rights or consults its

access control list.
3. Afterwards, access is granted or denied to the requesting peer.
4. If access is granted, the resource can be accessed.

By using the interfaces of a resource peer other peers can for example access
documents which are stored on a CVS server or a local device. Another example
for the shared use of resources is the registration of group members for a forum
or a groupware system carried out by their group peer via a resource peer.

4 Multi-tier Look Up Service

The lookup service is a central requirement for peer-to-peer systems. It assigns
and locates resources and artifacts among peers [3]. Distributed “flat” peer-to-
peer lookup services are e.g. Chord [4], CAN [5], Pastry [6] and Tapestry [7]. The
approach presented in this paper is the introduction of a hierarchical multi-tier
lookup service where peers are organized in disjoint clusters as it is depicted in
figure 3. Super peers route the messages along clusters to the destination cluster.
Within the clusters the messages move through the hierarchical structure of the
peers. The hierarchical peer structures in combination with their super peers
form a hierarchical super peer network [8]. The super peers hold a common
metadata index of available artifacts which are distributed over the different
organizational units or peer types, respectively. They are able to answer simple
queries. Detailed queries additionally pass through the hierarchical structure of
the peers. The exchange of the located artifacts takes place directly from peer
to peer.

Super peer networks have some advantages in comparison to pure peer-to-
peer networks. They combine the efficiency of the centralized client-server model
with the autonomy, load balancing, and robustness of distributed search. They
also take advantage of the heterogeneity of capabilities across peers. Parameters
like cluster size and super peer redundancy have to be considered by designing
a super peer network. Redundancy decreases individual super peer load signif-
icantly whereas the cluster size affects the behavior of the network in an even
more complex manner [9, 10].

The most important benefits of the approach discussed in this paper are
scalability and administrative autonomy. A super peer can independently route
messages within its cluster. Similarly, organization, project, and group peers can
route the messages to subordinated peers using their own strategy. Queries to
selected organizational units do not flood the entire network, but can be routed
directly.

4.1 Metadata Index

The super peers are connected to each other and share a common metadata
index of the available artifacts. Physically, any peer which has enough computing

110 L. Bischofs, W. Hasselbring, J. Schlegelmilch, U. Steffens

S

G

O

P

Organization Peer

Project Peer

Group Peer

Single Peer

Association

Aggregation

Composition

S Super Peer

S4

O

P P

G GS

S S S

S

S

G

S S

S2

G

S S S

S

S

Direct

Registration

S1

S3

P

GS

S S S

S

P

P

G

G

S

S S S

S

S

G

S SS

S

S

Messages

Cluster

R

Resource PeerR

Resource

Fig. 3. Multi-tier lookup service in a hierarchical super peer network

A Hierarchical Super Peer Network for Distributed Artifacts 111

power, storage capacity, and an adequate network connection can be chosen to be
a super peer. In figure 3, a ring of super peers is shown for reasons of simplicity.
There are other techniques like HyperCuP [11] that are able to increase the
scalability and reduce the lookup time drastically. Peers which are registered at
a super peer make up a cluster as depicted in figure 3.

There are different ways in which super peers can collect metadata. Typically
peers which are linked to other peers by associations only register at the asso-
ciated peers and send their metadata directly to the super peer whereas peers
which are in an aggregation or composition relationship register at the superior
peer and send their metadata there. Thus, a superior peer has extensive knowl-
edge of the subordinated peers. The superior peers send the available metadata
to higher peers in the hierarchical order until the super peer is reached. One
advantage of this approach is that not every peer in a network needs an inter-
net connection to make its metadata available. Furthermore, the superior peers
have control over the metadata which is sent to a super peer. Hence, superior
peers have the ability to decide whether metadata of subordinated peers is made
available or unavailable to superior peers or the global index, respectively.

Within the metadata index additional information on the organizational units
like group members, project goals and capabilities of developers is stored. More-
over, metadata can also be extracted from resources which are connected to a
resource peer. In figure 3 a simplified view of resource connections is illustrated
in which the resource peer is not explicitly visible. In this case the associated
peers are assumed to have the capabilities of a resource peer.

5 A General Super Peer Network for Digital Libraries

The hierarchical super peer network for distributed software development de-
scribed above can be generalized to support the flexibility and self-organization
of widely distributed, loosely coupled, and autonomous digital library systems.
The architecture allows for the search over collections of arbitrary artifacts as for
example traditional documents, on-line books, digital images, and videos, which
is a basic service requirement for digital libraries [12]. Beyond, the network en-
ables library users to also store, administer, and classify their own artifacts.
Thus, it supports scenarios like the construction of personal or group reference
libraries and collaborative authoring.

Figure 4 depicts a hierarchical super peer network for digital libraries. The
organizational units and their respective peer types are adapted to the situation
within a general digital library. Persons are able to search for artifacts and offer
artifacts on their own. They are therefore supplied with person peers. On the
next organizational level, the artifacts are grouped within collections managed by
collection peers. Collection peers offer functionality relating to collection organi-
zation as for example the provision of a common classification scheme. A digital
library can combine a number of different collections and is associated with a
digital library peer. A digital library peer supports the integration of different
collections, for example by offering merging services for different classification

112 L. Bischofs, W. Hasselbring, J. Schlegelmilch, U. Steffens

schemes [13]. Furthermore, it manages access to the digital library artifacts, for
example by ensuring a certain mode of payment [14]. Person peers and collection
peers can also exist independently from a superior peer and autonomously offer
artifacts.

P

C

DL Digital Library Peer

Collection Peer

Person Peer Association

S Super Peer

S4

DL

C
C

C
PP

P

C

S2

C

P P
P

P

Direct

Registration

S1

S3

CP

P P P

P

CP

P P P

P

P

P

Messages

Cluster

R

Resource PeerR

Resource

P
P

P

P

P

P

P

P

P

C

C

DL

Fig. 4. A hierarchical super peer network for digital libraries

Person peers, collection peers, and digital library peers, as in the approach
for distributed software development presented above, are clustered. The clusters
again are connected via super peers in the described manner (cf. sect. 4) and
searched via super peers and superior peers.

The described network represents a first step in order to capitalize on the
advantages of peer-to-peer technology for digital libraries. For personal or project

A Hierarchical Super Peer Network for Distributed Artifacts 113

reference libraries most of the upcoming traffic will remain within subareas of the
network where co-workers cooperate intensely. For specialized collections which
focus on special topics or special media types queries can be routed directly to
selected collections or even library experts without flooding the entire network.
Precision and query performance can hence be improved. Additionally, a self-
organization of collections and libraries is possible. Scalability and administrative
autonomy are also ensured.

6 Related Work

Enabling interoperability among heterogeneous, widely distributed, autonomous
digital library services is also the purpose of some other projects as described
for example in [12]. The goal of establishing a manageable system of personal
and project reference libraries as pursued in [1] also calls for a flexibility which
can be achieved by the use of a super peer network.

The design of a super peer network is described in [9]. The costs and benefits
of a new hybrid approach called structured super peers is explored in [10]. It
partially distributes lookup information among a dynamically adjusted set of
high-capacity super peers to provide constant-time lookup. Super peer based
routing strategies for RDF-based peer-to-peer networks are described in [15].

In hierarchical peer-to-peer systems, peers are organized into groups, and
each group has its autonomous intra-group overlay network and lookup service.
A general framework and scalable hierarchical overlay management is provided
in [8].

7 Conclusions and Future Work

This paper has presented a super peer network approach for autonomous and
self-organizing digital libraries and artifact collections and substantiated it by
describing a network instance for special libraries dedicated to software devel-
opment tasks.

One future challenge with regard to hierarchical super peer networks is to
analyze the dynamic behavior of the network, particularly if peers fail. Enhancing
the availability of artifacts and peer services by replication seems to be one
promising approach to solve this problem.

Another issue is to gain further understanding on how the presented approach
can be refined against the background of reference libraries. The use of project
peers as they have already been introduced for distributed software development
could be an option. Yet, the project peers have to be adequately fit into the
overall hierarchical structure of the network.

References

1. Schmidt, J.W., Schröder, G., Niederée, C., Matthes, F.: Linguistic and Archi-

tectural Requirements for Personalized Digital Libraries. International Journal of

Digital Libraries 1 (1997)

114 L. Bischofs, W. Hasselbring, J. Schlegelmilch, U. Steffens

2. Schollmeier, R.: A Definition of Peer-to-Peer Networking for the Classification of

Peer-to-Peer Architectures and Applications. In: 1st International Conference on

Peer-to-Peer Computing (P2P 2001), Linköping, Sweden, IEEE Computer Society

(2001)

3. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking Up

Data in P2P Systems. Communications of the ACM 46 (2003) 43–48

4. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord - A

Scalable Peer-to-peer Lookup Service for Internet Applications. In: Proceedings of

the 2001 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, ACM Press (2001) 149–160

5. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable

Content-Addressable Network. In: Proceedings of the 2001 Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Communications,

ACM Press (2001) 161–172

6. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems. In: IFIP/ACM International Con-

ference on Distributed Systems Platforms (Middleware). (2001) 329–350

7. Zhao, B.Y., Huang, L., Rhea, S.C., Stribling, J., Joseph, A.D., Kubiatowicz, J.D.:

Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE J-SAC

22 (2004) 41–53

8. Garces-Erice, L., Biersack, E.W., Ross, K.W., Felber, P.A., Urvoy-Keller, G.: Hi-

erarchical Peer-to-peer Systems. In: Proceedings of ACM/IFIP International Con-

ference on Parallel and Distributed Computing (Euro-Par), Klagenfurt, Austria

(2003)

9. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: IEEE Interna-

tional Conference on Data Engineering, 2003, San Jose, California (2003)

10. Mýzrak, A.T., Cheng, Y., Kumar, V., Savage, S.: Structured Superpeers: Leverag-

ing Heterogeneity to Provide Constant-Time Lookup. In: The Third IEEE Work-

shop on Internet Applications, San Jose, California (2003)

11. Schlosser, M.T., Sintek, M., Decker, S., Nejdl, W.: HyperCuP - Hypercubes, On-

tologies, and Efficient Search on Peer-to-Peer Networks. In Moro, G., Koubarakis,

M., eds.: Agents and Peer-to-Peer Computing, First International Workshop,

AP2PC 2002, Bologna, Italy, July, 2002, Revised and Invited Papers, Springer

(2002) 112–124

12. Paepcke, A., Chang, C.K., Gravano, L., Baldonado, M.: The Stanford Digital

Library Metadata Architecture. (1997)

13. Matthes, F., Niederée, C., Steffens, U.: C-Merge: A Tool for Policy-Based Merging

of Resource Classifications. In: Research and Advanced Technology for Digital

Libraries, Proceedings of the 5th European Conference, ECDL2001, Darmstadt,

Germany. (2001)

14. Weber, R.: Chablis - Market Analysis of Digital Payment Systems. Institutsbericht,

Technische Universitaet Muenchen, Institut fuer Informatik (1998)

15. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst,

I., Löser, A.: Super-Peer-Based Routing Strategies for RDF-Based Peer-to-Peer

Networks. Web Semantics: Science, Services and Agents on the World Wide Web

1 Issue 2 (2004) 177–186

An Information Service Architecture for

Annotations

Maristella Agosti and Nicola Ferro

Department of Information Engineering – University of Padua

Via Gradenigo, 6/b – 35131 Padova (PD) – Italy

{maristella.agosti, nicola.ferro}@unipd.it

Abstract. This paper presents the architecture and the features of an

annotation service for digital libraries. Firstly, it describes the relevant

aspects of annotations and the different way of using them. Then it shows

how the characteristics of the annotations drive the design choices of the

architecture. Finally it discusses the design choices and the architectural

alternatives for developing the annotation service.

1 Introduction

The main objective of this research is to create an Annotation Service (AS) for
Digital Libraries (DL), which deals with many aspects of annotations, such as
creation, management, access and retrieval of both manual and automatically
created annotations. The service at hand is innovative because in fact it is able
to actively exploit annotations in order to select and retrieve documents from a
digital library in response to a user query.

Over past years a lot of research work regarding annotations has been done
[18]: user studies for understanding annotation practices and discovering com-
mon annotation patterns [12–14, 22]; investigation and categorization of various
facets of the annotation [3, 8, 13]; employment of ad-hoc devices or handheld de-
vices which enable reading appliances with annotation capabilities [15–17, 21];
design and development of document models and applications which support an-
notations in digital libraries, in the Web, in collaboratory systems and working
groups [3, 8, 10, 18, 20, 23, 24]. All this research work has led to different view-
points about what annotations are:

– annotations are metadata: they are additional data about an existing con-
tent. For example, the World Wide Web Consortium (W3C) [10, 23, 24] con-
siders annotations as metadata and interprets them as the first step in cre-
ating an infrastructure that will handle and associate metadata with content
towards the Semantic Web;

– annotations are contents : they are additional content about an existing con-
tent; they increase existing content and allow the creation of new relation-
ships among existing contents, by means of links that connect annotations
together and with existing content. In this sense we can consider that existing

116 M. Agosti, N. Ferro

content and annotations constitute a hypertext, according to the definition
of hypertext provided in [1]. For example, [13] considers annotations as a nat-
ural way of enhancing hypertexts by actively engaging users with existing
content in a digital library [12, 15, 21];

– annotations are dialog acts : they are part of a discourse with an existing
content. For example, [8] considers annotations as the document context,
intended as the context of the collaborative discourse in which the document
is placed.

In the following for annotation we mean any piece of additional content as-

sociated with an existing content and we consider that annotations and existing
contents constitute a hypertext. Note that digital libraries do not usually provide
a hypertext that links documents together; thus annotations can represent an
effective means for creating a hypertext that links annotations and existing con-
tent together. This hypertext can be exploited not only for providing alternative
navigation and browsing capabilities, but also for offering advanced search func-
tionalities. Finally the hypertext existing between documents and annotations
enables different annotation configurations, that are threads of annotations, i.e.
an annotation made in response or comment to another annotation, and sets of

annotation, i.e. a bundle of annotations on the same passage of text. A compre-
hensive presentation on annotations and their facets can be found in [3, 4].

Furthermore annotations introduce a new content layer devoted to elucidate
the meaning of an underlying information resource and they can make hidden
facets of the annotated information resource more explicit. Thus, we can exploit
annotations for retrieval purposes, and add the evidence provided by annotations
themselves in order to better satisfy the user’s information needs. For example,
suppose that we have the following query: “good survey grid computing”. A
relevant document for this query could be ranked low because it does not contain
the terms “good” and “survey”. On the other hand, if the following annotation
“good survey, which clearly explains the topic” is linked to the document, we
can exploit it in order to better rank the document. Note that the annotation
itself does not clearly states what topic is explained but this information can
be still obtained exploiting the hypertext and navigating the link that connects
the annotation to the document. Thus we can combine two distinct sources
of evidence, the one coming from the document and the one coming from the
annotation. This way the annotation and the document can cooperate together
in order to better satisfy the user’s information need. Indeed the combining of
these multiple sources of evidence can be exploited to improve the performances
of an information management system, i.e. to retrieve more relevant documents
and to better rank them with respect to the case of a simple query without
annotations. This is what we mean for “to actively exploit annotations in order
to select and retrieve documents from a DL in response to a user query”.

Finally, today the notion of isolated applications or data is increasingly disap-
pearing in favour of a distributed and networked environment with an informa-
tion centric view. This allows us to provide integrated services and applications
to users, without any distinction between local and remote information resources.

An Information Service Architecture for Annotations 117

In this context we can envisage a scenario in which a DL can become not only a
place where information resources can be stored and made available, but also a
daily work tool, which can be integrated into the way the user works, so that the
user’s intellectual work and contents which are provided by the digital library
can be merged together, constituting a single working context. Thus the digital
library is no longer perceived as something external to the intellectual produc-
tion process or as a mere consulting tool but as an intrinsic and active part
of the intellectual production process. Annotations are effective means used in
enabling this paradigm of interaction between users and digital libraries for all
the reasons previously explained and, in particular, because annotations allow
users to naturally create an hypertext that seamlessly merges personal contents
with the contents provided by the digital library.

The presentation of the findings is structured as follows: Section 2 intro-
duces the design choices and the features of the architecture of the annotation
service, while Section 3 describes each component of the annotation service and
its functionalities.

2 Annotation Service Architecture

In the context introduced in Section 1, architectural choices become a key fac-
tor for enabling the design and development of an advanced annotation service
capable of both modelling the different facets of the annotation and effectively
exploiting annotations for search and retrieval purposes.

We need to design an architecture with a twofold aim: firstly, it has to model
the behaviour of the AS in a modular way, so that we can easily add new func-
tionalities to the AS without the need of redesigning the architecture of the AS.
Secondly, the architecture has to be flexible enough to be implemented according
to different architectural paradigms, such as Web Services (WS) or Peer–to–Peer
(P2P) architectures (figure 1). Indeed a flexible architecture allows the AS to
have a great reach and a widespread usage, so that users can benefit from its
functionalities without limitations due to the architecture of a particular DL,
allowing a strict interaction between users and digital libraries.

Thus the annotation service has to comply with the following constraint: it
must be able to work with diverse DL systems.

We introduce this constraint for three reasons:

– annotations are a key technology for actively engaging users with a DL. Users
need to have an annotation service easily available for each DL they work
with and they should not change their annotative practices only because
they work with a different DL system. Thus the annotation service must be
capable to be integrated into various DL systems in order to guarantee a
uniform way of interaction to the users;

– annotations create a hypertext that allow users to merge their personal con-
tent with the content provided by diverse DL systems, according to the
scenario envisage above. This hypertext can span and cross the boundaries

118 M. Agosti, N. Ferro

Fig. 1. Overview of the annotation service architecture.

of a single DL and thus the annotations service must be able to interact with
diverse DL systems;

– annotations and information resources managed by the DL provide multiple
sources of evidence for answering to a user’s query. Since these sources of
evidence can come from different DL systems and we need to combine them
in order to answer the query, the annotation service must be able to work
with diverse DL systems.

To comply with the constraint just defined, we have decided to adopt an
architecture using a gateway which mediates between the DL and the core func-
tionalities of the AS. Furthermore we have mapped this choice into a three layer
architecture, which allows us to have a better modularity. Figure 2 demonstrates
this architecture, where the AS is depicted on the right, and in the cloud the
external DL system is represented.

The architecture is organized along two dimensions:

– vertical decomposition (from bottom to top): consists of three layers – the
data, application and interface logic layers – and it is concerned with the
organization of the core functionalities of the AS.
This decomposition allows us to achieve a better modularity within the AS
and to properly describe the behaviour of the AS by means of isolating
specific functionalities at the proper layer. Moreover it makes it possibile
to clearly define the workflow within the AS by means of communication
paths that connect the different components of the AS itself. This way we
can achieve the first aim of our architecture, that is to model the behaviour
of the AS in a modular way.

An Information Service Architecture for Annotations 119

Annotation Service Integrator
(ASI)

Automatic Annotation
Manager
(AAM)

Gateway
(GW)

Ap
pli
ca
tio

n L
og

ic
Da

ta
Lo

gic
Int

efa
ce
 Lo

gic

Information Retrieval On
aNNotations
(IRON

�
)

Annotation
Database

Annotation
IR Index

Annotation
Storing Manager

(ASM)

Annotation
Indexing Manager

(AIM)

Annotation Abstraction Layer
(AAL)

User Interface
(UI)

Annotation ServiceDigital Library

Digital Library
(DL)

Core FunctionalitiesGateway

Fig. 2. Annotation Service Architecture.

– horizontal decomposition (from left to right): consists of the DL system, the
gateway and the core services of the AS. It separates the core functionalities
of the AS from the problem of integrating the AS into a specific DL system.
The horizontal decomposition allows us to achieve the second aim of our
architecture, since we can integrate the AS with a different DL system simply
by changing the gateway. Furthermore the architecture is presented in the
context of a DL, but it is suitable for integration also with other systems
that manage documents and offer information retrieval capabilities, such as
a search engine or a collaboratory system [4].

In order to achieve a great flexibility, we design the architecture of the AS at
a high level of abstraction, that is we define the functionalities of each compo-
nent of the AS in terms of abstract Application Program Interface (API). This
way we can model the behaviour and the workflow within the AS without wor-
rying about the actual implementation of each component. Different alternative
implementations of each component could be provided, still keeping a coherent
view of the whole architecture of the AS.

On the whole, we have two levels of abstraction: the first level is the sep-
aration of the core features of the AS from the integration with the DL and
the organization of the AS into different layers in order to clearly determine the

120 M. Agosti, N. Ferro

different functionalities of the AS; the second level is built on top of the first one
and makes it possible to describe at a higher level of abstraction the behaviour
of each component of the AS, separating its behaviour from the actual imple-
mentation of the AS. This way we can have multiple implementations of the AS
all referring to the same architecture and API.

We achieve the abstraction levels described above by means of a set of in-
terfaces, which define the behaviour of each component of the AS in abstract
terms. Then, a set of abstract classes partially implement the interfaces in order
to define the behaviour of each component. This way this behaviour becomes
common to all of the implementations of that component. Finally, the actual
implementation is left to the concrete classes, inherited from the abstract ones,
that fit the AS into a given architecture, such as a WS or P2P architecture. Fur-
thermore, we apply the abstract factory design pattern [9], which uses a factory
class for providing concrete implementations of a component, compliant with
its interface, in order to guarantee a consistent way of managing the different
implementations of each component.

The AS is developed using the Java1 programming language, which provides
us great portability across different hardware and software platforms.

3 Components of the Annotation Service

In the following sections we describe each component of the AS, according to
figure 2 from bottom to top.

3.1 Data Logic Layer

Annotation Storing Manager (ASM) manages the actual storage of the
annotations and provides a persistence layer for storing the Annotation objects,
that are used in the upper layers for representing annotations.

The ASM provides a set of basic operations for storing, retrieving, deleting
and searching annotations in a SQL–like fashion. Furthermore it takes care of
mapping Annotation objects into their equivalent representation for the actual
storage, according to the Data Access Object (DAO)2 and the Transfer Object
(TO)3 design patterns. This way all of the other components of the AS deal
only with Annotation objects, which represent the TO of our system, without
worrying about the details related to the persistence of such objects.

Annotations are modeled according to the Entity–Relationship (ER) schema
of figure 3, which is described in detail in [4]. Briefly, the ER schema of figure
3 represents the fact that an Annotation must Annotate one and only one
digital object, identified by its handle DOHandle, while it can Relate To one

1 http://java.sun.com
2 http://java.sun.com/blueprints/corej2eepatterns/Patterns/

DataAccessObject.html
3 http://java.sun.com/blueprints/corej2eepatterns/Patterns/

TransferObject.html

An Information Service Architecture for Annotations 121

MEANING

ANNOTATION SIGNEXPRESS

(0, N)

(1, N) (1, 1)

ANNOTATE

(1, 1)

DOHANDLE

(0, N)

USER

OWN

(0, N)

(1, 1)

RELATETO

(0, N)

(0, 1)

ID Name

ID

Created

Modified

ID

ExtentOffset

Offset

ID Content

SIGNTYPE

TYPIFY

(0, N)

(1, 1)

ID Type

Pointer

Pointer

MEAN
(1, N)

ID Type

Scope

CONTAIN (0, 1)

(0, N)

Extent

Fig. 3. Entity–Relationship schema for modelling annotations.

or more digital objects. Moreover one or more Signs, e.g. a piece of text or a
graphic mark, contribute to Express an Annotation and each Sign can have
one or more Meanings, that define its semantics.

Note that the ER schema of figure 3 can be easily mapped to different de-
signing models, such as a relational schema, a Resource Description Framework
(RDF) schema or a eXtensible Markup Language (XML) schema. This way it
gives us great flexibility with respect to different architectural choices and allows
us to provide different implementations of the ASM in a completely transparent
manner for the other components of the AS.

Annotation Indexing Manager (AIM) provides a set of basic operations
for indexing and searching annotations for information retrieval purposes.

The AIM is a full-text information retrieval system and deals with the textual
content of an annotation. It is based on the experience acquired in developing
IRON (Information Retrieval ON), the prototype information retrieval system
that we have developed to be used in the Cross Language Evaluation Forum
(CLEF) evaluation campaigns since 2002; the main functionalities of IRON are
described in [2, 7].

Annotation Abstraction Layer (AAL) abstracts the upper layers from the
details of the actual storage and indexing of annotations, providing uniform
access to the functionalities of the ASI and the ASM.

The AAL provides the typical Create–Read–Update–Delete (CRUD) data
management operations, taking care of coordinating the work of the ASM and
the ASI together. For example when we create a new annotation, we need to put
it in both the ASM and in the ASI or, when we delete an annotation, we need
to remove it from both the ASM and the ASI.

122 M. Agosti, N. Ferro

Furthermore the AAL provides search capabilities forwarding the queries to
the ASM or to the AIM. At the moment there is only the AIM for providing full
text search capabilities but, in the future, other specialised information retrieval
engines can be added to the system, for example for indexing and searching the
graphical content of an annotation and other types of digital media. In any case
the addition of other information retrieval engines becomes transparent for the
upper layers, since the AAL provides uniform access to them.

Note that both the ASM and the AIM are focused on each single annotation
in order to properly store and index it, but they do not have a comprehensive
view of the relationships that exist between documents and annotations, that is
they do not take into consideration the hypertext mentioned in Section 1. On the
contrary, the AAL has a global view of the annotations and their relationships
and exploits it for managing purposes. For example, if we delete an annotation
that is part of a thread of annotations, what policy do we need to apply? Do we
delete all the annotations that refer to the deleted one or do we try to reposition
those annotations? The ASM and AIM alone would not be able to answer this
question but, on the other hand, the AAL can drive the ASM and the AIM to
perform the correct operations.

Thus, on the whole, the AAL, the ASM and the AIM constitute an infor-
mation management system specialised in managing annotations, as a database
management system is specialised in managing structured data.

3.2 Application Logic Layer

Information Retrieval on aNNotations (IRON2) provides advanced search
capabilities based on annotations, such as those previously introduced.

As an important consequence of our architecture, we know everything about
annotations but we have no knowledge about documents managed by the DL.
This is due to the fact that we directly manage annotations while documents
and information pertaining to them are provided by the DL.

This architectural choice influences the way in which our search strategy is
carried out and retrieving documents by using annotations involves a complex
strategy. Firstly, the AS receives a query from the end-user, the query is used
to select all the relevant annotations, an annotation hypertext can now be built
and used to identify the related documents. Now we aim to combine the source
of evidence coming from annotations with the one coming for the documents
managed by the DL, as previously explained. Since the source of evidence con-
cerning the documents is completely managed by the DL, the AS has to query
the DL, which gives back a list of relevant documents. Only after that the AS has
acquired this information from the DL, it can combine it with the source of evi-
dence coming from annotations in order to create a fused list of result documents
that are presented to the users to better satisfy his information needs.

The Unified Modeling Language (UML) sequence diagram [19] of figure 4
shows how this search strategy involves many of the components of the AS.

An Information Service Architecture for Annotations 123�� �� �� ��� �	
�� ��� ��
������������������������ ������������������������ ������������������� �� �������������!�� �
������������"��#���� ����������#���� ����������#���� ����	��

������������������������������������#����

Fig. 4. Sequence diagram for searching documents exploiting annotations.

Automatic Annotation Manager (AAM) creates automatic annotations
for a given document.

Automatic annotations can be created using topic detection techniques to
associate each annotation with its related topic, which forms the context of
the annotation. In this way a document can be re-organized and segmented
into topics, whose granularity can vary, and annotations can present a brief
description of those topics. Then by applying automatic hypertext construction
techniques, similar to those presented in [5], document topics and annotations
can be linked together, proposing an alternative way of navigating the content
of a digital library.

Annotation Service Integrator (ASI) integrates the underlying components
and provides uniform access to them. It represents the entry point to the core
functionalities of the AS for both the gateway and the user interface, dispatch-
ing their requests to underlying layers and collecting the responses from the
underlying layers.

124 M. Agosti, N. Ferro

The ASI can be further exploited for creating a network of P2P annotation
services that cooperate together. In this scenario, when the ASI receives a request
from the gateway or from the user interface – for example a search request – it
forwards the request also to the other ASI peers and then collects their answers
in order to provide access to the whole network of P2P annotation services.

Thus, our architecture allows us to implement the annotation service not only
as a stand–alone service, that can be integrated into different DL systems, but
also as a network of P2P annotation services that cooperate in order to provide
advanced annotation functionalities to different DL systems.

Gateway (GW) provides functionalities of mediator between the core func-
tionalities of the AS and the DL system. Simply by changing the gateway, we
can share the same AS with different DL systems. We can envisage three kinds
of gateway: firstly the AS could be connected to a DL which uses a proprietary
protocol and in this case the gateway can implement it. This is the case, for
example, of the OpenDLib digital library [6], with which the AS is going to co-
operate [3]. Secondly we could employ Web Services to carry out the gateway,
so that the AS is accessible in a more standardized way. Finally the gateway can
be used to adapt the AS to a P2P digital library.

Note that the decoupling of the core functionalities of the AS from its inte-
gration within a specific DL is independent from the possibility of implementing
the AS as a stand–alone service or as a network of P2P services. Indeed we can
adapt both of these implementations to any kind of DL system by means of a
proper gateway: in both cases the gateway represents the unique access point
for the DL to the functionalities of the stand–alone AS or of the P2P network
of AS.

3.3 Interface Logic Layer

User Interface (UI) provides an interface to end–users for creating, modifying,
deleting and searching annotations. As show in figure 2 the UI is connected to
the ASI, so that it represents the user interface of AS itself and it is independent
of any particular DL system.

On the other hand, we can connect or integrate the UI directly in the gateway,
so that it represents a user interface tailored to the specific DL for which the
gateway is developed. In this case the gateway forwards the request of the UI
to the ASI, for which the gateway acts also as user interface. For example,
this choice has been adopted in integrating the AS into the OpenDLib digital
library in order to obtain a user interface more coherent with those of the other
OpenDLib services.

The design choice of connecting the UI to the gateway or to the ASI gives
interesting possibilities for programmatically accessing the functionalities of the
AS. As an example, if the gateway is implemented using Web Services, another
service can programmatically access the AS in order to create more complex
applications that exploit also annotations.

An Information Service Architecture for Annotations 125

Acknowledgements

This work was partially funded by ECD (Enhanced Contents Delivery), a joined
program between the Italian National Research Council (CNR) and the Ministry
of Education (MIUR), under the law 449/97-99.

References

1. M. Agosti. An Overview of Hypertext. In M. Agosti and A. Smeaton, editors,

Information Retrieval and Hypertext, pages 27–47. Kluwer Academic Publishers,

Norwell (MA), USA, 1996.
2. M. Agosti, M. Bacchin, N. Ferro, and M. Melucci. Improving the Automatic

Retrieval of Text Documents. In C. Peters, M. Braschler, J. Gonzalo, and

M. Kluck, editors, Evaluation of Cross–Language Information Retrieval Systems,

Third Workshop of the Cross–Language Evaluation Forum, CLEF 2002, Revised

Papers, pages 279–290. Lecture Notes in Computer Science (LNCS) 2785, Springer,

Heidelberg, Germany, 2003.
3. M. Agosti and N. Ferro. Annotations: Enriching a Digital Library. In Koch and

Sølvberg [11], pages 88–100.
4. M. Agosti, N. Ferro, I. Frommholz, and U. Thiel. Annotations in Digital Libraries

and Collaboratories – Facets, Models and Usage. In R. Heery and L. Lyon, editors,

Proc. 8th European Conference on Research and Advanced Technology for Digital

Libraries (ECDL 2004). Lecture Notes in Computer Science (LNCS), Springer,

Heidelberg, Germany (in print), 2004.
5. M. Agosti and M. Melucci. Information Retrieval Techniques for the Automatic

Construction of Hypertext. In A. Kent and C.M. Hall, editors, Encyclopedia of

Library and Information Science, volume 66, pages 139–172. Marcel Dekker, New

York, USA, 2000.
6. D. Castelli and P. Pagano. OpenDLib: a Digital Library Service System. In

M. Agosti and C. Thanos, editors, Proc. 6th European Conference on Research and

Advanced Technology for Digital Libraries (ECDL 2002), pages 292–308. Lecture

Notes in Computer Science (LNCS) 2458, Springer, Heidelberg, Germany, 2002.
7. G. M. Di Nunzio, N. Ferro, M. Melucci, and N. Orio. Experiments to Evaluate

Probabilistic Models for Automatic Stemmer Generation and Query Word Trans-

lation. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck, editors, Evalua-

tion of Cross–Language Information Retrieval Systems, Fourth Workshop of the

Cross–Language Evaluation Forum, CLEF 2003, Revised Papers. Lecture Notes in

Computer Science (LNCS), Springer, Heidelberg, Germany (in print), 2004.
8. I. Frommholz, H. Brocks, U. Thiel, E. Neuhold, L. Iannone, G. Semeraro, M. Be-

rardi, and M. Ceci. Document-Centered Collaboration for Scholars in the Human-

ities – The COLLATE System. In Koch and Sølvberg [11], pages 434–445.
9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object–Oriented Software. Addison-Wesley, Reading (MA), USA, 1995.
10. J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure for shared

Web annotations. In V. Y. Shen, N. Saito, M. R. Lyu, and M. E. Zurko, editors,

Proc. 10th International Conference on World Wide Web (WWW 2001), pages

623–632. ACM Press, New York, USA, 2001.
11. T. Koch and I. T. Sølvberg, editors. Proc. 7th European Conference on Research

and Advanced Technology for Digital Libraries (ECDL 2003). Lecture Notes in

Computer Science (LNCS) 2769, Springer, Heidelberg, Germany, 2003.

126 M. Agosti, N. Ferro

12. C. C. Marshall. Annotation: from Paper Books to the Digital Library. In R. B.

Allen and E. Rasmussen, editors, Proc. 2nd ACM International Conference on

Digital Libraries (DL 1997), pages 233–240. ACM Press, New York, USA, 1997.

13. C. C. Marshall. Toward an Ecology of Hypertext Annotation. In R. Akscyn,

editor, Proc. 9th ACM Conference on Hypertext and Hypermedia (HT 1998): links,

objects, time and space-structure in hypermedia systems, pages 40–49. ACM Press,

New York, USA, 1998.

14. C. C. Marshall and A. J. B. Brush. From Personal to Shared Annotations. In

L. Terveen and D. Wixon, editors, Proc. Conference on Human Factors and Com-

puting Systems (CHI 2002) – Extended Abstracts on Human Factors in Computer

Systems, pages 812–813. ACM Press, New York, USA, 2002.

15. C. C. Marshall, M. N. Price, G. Golovchinsky, and B.N. Schilit. Introducing a

Digital Library Reading Appliance into a Reading Group. In N. Rowe and E. A.

Fox, editors, Proc. 4th ACM International Conference on Digital Libraries (DL

1999), pages 77–84. ACM Press, New York, USA, 1999.

16. C. C. Marshall, M. N. Price, G. Golovchinsky, and B.N. Schilit. Designing e-

Books for Legal Research. In E. A. Fox and C. L. Borgman, editors, Proc. 1st

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2001), pages 41–48.

ACM Press, New York, USA, 2001.

17. C. C. Marshall and C. Ruotolo. Reading-in-the-Small: A Study of Reading on

Small Form Factor Devices. In W. Hersh and G. Marchionini, editors, Proc. 2nd

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2002), pages 56–64.

ACM Press, New York, USA, 2002.

18. K. Nagao. Digital Content Annotation and Transcoding. Artech House, Norwood

(MA), USA, 2003.

19. Object Management Group (OMG). OMG Unified Modeling Language Specifica-

tion – March 2003, Version 1.5, formal/03-03-01. http://www.omg.org/

technology/documents/formal/uml.htm, last visited 2004, May 25.

20. T. A. Phelps and R. Wilensky. Multivalent Annotations. In C. Peters and

C. Thanos, editors, Proc. 1st European Conference on Research and Advanced

Technology for Digital Libraries (ECDL 1997), pages 287–303. Lecture Notes in

Computer Science (LNCS) 1324, Springer, Heidelberg, Germany, 1997.

21. B. N. Schilit, M. N. Price, and G. Golovchinsky. Digital Library Information

Appliances. In I. Witten, R. Akscyn, and F. M. Shipman, editors, Proc. 3rd ACM

International Conference on Digital Libraries (DL 1998), pages 217–226. ACM

Press, New York, USA, 1998.

22. F. Shipman, M. N. Price, C. C. Marshall, and G. Golovchinsky. Identifying Useful

Passages in Documents based on Annotation Patterns. In Koch and Sølvberg [11],

pages 101–112.

23. World Wide Web Consortium (W3C). Annotea Project.

http://www.w3.org/2001/Annotea/, last visited 2004, May 25.

24. World Wide Web Consortium (W3C). EMMA: Extensible MultiModal

Annotation markup language – W3C Working Draft 18 December 2003.

http://www.w3.org/TR/2003/WD-emma-20031218/, last visited 2004, May 25.

Peer-to-Peer Overlays and Data Integration in a
Life Science Grid

Curt Cramer, Andrea Schafferhans, and Thomas Fuhrmann

Institut für Telematik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{cramer|fuhrmann}@tm.uka.de

Lion Bioscience AG, 69123 Heidelberg, Germany
andrea.schafferhans@lionbioscience.com

Abstract. Databases and Grid computing are a good match. With the
service orientation of Grid computing, the complexity of maintaining and
integrating databases can be kept away from the actual users. Data access
and integration is performed via services, which also allow to employ an
access control.
While it is our perception that many proposed Grid applications rely on
a centralized and static infrastructure, Peer-to-Peer (P2P) technologies
might help to dynamically scale and enhance Grid applications. The
focus does not lie on publicly available P2P networks here, but on the
self-organizing capabilities of P2P networks in general. A P2P overlay
could, e.g., be used to improve the distribution of queries in a data Grid.
For studying the combination of these three technologies, Grid comput-
ing, databases, and P2P, in this paper, we use an existing application
from the life sciences, drug target validation, as an example. In its cur-
rent form, this system has several drawbacks. We believe that they can
be alleviated by using a combination of the service-based architecture of
Grid computing and P2P technologies for implementing the services.
The work presented in this paper is in progress. We mainly focus on the
description of the current system state, its problems and the proposed
new architecture. For a better understanding, we also outline the main
topics related to the work presented here.

1 Introduction

There are many cases in which the integration of data from different sources
gains additional value [13]. This is why most of the proposed applications of
Grid Computing have data integration at their core.

In the Grid community, it is a common assumption that certain sets of Grid
participants form virtual organizations (VOs) that exist only for a limited time
and aim at jointly achieving a certain, well-defined goal [5]. The members of a
VO, however, may be limited in their rights to access data from other members
of their VO. Therefore, data access should be exposed to VO members only via
services. The access control is then performed on the basis of these services.

A VO could, e.g., be formed by different life science research laboratories,
both in universities and in companies. As continuous example in this paper, we

128 C. Cramer, A. Schafferhans, T. Fuhrmann

use a typical application from the life sciences, namely validation of drug targets.
Here, the involvement of a protein in a disease and the potential of treating the
disease by activating or inhibiting the protein is evaluated with a variety of
biochemical and in-silico methods.

The potential targets and the data gathered in validating them are the intel-
lectual property of the respective pharmaceutical companies and their contracted
biotech partners. These companies typically maintain huge database libraries
containing information about expression of the proteins in different tissues,
protein-protein interactions, interactions between proteins and small molecules
(potential drugs), etc. Some of the relevant information, e.g. protein and gene
sequences, is publicly available from different research institutions, but comes in
a variety of formats, often flat files due to historical reasons.

Today, pharma companies replicate the contents of the publicly available
databases to local repositories, where they are pre-processed and integrated
with the in-house data to allow complex queries while ensuring that propri-
etary information does not leave the company. This means, however, that data
not replicated in the in-house repository cannot be accessed. Furthermore, many
pharma companies outsource biochemical analyses to specialised biotech compa-
nies (e.g. profiling the interactions of a target protein or solving 3D structures)
and need to integrate their results with the in-house data. Finally, today’s glob-
ally operating pharma companies are faced with the problem of integrating data
from their various sites, with often separately evolved database systems.

Here, Grid Computing with its service orientation is a promising approach
to reduce the database maintenance overhead of individual institutions. Ideally,
the required external databases could be remotely queried in their up-to-date
state without the need to repeatedly copy and pre-process them locally. E.g.,
database services could be defined with the OGSA-DAI toolkit [10] and then be
used to integrate the different data sources.

Collaboration of separate companies within a VO is very unlikely to result
in open sharing of data between different parties. Especially biotech companies
that perform services for different pharma companies need to give their indi-
vidual clients access only to specific subsets of their results. Furthermore, since
information gathered about a target protein is confidential, it should not be
accessible to competitors. Pharma companies do not want to let their competi-
tors know about the specific research performed by deducing patterns from the
queries made by them. Hence some kind of “query obfuscation” needs to be
employed to reduce this risk.

In order to protect the intellectual property of a company, all queries have
to be executed on local database servers. To relieve the database servers from
the high load posed on them, distributed query evaluation is needed. There are
two extreme types of distributed evaluation. First, with data shipping, all data
relevant to a query is transferred to one node which then has the burden to do
all the processing associated with the query and afterwards return the result.
Query shipping, on the other hand, transfers (parts of) the query to the data
sources, where intermediary results are generated. These intermediary results

Peer-to-Peer Overlays and Data Integration in a Life Science Grid 129

are exchanged between the data sources in order to construct the final result.
Mixed forms of these two approaches are conceivable.

As mentioned above, shipping data to third parties might be problematic,
since companies do not want their competitors to access their proprietary and
sensitive data. Therefore, in this paper, we present our ongoing work to evaluate
architectures for query shipping which allow to reduce the processing load put
on the nodes. The approach we are currently following is to use a P2P overlay for
scheduling queries on node subsets of VOs. The constitution of these subsets is
controlled by particular companies, which is why the subsets can be considered
trustworthy. The size of the subsets can be adapted dynamically to scale the
system with increasing load, since the nodes in the subsets organize themselves
in a P2P manner.

In order to provide interoperability with existing applications, our P2P query
execution mechanisms on these subsets will be exported as a standard Grid ser-
vice, e.g. using the interfaces defined by OGSA-DAI. This hides the functionality
of query scheduling behind OGSA-DAI’s standardized interfaces. By doing this,
we can also employ the service description methods of OGSA-DAI to semanti-
cally integrate different data sources using appropriate ontologies.

The paper is structured as follows: In section 2, we describe the current
architecture of the application example explained above. Then, we point out
the major issues with it. After outlining the work related to ours in section 3,
section 4 describes and discusses the architecture of an improved system which
is to remove the previously mentioned issues. We then conclude in section 5 by
highlighting the future directions of our work.

2 Problem Definition

In the last section, we gave a general overview of the drug target validation
application. The currently employed architecture of this system is depicted in
figure 1. Each pharma company replicates (some of) the content stored in public
databases into its own database. Additionally, data generated by contracted
third parties is merged into the local database. This data is only to be used
by the respective pharma company. Note that although depicted as if the data
were sent over the Internet, it is quite common to send these data on CDs to
the pharma companies. Both the data retrieved from public databases and from
third party contractors are manually integrated with the proprietary data of the
pharma companies. Then, in-silico methods can be applied to the data.

This simple and pragmatic solution has several drawbacks:

1. Since the public databases have a size of several gigabytes, the data transfer
takes a long time. Additionally, bandwidth and storage are aggessively con-
sumed by the repeated replication of the full databases, even if only parts
of them are actually accessed. Likewise, even databases that are only rarely
accessed need to be replicated to the local system in order to be integrated
with the other databases.

130 C. Cramer, A. Schafferhans, T. Fuhrmann

C

B
A

Pharma company A Pharma company B Pharma company C

Internet

integration
and

replication
Manual

... ...

Public databases Third party databases

C

B

Fig. 1. Current System Architecture

2. Content stored in the public databases changes frequently. Hence, even more
bandwidth and processing power is consumed by constant updating. Fur-
thermore, it sometimes occurs that the data is outdated once the in-silico
calculations have finished. The full cycle then has to be repeated.

We aim at eliminating these drawbacks while retaining the strong confiden-
tiality constraints posed on the system: No proprietary data is allowed to leave a
company and no other party than the pharma company itself must know about
the analyses performed on the data.

Note that these security requirements are implicitly fulfilled in the system
depicted in figure 1: All computations are performed at the respective pharma
companies. If a third party were to do these computations, it might deduce
some knowledge about the projects run by the pharma companies. We do not
want the third party contractors or the public database providers to be able to
gain insight into the intellectual property of a pharma company. This includes
relations between facts that could be derived from query patterns.

3 Related Work

The work presented in this paper is related to several research areas. In this
section, we point out their main characteristics and especially those relevant to
our work.

Peer-to-Peer Overlays and Data Integration in a Life Science Grid 131

3.1 Grid Computing

The term Grid Computing is associated with the sharing of resources in virtual
organizations (VOs) formed by multiple institutions [5]. A VO is formed for
following a common goal which is to be jointly achieved. As in real life, the
participation of institutions is constrained by rules. Example applications of Grid
computing include manufacturing, where each supplier in the chain is member of
the VO, high energy physics with its vast storage requirements and many more.
Grid applications typically have vast processing or storage requirements.

Grid computing employs a service-oriented approach and is heavily focused
on standardization [4]. Services are defined and accessed by using standardized
languages. Since all services use the same set of standards and languages, conve-
nient service discovery through registries is enabled. Participants of a VO might
be limited in their rights to access certain resources and therefore resource access
has to be restricted using security services [4].

As discussed by Watson [13], the combination of different data sources pro-
vides added value. Many applications rely on databases, however existent database
management systems (DBMSs) are not especially designed for Grid environ-
ments. Since huge investments have been made for the development of DBMSs
and for maintaining the data, one cannot simply develop new DBMSs for Grids.
Existent DBMSs have to be integrated with the Grid [13].

Kunszt et al. [9] discuss how databases can be fit into the standards and
the Grid service model. An example implementation for wrapping commodity
databases into Grid services has been produced in the OGSA-Database Access
and Integration project (OGSA-DAI) [13, 10]. This toolkit is easy to use and
adapt to new requirements.

3.2 Peer-to-Peer Overlays

Peer-to-Peer (P2P) networks are powerful way to enable resource sharing be-
tween hosts, called peers here. The peers connect to each other using certain
rules for creating a virtual network topology which is overlaid to the underlying
physical network. Links in this topology are realized as transport channels while
the P2P protocols are situated at the application layer in the layer model of the
Internet.

Early P2P overlays were so-called unstructured P2P networks. There, the
formation of the overlay topology is very flexible and does not prescribe the
choice of overlay links or the number of links. The flexibility of unstructured
P2P networks allows nodes to choose “good” links, e.g. with low delay. However,
since the topology is random, data items cannot be deterministically located.
This is the reason why unstructured P2P networks like Gnutella [8] employ
flooding or random walks in order to locate items.

To overcome the scalability and efficiency problems of flooding-based P2P
protocols, structured overlay networks, e.g. Distributed Hash Tables (DHTs),
have been proposed. There, the topology formation rules are quite rigid to assure
routing efficiency. Each node is assigned a pseudo-random identifier, based on

132 C. Cramer, A. Schafferhans, T. Fuhrmann

which packet routing is done in the overlay. Nodes have to choose their links
according to a pre-defined scheme in order to provide routing guarantees. I.e., a
node commonly maintains O(log n) links and thus the average lookup path length
in the overlay also is O(log n), where n is the number of nodes participating in
the overlay. A widespread example of structured overlays is Chord [12].

The virtualized topology of structured overlays commonly does not match
with the topology of the underlying physical network. Therefore, latencies for
sending messages in the overlay are a multiple of the latency observed when
sending the message between the source and sink in the underlay. This multiple is
called the relative delay penalty (RDP). A lot of work has been done on reducing
the RDP in structured overlays, however success is limited by the respective type
of the overlay [6].

A lot of applications have been proposed to be run on P2P overlay networks.
In unstructured overlays, file sharing was a typical application. Research on
structured overlays also started with this application type, however there has
been a shift to other applications like multicast recently. In this light, we see
P2P overlays as a powerful technology to perform application-specific routing
independent of some physical network constraints.

As was already mentioned by Foster [5, 3], current P2P systems have not yet
reached the state where protocol integration and interoperability are desired.
However, both Grid computing and P2P systems are concerned with the shar-
ing of resources and have similar objectives [3]. Therefore, the combination of
insights from both approaches seems to be promising.

3.3 Distributed Database Systems

In the described application, there is a multitude of databases which are to be
integrated in order to run combined queries over them. Since these databases are
individually controlled and have different schemas — they in fact can also use
different data models — the system can be seen as a distributed multidatabase
system [11].

There are several points to be handled in distributed multidatabase sys-
tem (Distributed Multi-DBMS). If the Multi-DBMS should have its own global
schema, the schemas of the individual databases have to be integrated. This is a
very complex task. We do not consider schema integration here since we assume
that the data coming from different databases are disjoint and queries mainly
involve joining them. There, the attributes to join on are already specified in the
queries.

Another point which is not of interest here is transaction management. We
assume that the public and the third party databases cannot be modified by the
companies using them. Therefore, no serialization problems can occur.

Apart from schema integration and transaction management, distributed
query execution is another important aspect of Distributed Multi-DBMSs. As
explained by Özsu et al. [11], a Distributed Multi-DBMS can be seen as a layer
on top of the individual DBMSs. Each individual database runs an instance of
this layer. This layer can be seen as a wrapper which exports the database’s

Peer-to-Peer Overlays and Data Integration in a Life Science Grid 133

Pharma company A Pharma company B Pharma company C

Internet

Public database service Processing power providerThird party database service

Fig. 2. Improved Service-Oriented Architecture

functionality to be used in a distributed system. It is responsible for distributing
queries across multiple databases, which can be decomposed into several steps.

In a simplified form of the steps presented by Özsu et al. [11], the distributed
execution of queries involves the splitting of a query across the databases, the
translation of queries into the respective languages for each database and the
integration of results.

The access to the databases in our example could e.g. be exported as an
OGSA-DAI [10] service. OGSA-DQP, an engine for distributed query process-
ing [1], can perform distributed queries over data sources defined with OGSA-
DAI.

4 Architectural Considerations

We have outlined how the system is currently structured and employed in sec-
tion 2. Along with that, we have pointed out the major problem with this system.
A natural way to improve it, reducing the occuring problems, is to cast database
access and integration, and processing into services. The architecture of this
improved, Grid-like system is shown in figure 2.

In the remainder of this section, we discuss the advantages, disadvantages,
and consequences of restructuring different parts of the system as services.

134 C. Cramer, A. Schafferhans, T. Fuhrmann

4.1 Public Databases

By offering access to the public databases as a Grid service, the need to repeat-
edly download, replicate, and integrate the data is cancelled. Database mainte-
nance then only has to be performed by the database host. The consumption of
bandwidth is reduced since with the service-based approach, only the required
data is queried from the databases.

4.2 Third Party Contractors

The access to data provided by third party contractors can also be done via
services. Since these data are not public and only to be accessed by pharma
companies paying for it, AAA mechanisms (authentication, authorization, and
accounting) are required to restrict access.

4.3 Public and Third Party Databases

The transformation of data access into a service solves problems, but also in-
troduces new ones. In section 2, we have stated that we do not want outsiders
to deduce knowledge about currently running projects from the request pattern
of the pharma companies. With the current architecture, this problem does not
occur since little knowledge is gained from the fact that a full database is used by
a pharma company. Using the service-based approach, the data providers get to
see the request patterns of the pharma companies, yielding more comprehensive
knowledge.

In order to achieve the goal, the actual requests have to be disclosed from
the data providers as far as possible. To this end, bogus requests might have to
be interspersed in the stream of requests originating from a pharma company.
This of course has to be done before the stream of requests reaches the data
provider’s database.

Another advantage of providing data access via a service is that new databases
or databases other than the purchased ones can be automatically discovered. If
the data services are semantically annotated, pharma companies can learn of
databases which might be useful to them, but they have not purchased yet.

4.4 Processing Power Providers

The Grid approach also gives rise to new business opportunities. E.g., in figure 2,
a provider of processing power was added to the system. Since data integration
does not necessarily have to be performed at the respective pharma compa-
nies any more, data processing could be outsourced by them. By seeing these
processing providers as contracted partners, we assume their machines to be
trusted parties. Since potentially all pharma companies participating in the sys-
tem might want to outsource their processing resources, again AAA mechanisms
are required to restrict access to the nodes installed by the processing providers.
For the strict security and confidentiality reasons mentioned above, processing

Peer-to-Peer Overlays and Data Integration in a Life Science Grid 135

jobs originating from different pharma companies must be completely shielded
from each other. Neither must a pharma company A see what kind of process-
ing is performed by company B, nor must it see any of its data involved in the
processing.

4.5 Distributed Querying

In order to execute queries over the distributed databases, we plan to use the
toolkits mentioned in section 3. By exporting database access as an OGSA-
DAI service and using OGSA-DAP for distributed querying, we can use existing
standards and implementations to get a working system soon. Then, we plan
to transparently improve the distributed querying facility by employing a P2P
overlay approach.

As shown [1] and in a simplified version in figure 3, distributed querying
requires query planning. A query plan is the result of compiling and optimiz-
ing a query. As indicated by the dashed lines, this plan is partitioned across
the databases, which execute their parts of the query. The partial results have
to be integrated afterwards, i.e. by the operation depicted by the node in the
overlapping region of the partitions.

There are two degrees of freedom in this: First, the partitioning of the query
plan. This might require redundant data storage at multiple sites. And second,
the implementation of the physical operators for integrating the results (typcially
join operations). PIER is an example of how join operations can be implemented
using a DHT [7]. Both degrees of freedom require the definition of a cost model
for making appropriate choices.

E.g., if the databases are arranged in a P2P overlay, the link weights (delay,
bandwidth) could be used to guide the selection of particular partitioning. The
integration of the partial results does not necessarily have to take place at one of
the database sites. We assume that each pharma company defines a subset of all
nodes in the VO as trustworthy, i.e. by using AAA mechanisms. Then, the task
of integrating partial results can be assigned to any node in this trustworthy
node subset.

This approach of shipping queries together with partial results to nodes also
has to take into account the transmission and processing costs of jobs. We en-
vision a P2P overlay formed by the set of trustworthy nodes which organizes
itself according to a cost model for query shipping. Queries can then be routed
in this network towards suitable nodes, providing a load balancing mechanism.
By dynamically adding more nodes to the query overlay, e.g. by renting more
processing power from a provider, the system can be scaled in a self-organizing
way.

5 Future Work

The next steps in our project involve a detailed analysis of the available database
types and typical queries posed to the system. With this information, we can

136 C. Cramer, A. Schafferhans, T. Fuhrmann

a

c

b

Fig. 3. Query Plan for Distribution

further specify the requirements of the distributed query processing component.
Important topics there are the formation of the query overlay, the implemen-
tation of physical database operators using P2P approaches, and suitable AAA
mechanisms and policies for achieving the rigid security requirements of the
application.

References

1. M. Nedim Alpdemir, Arijit Mukherjee, Norman W. Paton, Paul Watson, Alvaro
A. A. Fernandes, Anastasios Gounaris, and Jim Smith. Service-Based Distributed
Querying on the Grid. In Proceedings of the International Conference on Service-
Oriented Computing, 2003.

2. Fran Berman, Geoffrey Fox, and Tony Hey, editors. Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Ltd, Wiley Series in Commu-
nications Networking & Distributed Systems, The Atrium, Southern Gate, Chich-
ester, West Sussex PO19 8SQ, England, 2003.

3. Ian Foster and Adriana Iamnitchi. On Death, Taxes, and the Convergence of Peer-
to-Peer and Grid Computing. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, February 2003.

4. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology
of the Grid, pages 217–249. In Berman et al. [2], 2003.

5. Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid, pages
171–197. In Berman et al. [2], 2003.

Peer-to-Peer Overlays and Data Integration in a Life Science Grid 137

6. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.
The impact of DHT routing geometry on resilience and proximity. In Proceedings
of the SIGCOMM 2003 conference, pages 381–394. ACM Press, 2003.

7. Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the Internet with PIER. In Proceedings of the
29th International Conference on Very Large Databases (VLDB), Berlin, Septem-
ber 2003.

8. Gene Kan. Gnutella. In Andy Oram, editor, Peer-to-Peer. Harnessing the Power
of Disruptive Technologies, pages 94–122. O’Reilly, Sebastopol, CA, 2001.

9. Peter Z. Kunszt and Leanne P. Guy. The Open Grid Services Architecture, and
Data Grids, pages 385–407. In Berman et al. [2], 2003.

10. Miscellaneous authors. Open Grid Services Architecture Data Access and Integra-
tion (OGSA-DAI), 2004. http://www.ogsa-dai.org.uk, accessed on 01 June 2004.

11. M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, USA, 1991.

12. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the SIGCOMM 2001 conference, pages 149–160. ACM Press, 2001.

13. Paul Watson. Databases and the Grid, pages 363–384. In Berman et al. [2], 2003.

138 C. Cramer, A. Schafferhans, T. Fuhrmann

Distribution Alternatives for Superimposed
Information Services in Digital Libraries

Sudarshan Murthy‡∗, David Maier∗, Lois Delcambre∗

Department of Computer Science, OGI School of Science and Engineering at OHSU
20000 NW Walker Road Beaverton, OR 97006 USA

{smurthy, maier, lmd}@cse.ogi.edu
http://www.cse.ogi.edu/sparce

Abstract. Component-based service-oriented digital library (DL) architectures
are being used to provide superimposed information services such as
annotations. Although much attention is paid to the issues in building
components for these services, not enough attention has been paid to their
deployment, specifically to distribution. We believe that extending DL services
with superimposed information services is important, and that it is essential to
understand the distribution alternatives for the components that provide such
services. We use our middleware architecture for superimposed information
management, called the Superimposed Pluggable Architecture for Contexts and
Excerpts (SPARCE), for illustration. We describe four distribution alternatives
and their trade-offs. We also define some metrics to compare the performance
of the alternatives.

1 Introduction
Our research on superimposed information focuses on allowing users to superimpose
new information such as annotations and summaries on top of existing base
information such as web pages and PDF documents. In addition to superimposing
annotations, a user may select parts of existing information and create new linkages
among those selections. For example, a user may create an alternative organization of
sections in a PDF document, or the user may create a table of selected contents. We
use a component-based middleware architecture called the Superimposed Pluggable
Architecture for Contexts and Excerpts (SPARCE), [2], for superimposed information
management.

Some digital Library (DL) systems too support creation of annotations and
metadata over their information [9, 7] using component-based architectures. Some of
the benefits of component-based architectures are that architectural components may
be replaced with alternatives and new components may be plugged in easily. They
make it easier to build new services using component stacks.

Another benefit of component-based architectures, one that does not receive as
much attention, is flexibility of deployment. With proper interface design and
abstraction, components (both data and executable) may be deployed centrally or
distributed, without affecting the services they provide. This flexibility is important

‡Author’s work has been supported by US NSF grant IIS 0086002.
∗Author’s work has been supported by US NSF grant IIS 9817492.

140 S. Murthy, D. Maier, L. Delcambre

because placing a component at the right location can improve performance,
especially for frequently used services.

In this paper, we present four distribution alternatives and their trade-offs when
providing superimposed information services such as annotations in a DL. We use our
component-based middleware architecture called the Superimposed Pluggable
Architecture for Contexts and Excerpts (SPARCE), [2], to illustrate the alternatives.
We present the alternatives without a specific DL architecture in mind because they
should apply to component-based DL architectures in general.

To motivate, we present a simple ODL [5] annotation system (Figure 1) and
describe two distribution alternatives for it. This system has three components: user
interface, annotation, and an archive. A distribution alternative, Alternative A, is to
run the user interface and the annotation components on a patron’s (client’s)
computer, and run the archive component within a DL server. Alternative B is to run
the user interface on a patron’s computer, and run the other two components within a
DL server. These alternatives could differ significantly in performance and
maintainability. For example, Alternative B may be more maintainable because few
components run outside the DL server, but it has the potential to increase the load on
the server. The alternatives differ also in the interface a DL server needs to provide to
the outside world. Alternative A requires a DL server to provide interface to the
Archive component (the Annotate component connects from the patron’s computer to
the Archive component in the DL server), whereas Alternative B requires the server
to provide interface to the Annotate component.

Fig. 1. An ODL-style annotation system. Each dotted rectangle contains components collocated
in the distribution alternative called out

Proximity of components can affect the overall system performance. To give an
idea, we present results from a simple experiment we conducted. Table 1 shows the
mean round-trip time for three web-service methods based on SOAP [8] bound to
HTTP. From the table we see that the mean round-trip time over a WAN is about 60
times that over a LAN when sending and receiving 400 bytes. Although the exact
numbers would depend on the method-invocation technology employed, comparable
ratios are common with any technology.

The numbers in Table 1 tell us that performance could be improved by placing
components with a higher number of round trips between them closer to each other
(based on network distance, not geographic distance). For example, if we know that
the Annotate component makes many round trips to the Archive component to serve a

Al
te

rn
at

iv
e

A
Alternative B

User Interface

Annotate

Archive

Distribution Alternatives for Superimposed Information Services in Digital Libraries 141

single request from the user interface, we may benefit by collocating the Annotate and
Archive components in a DL server as in Alternative B.

The rest of this paper is organized as follows. Sections 2 and 3 give an overview of
superimposed information and SPARCE respectively. Section 4 defines some metrics,
and details four distribution alternatives and their trade-offs. Section 5 discusses some
issues in employing the distribution alternatives. Section 6 provides a brief overview
of related work. Section 7 concludes the paper.

Table 1. Mean round-trip time (in milliseconds) for SOAP-based web service methods via
HTTP. Columns Input and Output denote the number and type of inputs and outputs
respectively for the methods; Column Local shows round-trip time when client and server are
on the same computer, LAN shows round-trip time when client and server are connected over a
LAN (100 MBPS, one hop), WAN shows round-trip time when the client and server are
connected over a WAN (756 KBPS DSL connection, more than 18 hops)

 Mean round-trip time (milliseconds)
Input Output Local LAN WAN
None None 2.94 3.13 146.74
10 integers 10 integers 3.13 3.36 137.53
One 400-byte array One 400-byte array 7.87 10.53 689.39

2 Superimposed Information
Superimposed information refers to data placed over existing information sources to
help select, access, organize, connect, and reuse information elements in those
sources. Existing information sources reside in the base layer, and data placed over
one or more base sources resides in the superimposed layer (see Figure 2(a)). Word-
processor documents, databases, and web pages are examples of base documents. A
stand-off annotation is an example of superimposed information (because it is stored
separately from the object of annotation, and it maintains a link to the object). An
application that manipulates base information is called a base application; an
application that manipulates superimposed information is called a superimposed
application.

2.1 Marks

A superimposed information element (such as an annotation) refers to a base
information element (such as a selection in a spreadsheet) using an abstraction called
a mark. Figure 2(a) shows the superimposed layer using marks to address base
elements. Several implementations of the mark abstraction exist, typically one per
base type. In order to address a selection in a base document, a mark implementation
supports an addressing scheme appropriate for that base type. For example, an
implementation for PDF documents may use page number and index of the first and
last words in a text selection, whereas an implementation for XML documents may
use XPath. All mark implementations provide a common interface to address base
information, regardless of the base types or access protocols they support. A
superimposed application can work uniformly with any base type by virtue of this
common interface.

142 S. Murthy, D. Maier, L. Delcambre

Figure 2(b) shows some superimposed information elements created and organized
in our superimposed application called RIDPad [2]. It shows four items labeled
‘Statement’, ‘FONSI’, ‘Details’ and ‘Issues,’ each linked to a selection in the base
layer. For example, the item labeled ‘Issues’ is linked to a selection in an MS Excel
spreadsheet; the item labeled ‘FONSI’ is linked to a selection in a MS Word
document. The box labeled ‘Decision’ groups items. Figure 3(a) shows the MS Word
mark of the ‘FONSI’ item activated.

(a) (b)

Fig. 2. (a) Layers of information in a superimposed information management system. A mark
connects a superimposed information element to the base layer. (b) Superimposed information
organized using RIDPad, a superimposed application

2.2 Excerpts and Contexts

Superimposed applications may occasionally need to incorporate the content of base-
layer elements in the superimposed layer. For example, an application might use the
extracted base-layer content as the label of a superimposed element. We call the
contents of a base-layer element an excerpt. An excerpt can be of various types. For
example, it may be text or an image. An excerpt of one type might also be
transformed into other types. For example, formatted text in a word processor could
also be seen as plain text, or as a graphical image.

In addition to excerpts, superimposed applications may use other information
related to base-layer elements. For example, an application may group superimposed
information by the section in which the base-layer elements reside. To do so, the
application needs to retrieve the section heading (assuming one exists) of each base-
layer element. We call information concerning a base-layer element, retrieved from
the base layer, its context. Presentation information such as font name and location
information such as line number might be included in the context of a mark. Each
such piece of information is a context element, and context is a collection of context
elements. Because we use the same mechanism to support both contexts and excerpts,
we often use the term “context” broadly to refer to both kinds of information about a
base-layer element. Figure 3(b) shows the context of a MS Word mark in a browser
(for the mark activated in Figure 3(a)).

Superimposed
Layer

Base
Layer

Information
Source1

Information
Source2

Information
Sourcen

…

marks

Distribution Alternatives for Superimposed Information Services in Digital Libraries 143

(a) (b)

Fig. 3. (a) An MS Word mark activated. The highlighted area is the marked region. (b) The
context of the MS Word mark in the Context Browser. The browser is showing part of the
HTML markup required to display the excerpt for the mark formatted as is in the base layer

3 SPARCE
The Superimposed Pluggable Architecture for Contexts and Excerpts (SPARCE) is a
middleware-based approach for mark and context management [2]. It is designed to
be extensible in terms of supporting new base-layer types and context-element types,
without adversely affecting existing superimposed applications. Figure 4 shows the
SPARCE reference model. The Mark Manager provides operations such as creating
and storing marks. It also maintains a marks repository. The Context Manager
retrieves context information. Superimposed applications use the managers to create
marks and access context (which in turn use base applications).

The Mark Manager supports three operations for marks: creation, retrieval, and
activation. Mark creation is the operation of generating a new mark corresponding to
a selection in a base layer. This operation consists of three steps: generating the
address of base information (and other auxiliary information), using the information
generated to create a mark object, and storing the mark object in the mark repository.
Details of each mark, such as the address of the container and the selection inside it,
are stored as an XML file. The mark repository is a database of such XML files.

The mark retrieval operation returns a mark from the mark repository. Mark
activation is the operation of navigating to a location inside the base layer, using the
information supplied by a mark.

SPARCE uses mediators called context agents to retrieve context information for a
mark from the base layer. A context agent interacts with a base application to retrieve
context. The name of the context agent to use for each mark instance is one of the
details stored in the mark repository. SPARCE uses this information to instantiate an
appropriate context agent for a mark instance. A superimposed application receives a
reference to the instance of context agent from SPARCE, and then works directly
with the agent instance to retrieve context.

The components of SPARCE (see Figure 4) may be mapped to those of the ODL-
style annotation system we introduced in Figure 1. Superimposed applications (patron
applications) provide the user interface. These could be desktop applications or
browser-based applications (applets) running on a patron’s computer. The Mark

144 S. Murthy, D. Maier, L. Delcambre

Manager, the Context Manager, and the base applications constitute the Annotate
component. The base documents and a DL’s interface to access them (if required)
roughly constitute the Archive component.

Fig. 4. The SPARCE reference model. Solid arrows show dependency, dotted arrows show data
flow (not all data-flows shown). The dashed lines map components to those in Figure 1

4 Distribution Alternatives
We describe four distribution alternatives for SPARCE (see Figure 6) when providing
superimposed information services in a DL.

Four components of SPARCE (see Figure 4) are candidates for distribution: the
patron (superimposed) application, the Mark Manager, the Context Manager, and base
applications. For simplicity, we assume the following for all alternatives:
• The DL server contains base documents (and that an appropriate interface in the

DL server is used to access the documents).
• The two manager modules (the Mark Manager and the Context Manager) run on

the same computer.
• The mark repository is stored wherever the Mark Manager is deployed.
• The patron application always runs on a patron’s computer.
• The superimposed information is stored on a patron’s computer.

We first present a goal for distribution and some related metrics. We do not
provide results based on these metrics, but estimate trends based on a few rules of
thumb (see Section 4.6). We assume a patron uses a high-speed (such as broadband)
Internet connection to a DL server. We also assume that the ratios of the mean round-
trip times shown in the third row (for 400-byte array input and output) of Table 1
hold.

A note on terminology: the term “patron’s computer” in the rest of this paper may
mean a stand-alone computer or a computer in a network local to the patron. Our
description of alternatives would be valid for either meaning of the term.

4.1 Goals and Metrics

Several metrics such as latency (for example, time to serve a request), load (for
example, the number of active processes) and throughput (for example, the number of
requests processed per unit time) should be considered for a thorough analysis of the
alternatives. However, due to space constraints, we discuss only latency.

Archive Annotate User interface

Superimp-
osed App

Context
Manager

Base
Apps

Mark
Manager

Base
Info

Marks
Repository

Superimp-
osed Info

Distribution Alternatives for Superimposed Information Services in Digital Libraries 145

The latency of a patron application’s request (Tpm) is the duration between the
patron initiating a request in the patron application (to a manger module) and the
patron receiving a corresponding response. It is made up of the following components
(see Figure 5):
• tbb: Time taken by a base application to complete a requested operation. For

example, time to retrieve a context element’s value.
• tmb: Round-trip time between a manager module and a base application. This time

measures the duration between a manager module receiving a request from a
patron application and the manger module returning a corresponding response,
after discounting the time the base application takes to complete its work.

• tpm: Round-trip time between a patron application and a manager module. This time
measures the duration between the patron initiating a request in the patron
application (to a manger module) and the patron receiving a corresponding
response, after discounting the time the manager module needs to complete its
work.

Fig. 5. Components of latency of a patron application’s request. The subscripts p, m, and b
stand for patron application, manager module, and base application respectively. They identify
the pair of architectural components with which a latency term is associated

In distributing the architectural components, one of our goals is to minimize the
latency of a patron application’s request (Tpm). Because this latency is the sum of the
times tpm, tmb, and tbb, our sub-goals are to minimize these terms. The distribution
alternatives we describe vary the location of architectural components to highlight the
affect of each alternative on these latency terms.

4.2 Distribution Alternative A

Alternative A is to run the patron applications, the manager modules, and the base
applications on a patron’s computer (Figure 6). That is, a DL server only supplies
base information. The patron opens base documents using appropriate base
applications running on his or her computer. Marks and superimposed information are
stored on the patron’s computer. Because all components run within the patron’s
computer, the round-trip times between them would be quite low. Base documents
would still be accessed over the network because they reside within the DL server.
This cost is likely incurred only once per document per session, because documents
accessed over the Internet are usually (automatically) first downloaded to the client’s
computer. Base applications then access the documents locally. This alternative
requires that each patron have all base applications locally, even for rarely
encountered base types.

tmb tpm

Tpm

tbb

Patron
App

Managers Base
Apps

Base
Info

146 S. Murthy, D. Maier, L. Delcambre

4.3 Distribution Alternative B

Alternative B is to run the patron applications on a patron’s computer, and run the
manager modules and the base applications within a DL server. Marks are stored in
the DL server, and superimposed information is stored on the patron’s computer.
Because the base applications operate within the DL server, the patron would be able
to view base documents in their native applications only if those applications are also
available locally on the patron’s computer. However, because the manager modules
run inside the DL server, the mark activation operation would be unable to exploit any
base application available on the patron’s computer. When the patron activates a mark
(for example, the MS Word mark in Figure 3(a)), the DL server prepares the context
elements needed to display the excerpt and sends it to the patron application (possibly
in HTML as in Figure 3(b)). The patron may request additional context elements to
view as needed.

Fig. 6. Distribution alternatives for SPARCE. The dashed lines denote network boundaries

Because the manager modules and the base applications run within a DL server,
the round-trip time between them would be low, but the round-trip time between a
patron application and the manager modules (tpm) would be high. Consequently,
patron applications must strive to minimize the number of round-trips to the manager
modules. Combining requests for context elements can reduce the number of round
trips.

4.4 Distribution Alternative C

Alternative C is to run the patron applications and the two manager modules on a
patron’s computer, but run the base applications within a DL server. As in Alternative
A, marks and superimposed information are stored on the patron’s computer. Like
Alternative B, the patron would be able to view base documents in their native
applications only if those applications are also available locally. Unlike Alternative B,
because the manager modules run on the patron’s computer, the mark activation
operation would be able to exploit any base application available on the patron’s
computer. In other cases, the Context Manager module would have to retrieve the
necessary context elements to provide a view of marked regions. Because the
manager modules run on the patron’s computer, but the base applications run within
the DL server, the round-trip time between them (tmb) would be high.

Patron DL Server

Alternative D

Patron
App

Managers Base
Apps

Alternative A

Patron

Patron
App

Managers Base
Apps

Alternative B

DL Server Patron

Patron
App

Managers Base
Apps

Patron DL Server

Alternative C

Patron
App

Managers Base
Apps

Distribution Alternatives for Superimposed Information Services in Digital Libraries 147

4.5 Distribution Alternative D

Alternative D is to run the patron applications modules on a patron’s computer, the
two manager modules in a middle tier, and run the base applications within a DL
server. As in Alternative A, the superimposed information is stored on the patron’s
computer, but marks are stored in the middle tier. The capabilities of a patron
application are similar to those in Alternative B. The performance of this alternative is
also similar to that in Alternative B, except the round-trip time tmb would also be
higher because the manager modules run in the middle tier.

With the manager modules running in a middle tier, they can connect to more than
one DL server. Further, it may be possible to deploy the base applications in the
middle tier to minimize the round-trip time between the manager modules and the
base applications. A federation of DLs may like to maintain such a middle tier to
distribute the cost of operations.

4.6 Summary of Distribution Alternatives

Table 2 provides a summary of the location of components, the role of the DL server,
and the profile of the components on the patron’s computer for each alternative. A DL
server operating as an information server is similar to a file server, whereas an
application server runs applications on behalf on clients. A thin client profile means a
minimal amount of code runs on the patron’s computer. Patron applications tend to be
browser-based (applets for example). A fat client profile means large amounts of code
run on the patron’s computer. Patron applications tend to be desktop applications, and
are often richer in functionality than browser-based applications.
Table 2. Summary of alternatives. Client profile is the profile of the components on the
patron’s computer

 Location of components
Alternative Patron apps Managers Base apps DL Server Role Client profile
A Patron Patron Patron Info server Fat
B Patron DL DL App server Thin
C Patron Patron DL App server Fat
D Patron Middle tier DL App server Thin

Table 3 summarizes the trend we expect for maintenance cost and performance of
the resulting systems from the alternatives. Two rules of thumb drive our expectation
of maintenance cost: A thin client is less expensive to maintain than a fat client, and it
is less expensive to maintain components that run within a DL server than those
deployed elsewhere. For components that run outside the DL server, changes made to
a component need to be propagated to all locations where that component is deployed.

The load on a DL server increases as the number of components running within the
server increases. The trend Medium for Alternatives C and D indicates that the load
on the DL server would be greater than that for Alternative A, but less than that for
Alternative B. (The manager modules run outside the DL server in Alternatives C and
D.)

Two rules of thumb guide our expectation of round-trip times: placing components
closer to each other reduces the round-trip time between them; the reduction is greater

148 S. Murthy, D. Maier, L. Delcambre

if the number of round-trips between them is large (especially when the components
exchange large amounts of data).

Table 3. Summary of maintenance cost and performance. Columns tpm and tmb are round-trip
times as defined in Section 4.1

 Maintenance Cost Round-trip time
Alternative Patron apps Managers Base apps DL Server Load tpm tmb
A High High High Low Low Low
B Low Low Low High High Low
C High High Low Medium Low High
D Low Low Low Medium High High

5 Discussion
In reality, DL systems are likely to employ a mixture of distribution alternatives. For
example, some DL providers might wish to support patron applications of different
capabilities (for example, fat clients and thin clients). Doing so requires the DL server
to provide many kinds of interfaces (expose manager modules and base applications)
for patron applications to choose from. Also, a patron may work with more than one
DL, and those DLs may employ different distribution alternatives. In this case, patron
applications must be able to discover the alternative a DL system employs.

Hosting base applications outside a patron’s computer (as in Alternatives B, C, and
D) can cause some problems. Without the necessary base application available
locally, a patron will be unable to see a mark in its context (as in Figure 3(a)). In such
cases, the context manager would have to retrieve the context elements necessary to
provide a “broad enough” view of the selection, but the combined size of the context
elements could be excessively large. Alternatively, the context manager could retrieve
the context elements needed to display just the excerpt of the mark (but nothing
surrounding it). In either case, the context manager needs to transform context
elements to a format such as HTML or GIF, so the patron application may render the
view. This transformation may not be easy for some base types. This problem is more
likely with Alternatives B and D, because the manager modules run outside the
patron’s computer, and they are unable to “call back” base applications on a patron’s
computer. Mechanisms do exist for manager modules to call back applications on
patron’s computers, but they present security concerns. Also, calling back may
require the manager modules to cope with many versions of the same base
application.

Sharing annotations is an emerging need among DL patrons. When sharing
superimposed information, the corresponding marks may be shared or replicated. It is
also possible to share just the marks, but not the superimposed information that use
them. In reality, we envision that some marks and superimposed information may be
shared, and some marks may be replicated.

Distributing components and sharing information each increase security risks. DL
systems may need to implement more than one alternative to balance security and
performance. A small number of DL server interface points, and narrow functionality
of those interface points can help reduce security risks. For example, the number of
interface points in the SPARCE manager modules is fewer than that in most base

Distribution Alternatives for Superimposed Information Services in Digital Libraries 149

applications. They are also narrower in functionality. If a patron connects to a DL
server over a public network such as the Internet, it may be better to present an
interface to the manager modules rather than to base applications (Alternatives B and
D). However, base applications may be exposed to a patron connecting over a local
intranet (Alternative C).

In discussing the distribution alternatives, we mentioned that combining requests to
retrieve contexts can help reduce latency. Such intelligence may be added to the
Context Manager, thus benefiting all patron applications. Caching context may also
be useful for some applications. The location of the cached context may be chosen
based on needs. A context cache placed within a DL server can help with requests
from many patrons, whereas a cache on a patron’s computer can help with requests
from only that patron. Finally, a DL server may replicate instances of the manager
modules and the base applications to handle large number of requests.

6 Related Work
The DELOS-NSF Working Group’s report on Digital Library Information-
Technology Infrastructures [1] highlights the importance of services and
infrastructure for metadata and annotation services in DLs. OAI-PMH and its
extension XOAI-PMH have demonstrated the feasibility of component-based
architectures for metadata and annotation services respectively in a DL [7, 6].

Some DL systems that support annotations do not consider distribution alternatives
of both data and executables. The UC Berkeley Digital Library Project uses
superimposed behaviors in multivalent documents to support annotations [9]. That
work facilitates distributed annotation and base data, but not distribution of
executables. InfoBus [3] defines a mechanism for interaction among UI clients,
proxies, and repositories. (SPARCE’s manager modules may be viewed as proxies.) It
also defines service layers that are available to clients, proxies, and repositories.
However, it does not consider distribution of executables.

FEDORA [4] and XOAI-PMH [6] provide promising frameworks for integration
of superimposed information services with other DL services. The parameterized
disseminators of FEDORA could be used to address (access) parts of documents.
XOAI-PMH does not explicitly specify sub-document objects, but its extensibility
mechanism could be used a create item instances that serve the purpose.

7 Summary
We have described four distribution alternatives to provide superimposed information
services in DLs and defined some metrics to compare the performance of the
alternatives. We have illustrated the distribution alternatives using SPARCE, our
middleware architecture for superimposed information management. We have also
discussed some of the issues in employing the distribution alternatives.

References
1. DELOS-NSF Working Group on Digital Library Information-Technology Infrastructures:

Report (2002). Available online: http://www-rocq.inria.fr/~abitebou/pub/DELOS-ITI.pdf

150 S. Murthy, D. Maier, L. Delcambre

2. Murthy, S., Maier, D., Delcambre, L., Bowers, S.: Putting Integrated Information in Context:
Superimposing Conceptual Models with SPARCE. In: Proceedings of the First Asia-Pacific
Conference of Conceptual Modeling, Dunedin, New Zealand (2004) 71-80

3. Roscheisen, M., Baldonado, M., Chang, C., Gravano, L., Ketchpel, S., Paepcke, A.: The
Stanford InfoBus and Its Service Layers: Augmenting the Internet with Higher-Level Infor-
mation Management Protocols. Digital Libraries in Computer Science: The MeDoc Ap-
proach. Lecture Notes in Computer Science, Vol. 1392, Springer (1998)

4. Staples, T., Wayland, R., Payette S.: The Fedora Project: An Open-source Digital Object
Repository Management System. D-Lib Magazine. Vol. 9, Number 4 (2003)

5. Suleman, H., Fox, E.A.: A Framework for Building Open Digital Libraries. D-Lib Magazine.
Vol. 7, Number 12 (2001)

6. Suleman, H., Fox, E.A.: Designing Protocols in Support of Digital Library
Componentization. In Proceedings of ECDL 2002. Rome, Italy (2002)

7. The Open Archives Initiative: Protocol for Metadata Harvesting, Version 2.0. (2002).
8. W3C XML Protocol Working Group: Simple Object Access Protocol. (2003)
9. Wilensky, R.: Digital library resources as a basis for collaborative work. Journal of the

American Society of Information Science. Vol. 51, Number 3 (2000) 228-245

JDAN: a Component Architecture

for Digital Libraries

Fabio De Rosa1,2, Alessio Malizia2, Massimo Mecella1

Tiziana Catarci1, and Luigi Cinque2

1 Università di Roma “La Sapienza”

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Via Salaria 113 (2nd floor), 00198 Roma, Italy

{derosa,mecella,catarci}@dis.uniroma1.it
2 Università di Roma “La Sapienza”, Dipartimento di Informatica

Via Salaria 113 (3rd floor), 00198 Roma, Italy

{malizia,cinque}@di.uniroma1.it

Abstract. The process of converting documents in digital forms is fun-

damental for office automation, and is continually becoming a more and

more powerful tool in those fields where information still comes from

hybrid sources (papers, books, files, etc), e.g., in digital libraries.

In this paper we present the jdan (Java-based environment for Document

Applications on Networks) framework, that, on the basis of a component

architecture, is able to manage both document images and forms. We

argue that jdan could be a starting point for developing more complex

architectures for digital libraries, as it is based on XML technologies and

has a good modularization that allows its integration in both Service-

and Grid-based scenarios.

1 Introduction

The process of converting documents in digital forms is fundamental for office
automation, and is continually becoming a more and more powerful tool in those
fields where information still comes form hybrid sources (papers, books, files,
etc).

Up to now, many different approaches have been used but widely agreed
upon standards are still lacking. Typical problems of document analysis systems
are: layout segmentation and syntactic parsing, but also the selective extraction
of information such as document types and semantic contents; most document
processing packages are designed either for document recognition (i.e., indexing
and archiving of document images) or for data acquisition (i.e., extracting data
from filled forms).

Document recognition is essentially the process of converting paper docu-
ments into digital images and indexing such data. Images are stored as data
files (typically as TIFF files) and together with indexes are stored in a content
management system. As far as data acquisition is concerned, most form-oriented

152 F. De Rosa, A. Malizia, M. Mecella, T. Catarci, L. Cinque

products available on the market today instead require the user to redesign his
forms in order to achieve acceptable recognition rates.

In this paper we present the jdan (Java-based environment for Document
Applications on Networks) framework, that, on the basis of a component archi-
tecture, is able to manage both document images and forms. We argue that jdan

could be a starting point for developing more complex architectures for digital
libraries, as it is based on XML technologies and has a good modularization that
allows its integration in both Service- and Grid-based scenarios. Section 2 de-
scribes the architecture of the proposed framework, whereas Section 3 presents
the details of the different components of jdan. Finally Section 4 considers the
deployment of the proposed framework and concludes the paper with some final
remarks.

2 The JDAN Framework and Architecture

The proposed framework offers different functionalities:

❒ Data Acquisition for handling scanning; it could be deployed on a specific
center where high-speed expensive equipments are used to acquire multi-
ple format documents. The framework supports standard definitions that
allow changing both the indexing and recognition rules even after the data
acquisition phase. Indeed, many available systems use batch processes to
enhance performances and reduce costs, but they are wrapped around the
capture process. If new requirements rise (e.g., update of the forms), the
batch process needs to be halted and the documents to be scanned again
in compliance with the new specifications 3. Conversely with the segmen-
tation module proposed in jdan, users can acquire batches and batches of
documents only specifying the zone type, size and label, then the recogni-
tion module automatically detects where the zone is on the document, thus
resulting in a reduction of costs. Section 3.1 provides more details on this
issue.

❒ Recognition, whose peculiarity is the possibility of introducing different
recognition modules, on the basis of market standards or research results.
The aim of jdan was to make feasible to plug-in and substitute the recogni-
tion module depending on the type of documents; users adopting the frame-
work can develop their own modules on top of the jdan specification and
also include OCR modules for the regions obtained from the defined segmen-
tation, thus reducing the manual annotation in document forms.

3 As an example, if the organization has a batch of 3000 paper documents and while

scanning the first 2000 it finds that something in the forms has changed (e.g., the

position of the name and surname labels), with most of the currently available ap-

plications the organization has to stop the process, change the area specifications

from which the information will be captured and then start again, thus impacting

the whole acquisition process in terms of hours.

JDAN: a Component Architecture for Digital Libraries 153

❒ Indexing could be automatic or manual, depending on a set of parame-
ters that could be tuned after evaluating the segmentation and classification
results. By using such parameters the system can decide which kind of in-
dexing phase to perform: either manual or automatic. Manual indexing re-
quires users to enter information from forms, even if by adopting automatic
recognition only those documents out of the parameters range will be pre-
sented to the user for manual data-entry. Moreover by using both automatic
and manual segmentation we could perform semi-automatic indexing, which
could help in validation for manual data-entry. In order to avoid typing er-
ror, the automatic indexing is performed and then the results are presented
for manual annotation, and if differences appear the document has to be
indexed again.

❒ Storing of indexes and original document images into SQL standard
databases. The engine of the framework is based on a standard J2EE con-
tainer that uses an XML-based index definition schema. XML index descrip-
tions reside only in the central repository while images could be spread across
multiple sites, thus saving costs in terms of need of central mass storage and
broadband expensive connections, as document images remain within orga-
nizations while only indexes are centralized.

❒ Querying will be performed using clients with XML-parsing features. The
framework supports both thin clients based on browsers accessing servlets
and JSPs via HTTP, and fat clients accessing via RMI/IIOP.

Table 1. JDAN architectural goals and adopted technologies

Feature Goals Technologies

segmentation and classification automatic image cleaning,

region recognition and

classification: text, image and

graph

gcc compiler, XML, OCR

modules

indexing local and remote indexing,

automatic region indexing,

internet-based indexing

Apache web server, servlets and

JSPs, JDBC, MySQL

(potentially any other

SQL-based DBMS)

scalability and reliability expanding the system according

to throughput requirements and

security data exchange

jboss application server,

MySQL, HTTPS support

integration importing segmentation and

classification algorithms,

choosing data format to export

XML

Table 1 outlines the main features of the jdan framework and the set of
technologies that have been adopted in order to reach specific goals. As much as
possible the design choices have been to adopt open and standard technologies,

154 F. De Rosa, A. Malizia, M. Mecella, T. Catarci, L. Cinque

and, as further detailed, the integration of the different components is gained
through XML.

P ap er D o cu m e nts

R EC O GN IT ION S ER VE R

S egm en ta t ion &
C la ss i f ic at io n

M o dul e

XM L
D O C R e gio nD esc rip t io n

 D AT A- EN TR Y PL U G IN

M a nu al A nn ot at io n
& Se gm en ta t ion

X M L
D O C R e gio nD es crip t io n

D OC R eg ion D e scr ipt ion
X M L Sc he m a

 IN D E X IN G
 S ER VE R

W EB S erv er
Sc rip t ing

S erv er s id e

X M L
D OC R egi on D e scr ipt ion

 D B En gin e

A R C H I VE R EL EA SE

X M L

S QL

W E B C L IEN T

XM L Pa rse r

S ca nn ing

Int erp ret ed

N o

Ye s

F TP Se rve r

I m a ge s

XM L ove r H T T P

SQ L S ta nd ard

X M L Ex po rt

Fig. 1. The jdan framework

In Figure 1 the four main components of the framework are shown: the Recog-

nition Server, the Indexing Server, the Data-entry Plug-in (for annotation), and
the Web Client (i.e., the query module). Moreover we can define also an Archive

Release module if we want to export our indexes and images to other applica-
tions.

The core of the jdan environment is the DOCRegionDescription XML
Schema, which is a published description for the result of a segmentation pro-
cess. This approach increases interoperability of different software packages, thus
allowing cooperative scenarios in order to solve document recognition related
problems (document analysis, image processing, segmentation, etc.): developers

JDAN: a Component Architecture for Digital Libraries 155

of different software packages write their own DOCRegionDescription-compliant
XML specification and their applications can be plugged on top of jdan 4.

Indeed one of the most time-consuming challenges for developers has been to
exchange data between varieties of different systems. Converting data to XML
can greatly reduce this complexity, thus creating indexes that can be read by
many different types of applications. XML can also be used to store data in
files or in databases. We have defined a standard description for the result of
a segmentation process, in order to let users choosing which algorithm best
fits their needs. Therefore our framework could be used in a research organiza-
tion as well as in a business department: students and researchers that already
have developed their segmentation algorithms could use the environment to test
them; while in a business department state-of-art segmentation software could be
used. With this approach only the output of the segmentation process should re-
spect the defined format, and users are free to adopt their own algorithms. The
DOCRegionDescription is a modified version of the RichRegionDescription

[1], including specific attributes for a document recognition environments.
The XML Schema of the DOCRegionDescription is reported in the Ap-

pendix. A set of standard attributes, namely NumPixels, Barycenter, Size,
MeanColor, Texture, RegionContour, Importance and Shape, are used in or-
der to satisfy general features of segmentation algorithms. Moreover two specific
attributes are important: the Interpreted attribute, and the Type (which can
be Auto or Manual) of the Segmentation tag.

The Interpreted attribute is valorized from the segmentation algorithm if
it performs also classification (text, image or graph region). If the algorithm
provides a method for evaluating its result, e.g., by using a range of values for
the acceptance test of the segmented regions, the Type attribute helps: if the
values are acceptable the Type value should be Auto and the next phase will be
indexing, while for that documents where the values are out of range should be
Manual and the next phase will be the annotation by the user. Of course, if we
want to perform only manual annotation, the Type attribute should be fixed to
Manual.

3 Details of the Different Components

In this section we provide some details on the main jdan components.

3.1 The Recognition Server

The Recognition Server performs the automatic document recognition and in-
dexing. Users can choose their own segmentation method or algorithm; what is
required, in order to be compliant with the framework, is to produce an XML

4 In our case we have used our algorithms for writing the segmentation and classifi-

cation engine, but any other segmentation and classification application compliant

with the DOCRegionDescription format could be written on top of the framework.

156 F. De Rosa, A. Malizia, M. Mecella, T. Catarci, L. Cinque

output compliant with the DOCRegionDescription. In the prototype we are cur-
rently implementing, the Recognition Server includes four main subcomponents
[1–3]: (i) the preprocessor, (ii) the split module, (iii) the merge module and (iv)

the classification module.
The preprocessor is based on the computation of the color histogram of the

region and is used to let the other phases get the values computed by this
module, in order to make the right decisions [4]. Moreover in this phase the
original image of the document is loaded into main memory in order to obtain
better computation performances.

The split module takes input from the preprocessing phase and applies a
particular quad-tree technique in order to split the document into small blocks.
Then the split module passes its result to the merge module, which applies pre-
classification criterion in order to merge the similar regions into big regions [5, 6].
We use local operators with variable threshold in order to compute this phase.

Finally using global operators we have the real engine of this system in the
classification module that computes the classification procedure according to the
classification logic. It outputs the classified document, with its different regions,
highlighted and interpreted, in XML format. If there is at least one region “not
interpreted”, the Type in the XML document will be switched to Manual and
the Data-Entry Plug-in is invoked, only for those “not interpreted” regions.

Following we show an example of an XML region description automatically
extracted from the document shown in Figure 2.

<?xml version="1.0" encoding="UTF-8"?>
<DocRegionDescription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="...\DELOSWorkshop2004\DocRegionDescription_++_XSD.xsd"
FileName="ta00004bw.gif" Height="528" Width="383">

<Segmentation Param1="0.05" Param2="3000" Param3="200" Type="Manual" Algo="anAlgorithm">
<Region ID="0" Type="TEXT" KeyWords="Note">

<Size x1="215" y1="503" x2="343" y2="511"/>
</Region>
<Region ID="1" Type="TEXT" KeyWords="Introduction">

<Size x1="35" y1="243" x2="343" y2="494"/>
</Region>
<Region ID="2" Type="GRAPH">

<Size x1="38" y1="57" x2="328" y2="177"/>
<ConnectivityNumber EuleroNumber="371"/>
<Barycenter x="38" y="57"/>
<Elongation Elongation="2"/>

</Region>
<Region ID="3" Type="TEXT" KeyWords="#">

<Size x1="37" y1="12" x2="343" y2="36"/>
</Region>
<Region ID="4" Type="TEXT" KeyWords="#">

<Size x1="35" y1="197" x2="195" y2="230"/>
</Region>

</Segmentation>
</DocRegionDescription>

3.2 The Data-Entry Plug-in

The recognition phase is based on the segmentation and classification module,
which takes as input a document page, which is then presented to the user if
manual indexing was decided (by the user, or by the “not interpreted” parame-
ter) through the Data-Entry Plug-in (a Java applet).

JDAN: a Component Architecture for Digital Libraries 157

The Data-Entry Plug-in allows users to evaluate the automatic classification
performed by the system and edit the segmentation for indexing; users can also
edit the recognized regions by the classification engine and adjust their values
and sizes. The output of this phase is an XML file that will be imported in
the Indexing Module for indexing and querying. Figure 2 shows the Data-Entry
module.

Fig. 2. The Data-Entry Plug-in

3.3 The Indexing Server

The indexing server is based on a multi-tier architecture. It is an EJB-based
system, namely JBoss 3.0. The database layer stores and accesses all of the
basic information kept in jdan, such as text labels or segmentation and indexing
features. The web layer is responsible for turning the data fragments stored in
the database into useful forms that are presented to the web client, e.g., a report
or a query result. The web client presents forms to users, and submits data back
to the web layer.

3.4 Archive Release

The final stage in the recognition process could be to release each document to
a content management or workflow system. In the release process, the image

158 F. De Rosa, A. Malizia, M. Mecella, T. Catarci, L. Cinque

files are written to permanent storage and the data is written to the target
database or content management software. When dealing with forms, extracted
form data can be released to a back-end database or line of business application.
In addition, the Archive Release module allows users to write their own custom
release modules, either to modify the standard release procedure or to release
documents into a proprietary back-end or non relational database.

4 Deploying the JDAN Framework and Final Remarks

In this section we show a typical use case of an application built on top of the
jdan framework, and then we discuss about possible configurations supporting
the presented framework.

In Figure 3, a typical use case of an application adopting jdan is presented.
After a manual or automatic indexing of a batch of documents, a set of in-
dexes compliant with the DOCRegionDescription format are sent to the In-
dexing Server (step (1)); by using the indexing server such indexes are inter-
preted and then stored in the database (step (2)). When a request from the web
client is received, an SQL query is performed on the database and the indexing
server formats the result in order to transform it in HTML/XML (step (3)); the
HTML/XML query results are then sent via HTTP to the web client for user
presentation (step (4)).

 ����� ������	��
��
��������	������� ���	��
Apache

PHP
Intepreter

�������
������	�� �����
����
������������ �����

1

4

2

3

DOCRegion
Description

Fig. 3. A typical use of the jdan framework

JDAN: a Component Architecture for Digital Libraries 159

A typical configuration would have the Recognition Server running onto a
server cluster, with many Data-Entry Plug-ins running onto different clients.
This configuration defines a document capture center, that could be offered in a
complex grid as a basic service; in another center, an Indexing cluster is offered as
another service, and different Web clients could perform queries onto the already
captured and indexed documents requesting information to the Indexing center.

In Figure 4 we show an example of a query made with an Applet module.
The query is based on previous XML description of the document automatically
extracted by the recognition server.

Fig. 4. Querying jdan for retrieving a document by using previously extracted XML

document region description

As final remarks, we would like to point out that the proposed architecture
and framework aim at defining an open environment for assisting users in recog-
nizing multimedia documents also using segmentation algorithms for classifying
image regions, and image retrieval algorithms. Whereas current available envi-
ronments are proprietary and closed, the definition of an XML-based interchange
format allows to suitable assemble different component-based technologies in or-
der to define a complex framework.

jdan should be considered as a preliminary step in the direction of multi-
media document managing standard framework with region segmentation and
classification, thus aiming at automatic recognition of image database and batch
acquisition of multiple multimedia documents types and formats. Finally jdan

could be considered as a test bed for students and researchers that are projecting
and implementing algorithms for document analysis and document capture.

Acknowledgements

This work was carried out in the context of the FP6 Network of Excellence on
Digital Libraries (DELOS, http://www.delos.info/).

160 F. De Rosa, A. Malizia, M. Mecella, T. Catarci, L. Cinque

References

1. L. Cinque, S. Levialdi, A. Malizia, F. De Rosa. DAN: an Automatic Segmentation

and Classification Engine for Paper Documents. In Proc. 5th International Work-

shop on Document Analysis Systems (DAS 2002) (Princeton, NY, USA, 2002),

Springer Verlag LNCS 2423.

2. L. Cinque, S. Levialdi, A. Malizia, F. De Rosa. A Visual Query-by-example System

for Digital Documents. In Proc. IEEE Symposium on Human Centric Computing

Languages and Environments (HCC’03) (Auckland, New Zealand, 2003), IEEE CS

Press.

3. L. Cinque, S. Levialdi, A. Malizia. An Integrated System for the Automatic Seg-

mentation and Classification of Documents. In Proc. IASTED International Con-

ference on Signal Processing, Pattern Recognition and Applications (SPPRA 2002)

(Creete, Greece, 2002),

4. G. Nagy, S. Seth, M. Viswanathan. A Prototype Document Image Analysis System

for Technical Journals. Computer, 25(7): 10 – 22, July 1992.

5. T. Ojala, M. Pietikainen. Unsupervised Texture Segmentation Using Feature Dis-

tributions. Pattern Recognition, vol. 32: 477 – 486, 1999.

6. M. Span, R. Wilson. A Quad-Tree Approach to Image Segmentation Which Com-

bines Statistical and Spatial Information. Pattern Recognition, vol. 18: 257 – 269,

1985.

Appendix. The DOCRegionDescription XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:complexType name="BarycenterType">
<xs:attribute name="x" type="xs:integer" use="required"/>
<xs:attribute name="y" type="xs:integer" use="required"/>

</xs:complexType>
<xs:complexType name="ConnectivityNumberType">

<xs:attribute name="EuleroNumber" type="xs:integer" use="required"/>
</xs:complexType>
<xs:element name="DocRegionDescription">

<xs:complexType>
<xs:sequence>

<xs:element name="Segmentation" type="SegmentationType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Version" type="xs:string"/>
<xs:attribute name="FileName" type="xs:string" use="required"/>
<xs:attribute name="Height" type="xs:integer" use="required"/>
<xs:attribute name="Width" type="xs:integer" use="required"/>

</xs:complexType>
</xs:element>
<xs:complexType name="ElongationType">

<xs:attribute name="Elongation" type="xs:integer" use="required"/>
</xs:complexType>
<xs:complexType name="ImportanceType">

<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="MeanColorType">

<xs:attribute name="red" type="xs:float" use="required"/>
<xs:attribute name="green" type="xs:float" use="required"/>
<xs:attribute name="blue" type="xs:float" use="required"/>

</xs:complexType>
<xs:complexType name="RegionType">

<xs:choice maxOccurs="unbounded">
<xs:element name="ConnectivityNumber" type="ConnectivityNumberType"/>

JDAN: a Component Architecture for Digital Libraries 161

<xs:element name="Barycenter" type="BarycenterType"/>
<xs:element name="Size" type="SizeType"/>
<xs:element name="MeanColor" type="MeanColorType"/>
<xs:element name="Texture" type="TextureType"/>
<xs:element name="RegionContour" type="RegionContourType"/>
<xs:element name="Importance" type="ImportanceType"/>
<xs:element name="Shape" type="ShapeType"/>
<xs:element name="Elongation" type="ElongationType"/>

</xs:choice>
<xs:attribute name="ID" type="xs:string" use="required"/>
<xs:attribute name="Type" use="required">

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="TEXT"/>
<xs:enumeration value="GRAPH"/>
<xs:enumeration value="IMAGE"/>
<xs:enumeration value="BACKGROUND"/>
<xs:enumeration value="TBD"/>
<xs:enumeration value="ERROR"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="KeyWords" type="xs:string"/>

</xs:complexType>
<xs:complexType name="RegionContourType">

<xs:attribute name="Length" type="xs:integer" use="required"/>
<xs:attribute name="PixelList" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="SegmentationType">

<xs:sequence>
<xs:element name="Region" type="RegionType" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="Type">

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="Auto"/>
<xs:enumeration value="Manual"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="Param1" type="xs:string"/>
<xs:attribute name="Param2" type="xs:string"/>
<xs:attribute name="Param3" type="xs:string"/>
<xs:attribute name="Algo" type="xs:string"/>

</xs:complexType>
<xs:complexType name="ShapeType">

<xs:attribute name="Shape" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="SizeType">

<xs:attribute name="x1" type="xs:integer" use="required"/>
<xs:attribute name="y1" type="xs:integer" use="required"/>
<xs:attribute name="x2" type="xs:integer" use="required"/>
<xs:attribute name="y2" type="xs:integer" use="required"/>

</xs:complexType>
<xs:complexType name="TextureType">

<xs:attribute name="p1" type="xs:string" use="required"/>
<xs:attribute name="p2" type="xs:string" use="required"/>

</xs:complexType>
</xs:schema>

162 F. De Rosa, A. Malizia, M. Mecella, T. Catarci, L. Cinque

Analysis and Evaluation of Service Oriented

Architectures for Digital Libraries

Hussein Suleman

Department of Computer Science, University of Cape Town

Private Bag, Rondebosch, 7701, South Africa

hussein@cs.uct.ac.za

Abstract. The Service Oriented Architecture (SOA) that underlies the

Web Services paradigm of computing is widely regarded as the future

of distributed computing. The applicability of such an architecture for

digital library systems is still uncertain, as evidenced by the fact that vir-

tually none of the large open source projects (e.g., Greenstone, EPrints,

DSpace) have adopted it for internal component structuring. In contrast,

the Open Archives Initiative (OAI) has received much support in the DL

community for its Protocol for Metadata Harvesting, one that in prin-

ciple falls within the scope of SOA. As a natural extension, the Open

Digital Library project carried the principles of the OAI forward into

a set of experimental derived and related protocols to create a testbed

for component-based digital library experiments. This paper discusses a

series of experiments with these components to confirm that SOA and

a service-oriented component architecture is indeed applicable to digital

library systems, by evaluating issues of simplicity and understandability,

reusability, extensibility and performance.

1 Introduction

Service-oriented computing is a relatively new paradigm of computing where
tasks are subdivided and performed by independent and possibly remote compo-
nents that interact using well-defined communications protocols [19]. In particu-
lar, the Service-Oriented Architecture (SOA) refers to a framework built around
XML and XML messaging, with standards for how messages are encoded, how
protocol syntax is specified and where instantiations of services are to be located.
These are exemplified by the SOAP [4], WSDL [2] and UDDI [1] specifications
respectively. It is often argued that SOA can be adopted by an organisation to
increase reuse, modularity and extensibility of code, while promoting a greater
level of interoperability among unrelated network entities.

From a somewhat different perspective, the Open Archives Initiative (OAI)
attempted to address interoperability first and foremost, by designing a proto-
col for the efficient incremental transfer of metadata from one network entity
to another. This Protocol for Metadata Harvesting (PMH) [7] has since been
adopted by many large digital archives and has become the primary mechanism
for digital library interoperability in 2004. The OAI-PMH is very closely related

164 H. Suleman

to SOA as it adopts a Web-distributed view of individual systems, where inde-
pendent components - listed on the OAI website - interact through the medium
of a well-specified protocol and XML-encoded messages. The OAI-PMH differs
significantly from the SOA in that it is more concerned with a specific set of
protocol/encoding semantics while SOA specifies only an underlying transport
mechanism that could be applied to many different protocol suites. In this sense,
a marriage of OAI-PMH and SOA is both possible and probable [3].

In the interim, however, one of the reasons OAI-PMH has not as yet migrated
to SOA is that the technology is not sufficiently well proven. In addition, OAI-
PMH is aimed at interaction among entire systems, viewed as components of a
super-system. SOA, however, is easily applied to a finer granularity, where reuse
and modularity of components are crucial. To bridge this gap, and translate the
core principles of OAI-PMH to fine-grained interaction among small components
of a larger digital library, the Open Digital Library (ODL) project defined a suite
of protocols based on the widely accepted principles of OAI-PMH, but aimed at
the needs of digital library subsystem interaction [13][14].

To maintain thematic consistency, these protocols were designed in an object-
oriented fashion, where each protocol built on a previous one, extending and over-
riding semantics as needed. A set of reference implementations of components
were then created to provide the following services: searching; browsing; track-
ing of new items; recommendation by collaborative filtering; annotation of
items as an independent service; numerical ratings for items in a collection;
merging of sub-collections; and peer review workflow support.

Finally, these components were analysed and evaluated to determine how
applicable a fine-grained component model is to the construction of digital li-
braries, and possibly expose problems and shortcomings to be addressed in future
research. At the same time, the results obtained are generalisable to Web-based
systems and are indicators for the success of SOA as it is applied to digital
library componentisation.

2 Experiments: Simplicity and Understandability

The first set of experiments aimed to determine if components with Web-based
interfaces can be composed into complete systems with relative ease by non-
specialists. Three different user communities were introduced to the underlying
principles of OAI and the component architecture devised and were then led
through the procedure of building a simple digital library system using the com-
ponents.

2.1 OSS4LIB

The first group, at an ALA OSS4LIB workshop, provided anecdotal evidence
that the component-connection approach to building DLs was feasible. The ap-
proximately 12 participants were largely technical staff associated with libraries
and therefore had minimal experience with installation of software applications.

Analysis and Evaluation of Service Oriented Architectures 165

They were carefully led through the process of configuring and installing mul-
tiple components and were pleasantly surprised at the ease with which custom
digital libraries can be created from components. This led to a second, more
controlled, experiment as detailed below.

2.2 Installation Test

The second group comprised 56 students studying digital libraries. The aim of
this study was to gauge their level of understanding of OAI and ODL components
and their ability to complete a component composition exercise satisfactorily.
The objective was to install the following components and link them together to
form a simple digital library, as illustrated also in Fig 1:

– XMLFile: a simple file-based OAI archive
– Harvester: an OAI/ODL harvester
– IRDB: an ODL search engine
– IRDB-ui: a simple user interface for IRDB

XMLFile −→
IRDB

(+harvester)
−→

IRDB

user

interface

Fig. 1. Architecture of simple componentised digital library

Students were given an hour-long introduction to OAI and ODL and then
given detailed instructions to perform the component composition exercise. Upon
completion, they were asked to fill out a questionnaire to evaluate the experience
of building this system from components. Table 1 displays a summary of the
responses to the core questions asked of users.

In addition to these questions, typical demographic information was collected
to ascertain skills levels and exposure to the technical elements of the experiment.
The different backgrounds of participants evident from the responses to demo-
graphic questions makes it difficult to analyse these results without taking into
account all of the interaction effects that result from past experience. Since OAI
and ODL utilise various different Web technologies, it is non-trivial to enumerate
all of the pre-requisites and determine their independent effects. It may be pos-
sible to construct an experimental model to minimise the interaction effects, but
this will require finding unique participants, each with a very particular back-
ground and training. This may prove difficult because of the cutting-edge nature
of Web-based technology. Taking these difficulties into account, any analysis of
such an experiment cannot easily determine general trends.

166 H. Suleman

Table 1. Summary of Responses to Component Composition Experiment

Question/Response S. Agree Agree Neutral Disagree S. Disagree

Understand concepts of OAI-PMH. 9 38 9

Understand concepts of ODL. 6 36 14

Instructions were understandable. 35 20 1

Installing components was simple. 36 18 2

Configuration was simple. 33 21 2

Connecting Harvester+XMLFile was simple. 28 25 3

Connecting IRDB+XMLFile was simple. 26 25 5

Understanding of OAI/ODL has improved. 13 25 12 6

I will use ODL and OAI components. 12 33 10 1

Nine respondents who indicated that they did not know how Web Services
worked answered affirmative when asked if they had done Web Services-related
development. This may be because they interpreted the question as referring to
Web-related services other than SOAP, WSDL, and UDDI, or because they had
done development work without understanding the underlying standards and
information model of Web Services. Either of these is consistent with the vague
understanding many people have of Web Services.

Judging from the responses to the first two questions in Table 1, most par-
ticipants appear to have grasped the basic concepts related to OAI and ODL.
The fact that some participants were unsure indicates that an hour and 15 min-
utes may not be enough for a person building a digital library to learn enough
about OAI and ODL. This raises the question of just how much training a
person needs before being able to effectively use OAI and ODL technology (or
any Web-service-related technology). Also, more of the participants were able to
understand OAI rather than ODL; this is expected since ODL builds on OAI.

Most participants agreed (or strongly agreed) that the instructions were un-
derstandable. The instructions were very detailed so that even if participants
did not understand one section of the exercise, they were still able to complete
the rest of the steps.

Installation and configuration of individual components as well as intercon-
necting different components was deemed to be simple. As these are two basic
concepts underlying ODL (that all services can be independent components and
that systems are built by interconnecting service components), it supports the
hypothesis of this experiment that ODL is simple to understand and adopt -
which commutes to Web Services.

Analysis and Evaluation of Service Oriented Architectures 167

There was not much agreement about the ability of the exercise to improve
the participants understanding of OAI and ODL. This can be attributed to the
sheer volume of new concepts covered during the presentation and exercise. Given
that approximately half of the participants had never created a CGI-based Web
application before, the learning curve was quite steep. In practice, those who
adopt OAI and ODL technology are usually digital library practitioners who al-
ready have experience with the construction of dynamic Web-based information
systems.

In spite of all these factors, two-thirds of the participants indicated an in-
terest in using similar components if they have a need for such services. Thus,
even without a thorough understanding of the technology and other available
options, the simple and reusable nature of the components seemed to appeal to
participants.

Thirteen participants provided optional feedback in the survey, and these
ranged from positive to somewhat skeptical. Eight of the reactions were positive,
including the following comments:

– “I think the idea is very good and the approaches to build digital libraries
is easy.”

– “They provide a way to get up and running very quickly with a Web appli-
cation.”

Some participants were not sure about the workflow as indicated by the com-
ment:

– “We have high level idea but detailed explanation will be great.”

One comment in reference to the questions on simplicity of installation and
configuration included:

– “I dont know; custom config might not be simple.”

This summarises the notion that components should be simple enough to
bootstrap a development process but still powerful enough to support a wide
range of functionality. In particular, the above comment refers to the XMLFile
component that is simple to install and use in its default configuration, but can
be non-trivial to configure if the records are not already OAI-compatible. In
such a situation, XSL transformations can be used to translate the records into
acceptable formats. However, irrespective of the complexity of configuration for
a particular instance, the OAI/ODL interface to such components always is the
same.

Some questions raised during the lab sessions revealed very important issues
that need to be addressed in future development of ODL or related Web-based
standards:

– Confusion over baseURLs
• Some participants were confused regarding which baseURL to use in

which instance. Since all URLs were similar, it was not obvious – this
ought not to happen in practice with any system built on OAI, ODL or
Web Services technology.

168 H. Suleman

• Entering URLs by hand resulted in many typographical errors. Ideally,
such links must be made using a high-level user interface that masks
complex details like URLs from the developers.

• The user interface was sometimes connected to the wrong component.
While it is possible for a user interface to Identify the service component
before using it, this will be inefficient. As an alternative, user interfaces
can themselves be components, with associated sanity tests applied dur-
ing configuration.

– Failures during harvesting
• Harvesting will fail if the baseURL is incorrect, but there are no obvious

graceful recovery techniques. The components used in the experiment
assume a catastrophic error and stop harvesting from the questionable
archive pending user intervention. Better algorithms can be devised to
implement exponential back-off and/or to trigger notification of the ap-
propriate systems administrator.

2.3 Comparison Test

Finally, a third experiment was conducted to contrast the component approach
to system building with the traditional monolithic system approach. 28 students
in digital libraries were asked to install a system similar to the one in the previous
experiment as well as a version of the Greenstone [18] system, and compare and
contrast them from the perspectives of ease of use and installation.

The responses highlighted both positive and negative aspects of both sys-
tems. The majority of respondents indicated that Greenstone was easier to in-
stall, being a single cohesive package. However, it was also agreed by almost
all respondents that the component approach was more flexible and powerful,
and therefore applicable to a larger set of problem domains than the monolithic
equivalent. There was tension between the higher degree of architectural control
possible with ODL and the increase in complexity it introduced for those not
wanting such control. The service-oriented approach was also preferred for its
scalability, genericity and support for standards, which was not as evident in the
monolithic approach. A number of respondents were undecided as to an outright
preference, given that each solution had its advantages and disadvantages - lead-
ing to the conclusion that an ideal solution would capitulate on the strengths of
both approaches, somehow giving end users the advantages of component-based
customisation and flexibility as well as the advantages of cohesion and simplicity
inherent in the non-component approach.

3 Experiments: Reusability and Extensibility

To test for reusability and extensibility, the suite of components was made avail-
able to colleagues for integration into new and existing systems. A number of
digital library systems have since made use of the components, either directly,
or composed/aggregated into other components. The following are a discussion

Analysis and Evaluation of Service Oriented Architectures 169

of how some projects have integrated service-oriented components and protocols
into their architectures.

3.1 AmericanSouth.org

AmericanSouth.org [6] is a collaborative project led by Emory University to
build a central portal for scholarly resources related to the history and culture
of the American South. The project was initiated as a proof-of-concept test of
the metadata harvesting methodology promoted by the OAI. Thus, in order to
obtain data from remote data sources, the project relies mainly on the OAI-
PMH.

The requirements for a central user portal include common services such as
searching and browsing. AmericanSouth.org used ODL components to assist in
building a prototype of such a system. The DBUnion, IRDB and DBBrowse
components were used in addition to XMLFile and other custom-written OAI
data provider interfaces. Many questions about protocol syntax and component
logic were raised and answered during the prototyping phase, suggesting that
more documentation is needed. Alternatively, pre-configured networks of com-
ponents can be assembled to avoid configuration of individual components. Both
of these approaches are being investigated in the DL-in-a-Box project [10].

The production system for AmericanSouth.org still uses multiple instantia-
tions of XMLFile but the ODL components have been replaced with the ARC
search engine [9] largely because of concerns over execution speed of the IRDB
search engine component. This in itself indicates the ease with which service-
oriented components can be replaced in a system whose requirements change
over time.

3.2 CITIDEL

CITIDEL - the Computing and Information Technology Interactive Digital Ed-
ucation Library [5] - is the computing segment of NSF’s NSDL - the National
Science, Technology, Engineering and Mathematics Digital Library [8]. CITIDEL
is building a user portal to provide access to computing-related resources gar-
nered from various sources using metadata harvesting wherever possible. This
user portal is intended to support typical resource discovery services, such as
searching and category-based browsing, as well as tools specific to composing
educational resources, such as lesson plan editors.

From the initial stages, CITIDEL was envisioned as a componentised system,
with an architecture that evolves as the requirements are refined. The initial sys-
tem was designed to include multiple sources of disparate metadata and multiple
services that operate over this data, where each data source and service is inde-
pendent.

CITIDEL uses components from various sources. In terms of ODL, this in-
cludes the IRDB and Thread components to implement simple searching and
threaded annotations, respectively. The IRDB component was modified to make
more efficient use of the underlying database, but the interface was unchanged.

170 H. Suleman

3.3 BICTEL/e

The BICTEL/e project, led by the Universite Catholique de Louvain, is building
a distributed digital library of dissertations and e-prints within the nine French-
speaking universities in Belgium. The project adopted use of OAI and ODL
components to support dissertations and e-prints collections at each university
and at a central site, alongside some non-ODL components.

3.4 Sub-classing

Some component implementations were created by sub-classing existing com-
ponents. All of the component modules were written in object-oriented Perl,
which allows for single inheritance, so this was exploited when possible. Since the
DBRate and DBReview components also store the original transaction records
submitted to them, they were derived from the Box component. In each case,
some of the methods were overridden to provide the necessary additional func-
tionality.

3.5 Layering: VIDI

The VIDI project [17] developed a standard interface, as an extension of the OAI
protocol, to connect visualisation systems to digital libraries. A prototype of the
VIDI reference implementation links into the search engine of the ETD Union
Catalog [15] to obtain search results. The search engine used in the ETD Union
Catalog understands the ODL-Search protocol. Thus, additional services are
provided as a layer over an ODL component, without any reciprocal awareness
necessary in the ODL system.

3.6 Layering: MAIDL

MAIDL, Mobile Agents In Digital Libraries [12], is a federated search system
connecting together heterogeneous Web-accessible digital libraries. The project
uses the “odlsearch1” syntax, as specified in the ODL-Search protocol, in order
to submit queries to its search system. Further communication among the mobile
agents and data providers transparently utilize the XOAI-PMH protocol [14].

4 Experiments: Performance

Lastly, performance tests were conducted to determine the effect of Web-based
inter-component communication. Measurements were taken for heavily loaded
systems, systems that rely on multiple components to respond to requests (e.g.,
portals) as well as the contribution made to system latency by different layers
in the architecture.

The most critical of measurements looked at the effect of additional Web-
application layering on the execution times of individual components of a larger

Analysis and Evaluation of Service Oriented Architectures 171

system. The IRDB search engine component was used for this test because search
operations take a non-trivial (and therefore measurable) amount of time and the
pre-packaged component includes a direct interface to the search engine that
allows bypassing of the ODL protocol layer.

For test data, a mirror of the ETD Union Archive was created and this then
was harvested and indexed by an instance of the IRDB component. 7163 items
were contained in this collection, each with metadata in the Dublin Core format.

The test was to execute a search for a given query. Three queries were used:
“computer science testing”, “machine learning”, and “experiments”. At most
the first 1000 results were requested in each case. Each query was executed 100
times by a script to minimise the effect of the script on the overall performance.
The first run of each experiment was discarded to minimise disk access penalties,
and an average of the next 5 runs was taken in each case.

Six runs were made for each query:

1. Executing lynx to submit a ListIdentifiers query through the Web server
interface.

2. Executing wget to submit a ListIdentifiers query through the Web server
interface.

3. Using custom-written HTTP socket code to submit a ListIdentifiers query
through the Web server interface.

4. Executing the search script directly from the command-line, thereby bypass-
ing the Web server.

5. Executing testsearch.pl to bypass both the Web server and the ODL layer.
6. Using direct API calls to the IR engine, without spawning a copy of test-

search.pl in each iteration.

The time was measured as the “wall-clock time” reported by the bash utility
program “time” from the time a run started to the time it ended. The script
that ran the experiment controlled the number of iterations (100, in this case)
and executed the appropriate code in each of the 6 cases above. In each case,
the output was completely collected and then immediately discarded - thus,
each iteration contributed the complete time between submitting a request and
obtaining the last byte of the associated response, hereafter referred to as the
execution time.

It was noticable from the measured times that execution time increases as
more layers are introduced into the component. This increase is not always a
large proportion of the total time, but the difference between Test-1 and Test-6
is significant. The time differences between pairs of consecutive tests is indicated
in Table 2.

Test-1, Test-2 and Test-3 illustrate the differences in times due to the use
of different HTTP clients. In Test-1, the fully-featured text-mode Web browser
lynx was used. In Test-2, wget was used instead, and the performance improved
because wget is a smaller application that just downloads files. Test-3 avoided the
overhead of spawning an external client application altogether by using custom-
written network socket routines to connect to the server and retrieve responses

172 H. Suleman

Table 2. Time differences between pairs of consecutive tests

Query Test1-2 Test2-3 Test3-4 Test4-5 Test5-6

“computer science testing” 4.52 1.04 0.67 0.33 8.57

“machine learning” 3.72 0.63 0.58 0.22 10.62

“experiments” 4.26 0.94 0.35 0.66 8.53

to requests. The differences are only slight but there is a consistent decrease for
all queries.

The difference between Test-3 and Test-4 is due to the effect of requests
and responses passing through the HTTP client and the Web server. While no
processes were spawned at the client side in Test-3, a process was still spawned
by the Web server to handle each request at the back-end. This script was run
directly in Test-4, so the difference in time is due solely to the request being
routed through the Web server. This difference is small, so it suggests that the
Web server does not itself contribute much to the total execution time.

The difference between Test-4 and Test-5 is due to the ODL-Search software
layer that handles the marshalling and unmarshalling of CGI parameters and
the generation of XML responses from the raw list of identifiers returned by the
IR engine. This difference is also small, indicating that the additional work done
by the ODL layer does not contribute much to the total time of execution.

The difference between Test-5 and Test-6 is due to the spawning of a new
process each time the IRDB component is used. This difference is substantial
and indicates that process startup is a major component of the total execution
time.

In general, the execution times for the IRDB component (as representative
of ODL components in general) were much higher than the execution times for
direct API calls. However, this difference in execution time is due largely to
the spawning of new processes for each request. The ODL layer and the Web
server contribute only a small amount to the total increase in execution time.
As a follow-on experiment, different Web application acceleration technologies
were used to verify that no substantial execution speed penalty need be incurred
when adopting a service-oriented component approach to system development
(details of this experiment can be found in [16]). This illustrated, in particular,
that there is not a significant difference between using direct API calls and
invoking a Web service. Ultimately, these experiments confirm that there is little
cause for concern, performance-wise, if Web technology is chosen wisely – for
example, using persistent Web applications such as servlets for Java applications
or SpeedyCGI for Perl applications.

Analysis and Evaluation of Service Oriented Architectures 173

5 Conclusions

The Service Oriented Architecture is still a fairly new concept in DL systems,
with most systems supporting one or two external interfaces, for example OAI-
PMH. This work has investigated the applicability of SOA as a fundamental
architecture within the system, an analysis of which has demonstrated its fea-
sibility according to multiple criteria, while exposing issues that need to be
considered in future designs.

6 Future Work

The most important aspect highlighted by ongoing experiments was the need
for better and simpler management of components, so that the complexity of
deconstructing a monolithic system into service-oriented components did not
fundamentally increase the complexity of overall system management. To this
end, the ongoing “Flexible Digital Libraries” project is investigating how ex-
ternal interfaces can be defined for remote management of components, thus
enabling automatic aggregration and configuration of components by installa-
tion managers and real-time component management systems. The first of such
systems to be built, BLOX [11], allows a user to build a system visually using
instances of Web-accessible components residing on remote machines. Ongoing
work is looking into how systems built with such an interface can be packaged
and redeployed, thus bridging the gap between components and monolithic sys-
tems from a system installation perspective.

This work naturally lends itself to a future architecture that allows migration
and replication of components to support “component farms” as a replacement
of “server farms”, as well as peer-to-peer and grid computing paradigms, where
services are needs-based and location-independent.

At the same time, some effort needs to go into how services are orches-
trated and composed/aggregrated at a higher level to perform useful functions
needed by users. The WS-Flow and WS-Choreography activities are useful start-
ing points but more investigation is needed into their suitability for integration
with user interface and workflow design as a front-end to the component farms
envisioned as the back-end of future Web-based information applications.

References

1. Ariba, Inc., IBM and Microsoft (2000), UDDI Technical White Paper, 6 September

2000. Available http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf

2. Christensen, E., F. Curbera, G. Meredith and S. Weerawarana (2001), Web Services

Description Language (WSDL) 1.1, W3C. Available http://www.w3.org/TR/wsdl

3. Congia, Sergio, Michael Gaylord, Bhavik Merchant and Hussein Suleman (2004),

“Applying SOAP to OAI-PMH”, to appear in Proceedings of ECDL2004, Bath,

UK, 12-17 September 2004.

174 H. Suleman

4. Gudgin, M., M. Hadley, N. Mendelsohn, J. Moreau and H. F. Nielson (2003), SOAP

Version 1.2 Part 1: Messaging Framework and Part 2: Adjuncts, W3C, 24 June

2003. Available http://www.w3.org/TR/2003/REC-soap12-part1-2003-0624/ and

http://www.w3.org/TR/2003/REC-soap12-part2-2003-0624/

5. Fox, Edward A., Deborah Knox, Lillian Cassel, John A. N. Lee, Manuel Pérez-

Quiñones, John Impagliazzo and C. Lee Giles (2002), CITIDEL: Computing

and Information Technology Interactive Digital Educational Library. Website

http://www.citidel.org

6. Halbert, M. (2002), AmericanSouth.org. Website http://www.americansouth.org

7. Lagoze, Carl, Herbert Van de Sompel, Michael Nelson and Simeon

Warner (2002), The Open Archives Initiative Protocol for Metadata Har-

vesting Version 2.0, Open Archives Initiative, June 2002. Available

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

8. Lagoze, Carl, Walter Hoehn, David Millman, William Arms, Stoney Gan, Dianne

Hillmann, Christopher Ingram, Dean Krafft, Richard Marisa, Jon Phipps, John

Saylor, Carol Terrizzi, James Allan, Sergio Guzman-Lara and Tom Kalt (2002),

“Core Services in the Architecture of the National Science Digital Library (NSDL)”,

in Proceedings of Second ACM/IEEE-CS Joint Conference on Digital Libraries,

Portland, OR, USA, 14-18 July 2002, pp. 201-209.

9. Liu, Xiaoming, Kurt Maly, Mohammad Zubair and Michael L. Nelson (2001),

“Arc: an OAI service provider for cross-archive searching”, in Proceedings of First

ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, VA, USA, 24-28

June 2001, pp. 65-66.

10. Luo, Ming (2002), Digital Libraries in a Box. Website http://dlbox.nudl.org

11. Moore, David, Stephen Emslie and Hussein Suleman (2003), BLOX: Visual Digital

Library Building, Technical Report CS03-20-00, Department of Computer Science,

University of Cape Town. Available http://pubs.cs.uct.ac.za/

12. Nava Muñoz, and Sandra Edith (2002), Federación de Bibliotecas Digitales uti-

lizando Agentes Móviles (Digital Libraries Federation using Mobile Agents), Mas-

ter’s thesis, Universidad de las Américas Puebla.

13. Suleman, Hussein, and Edward A. Fox (2001), “A Framework for Building Open

Digital Libraries”, in D-Lib Magazine, Vol. 7, No. 12, December 2001. Available

http://www.dlib.org/dlib/december01/suleman/12suleman.html

14. Suleman, H., and E. A. Fox (2002), “Designing Protocols in Support of Digital

Library Componentization”, 6th European Conference on Research and Advanced

Technology for Digital Libraries (ECDL2002), Rome, Italy, 16-18 September 2002.

15. Suleman, H., and E. A. Fox (2002), “Towards Universal Accessibility of ETDs:

Building the NDLTD Union Archive”, Fifth International Symposium on Electronic

Theses and Dissertations (ETD2002), Provo, Utah, USA, 30 May-1 June 2002.Avail-

able http://www.husseinsspace.com/publications/etd 2002 paper union.pdf

16. Suleman, H. (2002), Open Digital Libraries, Ph.D. dissertation, Virginia Tech.

Available http://scholar.lib.vt.edu/theses/available/etd-11222002-155624/

17. Wang, J. (2002), A Lightweight Protocol Between Visualization Tools and Digital

Libraries, Master’s Thesis, Virginia Polytechnic Institute and State University.

18. Witten, I. H., R. J. McNab, S. J. Boddie and D. Bainbridge (2000), “Greenstone:

A Comprehensive Open-Source Digital Library Software System”, in Proceedings

of Fifth ACM Conference of Digital Libraries, San Antonio, Texas, USA, 2-7 June

2000, pp. 113-121.

19. Yang, J. (2003), “Web Service Componentization”, in Communications of the

ACM, Vol. 46, No. 10, October 2003, ACM Press, pp. 35-40.

Towards a Global Infrastructure for Georeferenced
Information

Michael Freeston

Research Coordinator, Alexandria Digital Library Project
University of California Santa Barbara USA

freeston@alexandria.ucsb.edu

Abstract. This paper aims to encourage an appreciation of the value of
georeference in digital libraries as a complementary search paradigm to more
conventional text-based information retrieval and indexing techniques. In
particular, it discusses the concept of the Digital Earth, and analyses why this
concept has so far failed to make the transition from a research idea to a viable
knowledge discovery tool. The analysis leads to the identification of a wider
and more fundamental issue: the place of digital libraries in the technical and
administrative infrastructure of the next generation of the World Wide Web –
the so-called Cyberinfrastructure. The argument is made that it is the Grid
community which is currently taking the lead in defining this infrastructure, and
that future digital library research – including the development of a global
infrastructure for geospatial information – should be focused on developing
knowledge management and archiving systems as the foundation of the
enabling technology for the Grid.

1 Introduction
The ultimate objective of the Alexandria Digital Library Project [1] is to build a
global infrastructure for georeferenced information, within the wider context of a
global cyberinfrastructure. We emphasize the distinction between geo-referenced and
geo-spatial: geo-spatial information refers to objects which possess a physical
location or extent on the surface of the Earth, whereas geo-referenced information
refers to any kind of information with which a physical location can be logically
associated. For example, a book which describes a place may have the location of that
place - usually expressed in latitude and longitude - associated with it.

Access to information by geo-reference is the basis for the paradigm of the Digital
Earth, a movement given a powerful political impetus in the United States through a
speech by Vice-President Gore in 1998:

"I believe we need a Digital Earth: a multi-resolution, three-dimensional
representation of the planet, into which we can embed vast quantities of geo-
referenced data …Earth as it appears from space ….continents, …regions, countries,
cities ….land cover, distribution of plant and animal species, real-time weather, roads,
political boundaries, and population…. digitized maps overlaid on the surface of the
Digital Earth, newsreel footage, oral history, newspapers and other primary sources
…[searching] through space, [and traveling] through time" [2].

176 M. Freeston

This vision clearly widens the scope of geo-referenced information to include any
information to which a geo-spatial reference can be attached: a guide book, a
photograph, a historical event, an archaeological find - a vision which is convincing
and intuitive. It speaks to the fact that, far more than we usually realize, our cognitive
and reasoning processes are spatially and temporally oriented. It does not, of course,
replace more conventional means of classifying and ordering information. But it does
offer a very natural, immediate and exciting way of exploring models of the world, as
a user-friendly complement to conventional library search techniques.

It is therefore surprising and disappointing that progress in the years since this
speech has been so slow. In the US there have been testbeds, focusing mainly on
natural disaster scenarios, but these have very much been prototypes of ad hoc
construction, and have resulted in little or nothing of any wider and/or longer-term
applicability. Even more surprising, the concept of the Digital Earth seems hardly to
have caught the imagination of the research community in Europe at all, as a search of
EC and national projects shows. In our view, this is because there has so far been too
little emphasis on the "tough technical issues" referred to - but not identified - in a
subsequent passage of the Gore speech. We believe that the main problem is that there
has not yet been a sufficiently coherent attack on the fundamental issues relating to
the establishment of a global georeferenced information infrastructure. Nor has there
been an attempt to identify those specific aspects which are essential for the support
of the Digital Earth concept.

2 The technical challenge

So what are the tough technical issues? First, we believe there is a need to develop
a new kind of world wide web, or rather, two parallel webs – the ephemeral (here
today and gone tomorrow) and the persistent. The transience of information on
today’s ephemeral web is clearly not in itself a negative attribute: it allows
information creativity and transfer at a rate previously unimaginable. But in the
excitement for this new medium, the importance and value of traditional libraries has
tended to be forgotten, or at least devalued. Yet we contend that the traditional social
and administrative structures which have been responsible for conserving the world’s
accumulated knowledge in the past are the natural guardians of the new digital
knowledge, in the same way that they inherited responsibility for printed books. So
we envision a persistent web: a global network of interoperating digital libraries and
services, which will become the repository of all knowledge deemed worthy of
indefinite preservation. It is often forgotten that the first function of a traditional
library is to decide what is worth keeping. So in our vision, knowledge will constantly
flow – but through a filter – from the ephemeral to the persistent web.

Second, we observe a strange contradiction between the generally accepted object-
oriented way in which at least computer scientists model the world, and the way in
which knowledge is stored in libraries. We do not know of any university which holds
a library of active objects i.e. instances of data structures with associated behaviors.

Towards a Global Infrastructure for Georeferenced Information 177

Software libraries are still considered quite separate from conventional libraries – and
very different. And yet, as digital libraries expand the types of objects of which they
build collections, it becomes ever more obvious that they should also collect
corresponding methods/services which are naturally associated with the objects. Even
with an electronic book, there is a need for associated methods: as the simplest
example, the blind need a service to read the book to them.

This leads us to the further observation that almost all applications on the web
today are vertically integrated i.e. composed of (possibly) several layers of services
over which neither the user nor the interacting services themselves have any control
or choice. There is no concept of a user or an intelligent agent or broker selecting a
suite of services themselves from a library of alternatives. This is extremely limiting
and inflexible, and the major reason, we believe, why attempts at integrated Digital
Earth scenarios have so far been unconvincing – they cannot be reconfigured ‘on the
fly’ to new scenarios.

The central technical objective of our vision, therefore, is to build a framework for
a global persistent web of digital libraries of active objects and flexible, open services
which are both vertically and horizontally interoperable, and are themselves stored in
the libraries as object methods.

3 A four-layer model of the persistent web

Figure 1: A four-layer model for a global information infrastructure

 User Workspaces; Visualisation Systems Virtual
Laboratories; Virtual Libraries

4

Personal Libraries/Collections; User Services
User Views over Distributed Resources

3

Portals/Subject Gateways ('Web
libraries')

R i I lli A

2

Digital Libraries and Digital Archives
Active Objects + Tools; Filtering, Classification,

1

178 M. Freeston

Our overall conception of the framework for a global information infrastructure is
represented in the four-layer model illustrated in Figure 1. This model is an attempt to
partition functionality - it does not imply anything about how the execution of that
functionality may be physically or logically distributed. It does however begin to
develop interface levels at which interoperability standards may be defined.

The foundation of this framework is the digital library and the digital archive. The
term 'digital library' is now loosely used to describe any web application which serves
information to users. For us, however, a digital library must be first and foremost a
library, i.e. it must be a managed collection of information and services with all the
functions of a traditional library: selection policies, classification systems (subject
indexing), catalogues, metadata (content description) standards, and user services
such as searching, delivery and helpdesk functions [3,4,5].

We therefore emphasize the importance of the digital archive, as a library which
has the responsibility for the persistent storage and physical preservation of its digital
collections. In our view, this responsibility will be taken in future primarily by
national, academic and public libraries, as a natural yet challenging extension of the
role which they have always taken. We foresee the development of two parallel and
interconnected worlds on the web: the one - which we have today - facilitates the
rapid exchange of new information and ideas. The other - the global knowledge
infrastructure - will hold all accumulated knowledge distilled from this invaluable but
ephemeral information exchange. At present, unfortunately, this distinction is not
clear, because no formal knowledge infrastructure exists, and the library world has
not yet fully risen to the challenge which it faces.

In our overall structure, we envisage that subject gateways (level 2) will provide
indexes to both aspects of the web, i.e. to ephemeral web sites and to permanent
archives at level 1. Level 3 contains user services, i.e. software which analyses and
processes the archived data sources in some way. (Note, however, that these services
will be stored in an archive at level 1). Level 4 is the user presentation level -
primarily visualization.

The key technology supporting a georeferenced DL infrastructure at all levels is a
database system which includes spatial operators and a subset of Geographic
Information System (GIS) functionalities. This geospatial functionality, however,
must be combined with text and date information retrieval and special services such
as digital gazetteers designed for DL and information retrieval purposes [6,7]. This
combination of functionality greatly expands the types of information retrieval and
evaluation that can be supported, some of which are completely beyond the
capabilities of conventional database and information retrieval systems.

At the archive and portal levels and the personal libraries at level 3, the database
system needs to support the metadata models associated with the object types in each
library collection. These may be based on the metadata standards designed for
geospatial information (e.g., the FGDC metadata standard or its ISO equivalent) [8] or
on the MARC standard used for library cataloging. An added challenge is to
represent information objects, datasets, modeling and simulation software, and other
services in such a way that programmatic interfaces can be designed to permit on-the-

Towards a Global Infrastructure for Georeferenced Information 179

fly identification and utilization of DL objects for visualizations and simulations and
other manipulations that cross the four-levels of the conceptual framework.

4 A geo-spatial illustration

As a geo-spatial example, an archive might contain aerial photographs of a
particular region. The user wants to 'fly through' this area in a full virtual reality
environment, or at least through an interactive and dynamic visual display. (S)he must
first invoke a user service (from an archive) to perform this function. The service may
consult a gateway at level 2 to select one of several archives which contain aerial
photography of the specified region, or may combine the contents of several archives.
Or the user may be offered a choice of archives, with metadata provided to aid in the
execution of that choice. The service then dynamically transforms a subset of the
archive data into an appropriate form to supply to the visualization environment at
level 4. If access to the archives is very time-consuming, or if the user buys the data,
then (s)he may wish to archive it locally for subsequent use. There must therefore be a
service at level 3 supporting a personal library (for which the term 'derived' library
has recently been coined) available to the user environment at level 4.

To appreciate the nature of the challenge as we see it, and the magnitude of it, we
have only to consider a conventional approach to this 'fly-through' example. Without
a library of portable software, the user has somehow to locate, acquire and install a
fly-through program. And it is almost certain that, in order to facilitate the interactive
display of the fly-through in real time, this program will require data sets in a specific
pre-defined format.

This is a closed system with no choices. In contrast, we want to create an open
system whereby the user in this example can first select a fly-through program (a
level 3 service), with known functionality, from an archive (level 1). When the user
runs this program and selects a fly-through region, the program itself will send out a
request to a software agent (level 2) to locate an archive source for the requested fly-
through imagery or maps. In all probability the archive data will not be in the
appropriate format, and a conversion service - or a sequence of services - will have to
be invoked automatically to perform the necessary transformations. These services
must also be identified and retrieved from a level 1 library.

The challenge is to make this work, and to make it work in real time. Clearly this
requires high-speed access to - and high-speed processing of - large data sets. But it is
the move from a closed to an open computing environment which presents the really
new challenges. For example, at the service and agent levels, how is the fly-through
program to specify precisely the type of imagery or map which it needs? And how is
the agent to determine what sequence of conversions might be needed, and the
location(s) of suitable conversion software, and the type of the ultimate target source
data in an archive?

We believe that most of the tools and techniques needed to answer these questions
and solve these problems already exist: scripting languages; ontologies; description
logics; MIME types; self-describing documents (XML) and files; metadata standards;
object-oriented programming languages and database systems; web search engines;

180 M. Freeston

web crawlers; software agents; and open hypermedia systems. The challenge is to
construct a coherent georeferenced information infrastructure from these components.

To meet this challenge, we propose to base the foundation layer of the
infrastructure on components already developed within the Alexandria (geo-
referenced) Digital Library; the persistent storage technology (SRB) from San Diego
Supercomputer Center [9], and the Globus grid toolkit [10]. Upon this foundation,
the higher-level services of the four-layer model, including the key horizontal and
vertical service brokerage mechanisms and visualization systems, can be constructed.

5 Relationship to The Grid
Since the early 60’s, if not earlier, the database community has dreamed of a network
of independent, heterogeneous computer systems offering interoperable data and
services. Semantic interoperability has remained an elusive goal, but the
extraordinarily rapid rise and success of the World Wide Web has demonstrated how
much can be achieved in that direction with what is really a very simple set of well-
designed open standards. For all that, the Web is still essentially a passive medium:
we have not yet realized the long-held vision of user-specified tasks being resolved by
intelligent software agents into a sequence of services assembled and executed within
a distributed environment of data and software resources.

However, the Grid community, which is still widely dismissed within the DL
community as interested only in setting up computer networks for massively parallel
computations, is in fact evolving rapidly towards this vision of a Web of active and
coordinated services, and is making rapid advances in the development of
interoperability standards and protocols. Further, recent papers in the field clearly
recognize the need for metadata repositories describing data and software archives. It
is true that the application focus in this community is still mainly restricted to large
scientific data sets and associated data analysis services, but this is an area which the
DL community has ignored almost entirely.
It is extraordinary and regrettable that almost no DL research is being devoted to the
question of how to integrate DLs into this developing infrastructure, despite the fact
that the whole future of digital libraries, and perhaps of all libraries, depends on the
answer to this question. It is to be hoped that the recent cyberinfrastructure report in
the US [10], which is seen as the basis of a major new research initiative by the
National Science Foundation, will encourage research in this direction. But, while it
envisions the development of a multi-layer infrastructure very similar to that proposed
above, there is a danger that its emphasis on science and engineering applications may
reinforce rather than reconcile the division between the Grid and DL communities.

6 The way forward
We nevertheless argue that future DL research should focus on integration within the
cyberinfrastructure framework being developed by the Grid community, and on the
development of DLs of active encapsulated objects which include large data sets and
associated analysis tools. Only in this way can we ensure that DLs, and the essential

Towards a Global Infrastructure for Georeferenced Information 181

expertise of the library community, are properly represented and integrated in future
generations of Web technology.
We also see the need for the convergence of research efforts which have been
conducted over many years in a number of disciplines – not least in library science –
in the area of knowledge organization systems (KOSs) such as thesauri, ontologies
and concept maps, and in the area of georeferenced information – in particular,
gazetteers. We see these KOSs as essential adjuncts to a DL: not library collections in
themselves, but capturing semantic and conceptual knowledge to aid in information
search and interpretation of library information. Specifically, we aim to use KOS
tools to advance from keyword-based search to concept-based search, in conjunction
with georeferenced and temporal search.
We also aim to restore the original Digital Earth vision. In the intervening years since
the Gore speech, the Digital Earth concept has unfortunately acquired a much more
restricted meaning. It has been adopted by the Earth Sciences community to describe
their ultimate vision of capturing a complete digital model of the entire planet – or at
least of capturing a geospatial and temporal model of constantly increasing detail and
accuracy. This conception is driven mainly by research to model physical phenomena
on a global scale, such as weather forecasting, climate change modeling and
environmental monitoring, and is seen as the ultimate GIS system. Our objective,
however, is to restore the original vision by focusing on logical georeferencing of
cultural knowledge. A key aspect of this research is the attempt to unify geospatial
and ‘conventional’ (i.e. text-based) DLs, by introducing geospatial search as a
complementary library search paradigm. A major challenge is the development of
efficient and accurate technology for automated georeferencing of (digitized) text
documents. In this context, a new generation of gazetteers is assuming a major role.
A full instantiation of our conception of the Digital Earth would, however, need to
subsume the narrower geospatial concept, and this raises another major and exciting
challenge in the development of georeferenced DLs - a challenge which clearly
illustrates the overall need to integrate DLs within an active Grid computing
framework: can we implement GIS functionality as a set of distributed services on
geospatial DL collections within the cyberinfrastructure?

182 M. Freeston

References

1. The Alexandria Digital Library: Publications, research papers, current
bibliography. http://www.alexandria.ucsb.edu.

2. A. Gore. The Digital Earth: Understanding our planet in the 21st century.
http://www.opengis.org/info/pubaffairs/ALGORE.html.

3. S. Harter. What is a Digital Library? Definitions, Content and Issues. Int. Conf.

on Digital Libraries and Information Services for the 21st Century, Seoul, South
Korea, September 10-13, 1996. http://php.indiana.edu/~harter/korea-paper.htm

4. M. Collier. Towards a general theory of the Digital Library. Proc. Int. Symp. on

Research, Development and Practice in Digital Libraries (ISDL97), Ibaraki,
Japan, November 18-27, 1997.
http://www.dl.ulis.ac.jp/ISDL97/proceedings/collier.html

5. W. Arms, Digital Libraries. Pub. MIT press, December 1999. ISBN 0-262-
01180-8

6. L. Hill. ADL gazetteer content standard.
http://www.alexandria.ucsb.edu/ lhill/aleximp/gaz content standard.html.

7. L. Hill. Thesaurus of geographic feature type terminology.
http://www.alexandria.ucsb.edu/ lhill/html/index.htm.

8. Federal Geographic Data Committee (FGDC). Geospatial data clearinghouse
activity. http://fgdc.er.usgs.gov/Clearinghouse/Clearinghouse.html.

9. A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Jagatheesan,

C. Cowart, Bing Zhu, Sheau-Yen Chen, R. Olschanowsky. Storage Resource
Broker - Managing Distributed Data in a Grid. Submitted to Computer Society
of India Journal, special issue on SAN, 2003.
http://www.npaci.edu/DICE/Pubs/CSI-paper-sent.doc

10. The Globus Toolkit http://www.globus.org

11. The Atkins Report http://www.cise.nsf.gov/sci/reports/toc.cfm

Towards a Service-oriented Architecture
for Collaborative Management of
Heterogeneous Cultural Resources

Jérôme Godard†?, Fréd́eric Andr̀es‡, Elham Andaroodi†, and Katsumi Maruyama‡

National Institute of Informatics, The Graduate School
Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan

& SOKENDAI - The Graduate University of Advanced Studies
Shonan Village, Hayama, Kanagawa 240-0193, Japan

†{jerome,elham }@grad.nii.ac.jp, ‡{andres,maruyama }@nii.ac.jp

Abstract. Managing cultural knowledge for collaborative projects generates many
issues. We are facing them as we build a collaborative digital archive related to
the historical silk roads. We present here the architecture we defined in order to
support highly relevant resource management and to provide adaptive services.

1 Introduction

This paper gives an overview of a generic architecture we are currently building as part
of the the Digital Silk Roads project (DSR [11]). Initiated by UNESCO and NII, DSR
aims at providing a wide area collaborative portal for research and education in order
to collect, to archive, to organize and to disseminate all therelevantinformation that
can be gathered about the historical silk roads. This implies to deal with any kind of
multilingual digital document; it goes from architecture-related pictures showing parts
of buildings to traditional songs that characterize some social behavior. Therefore, DSR
wants to provide adaptive services to users, depending on all the knowledge we have on
theenvironment(user himself, communities he’s involved in, and device he’s using); we
are dealing with more than 400 experts in many fields providing annotatedresources
(i.e. monotype multimedia digital documents) and the set of end users is indefinite.
This vision requires to define an advanced model for the classification, the evaluation,
and the distribution of multilingual multidisciplinary culturalresources. Our approach
fully relies on state of the art knowledge management strategies. We define a global
collaborative architecture that allows us to handle resources from the gathering to the
dissemination.

In the following section, we introduce our testbed project and its portal. Then, after
showing our interest in ontology, we present our information management model in
section 3. Based on this model, the fourth section describes and define the personalized
services we are providing for collaborative environments. The last section will give
some forthcoming issues.

? This research is partially supported by a grant (bourse Lavoisier) from the French Ministry of
Foreign Affairs (Ministère des Affaires Etrang̀eres).

184 J. Godard, F. Andrès, E. Andaroodi, K. Maruyama

2 DSR Framework

2.1 Description

We are involved in the Digital Silk Roads project (DSR [11]), which is focused on
the collaborative management of digital multilingual cultural documents; it is handling
all kinds of multimedia documents (including text-based, image, audio, video types)
related to the historical silk roads. DSR aims at creating a global repository that enables
us to collect, validate, preserve, classify and disseminate cultural resources. Building
such a system is a great challenge, and requires to fulfill some commitments: first, it
must provide an appropriate knowledge management framework that supports all the
tasks it aims at covering. Then, documents and annotations have to be gathered and to
be well structured. Thirdly, the data has to be stored safely. Afterwards, it is necessary
to ensure an accurate access to the resources for each user. Finally, the distribution of
the information has to be optimized in order to propose adaptive services. The global
framework of DSR with its data distribution scheme is illustrated on Fig.1.

NII Server

- temporary

- cleaned

- validated

Unesco Server

back-up < NII

annotated

resources

Local Servers

(1/Unesco member country)

Resources capture
400 specialists

Annotation

process

X
X

Community 1 Community 2

Fig. 1. DSR framework

The main issue we are facing with DSR is heterogeneity; we are considering very
varied data (as said before), users and devices. DSR users are divided into two cate-
gories: contributors and end users who are supposed to manipulate any kind of device

Towards a Service-oriented Architecture for Collaborative Management 185

(from mobile phones to mainframe computers). Since DSR is a collaborative project,
it is important to register the users as members of communities (NB each community
has anaccess point, which is a device being a kind of sub-server dedicated to the com-
munity); this enables us to increase the environmental knowledge that is required for
performing adaptive services based on users’ status and abilities.

2.2 ASPICO Platform, an Open Archives Initiative based Digital Archive

Several research projects such as the arXiv e-print archive1, the Networked Computer
Science Technical Reference Library (NCSTRL)2 or the Kepler project [9] in the field
of digital libraries or digital research archives, tried to solve issues of sharing research
information. They generally provide a common interface to the technical report col-
lections based on the Open Archives Initiative (OAI) infrastructure3. This mechanism
enables interoperability among large scale distributed digital archives. In many cases,
the network environment services include automated registration service, tracking of
connected clients, and harvesting service of clients’ metadata. Query service enables
accesses to resources and to its related metadata. OAI has created a protocol (Open
Archives Initiative Protocol for Metadata Harvesting, OAI-PMH) based on the stan-
dard technologies HTTP and XML as well as the Dublin Core metadata scheme4. OAI
presently supports the multipurpose resource description standard Dublin Core which
is simple to use and versatile. Shortcomings of such research projects generally in-
clude a too general metadata attributes schema for fine-grained information (e.g. cul-
tural domains) and the non-support of community building. However, OAI-PMH itself
has been created to provide an XML-wrapper for metadata exchange. It has been ex-
tended in the Digital Silk Roads project to support multi-disciplinary metadata schemas
such as Object ID5 for historical buildings, Categories for the Description of Works of
Art (CDWA) for historical artifacts, or VRA6 for visual resources. In order to avoid
the different shortcomings and to provide a community framework for the research and
education on Digital Silk Roads, we proposed and built the Advanced Scientific Por-
tal for International COoperations on Digital Silk Roads platform7 (ASPICO-DSR).
ASPICO-DSR is OAI-PMH 2.0 compliant as part of the distributed collaborative archi-
tecture as it is shown in Fig.2. The platform provides services for data handling, reg-
istration for identification, and metadata handling based on cross-disciplinary metadata
schemas to create OAI-compliant metadata and resource management. Researchers can
annotate resources according to their point of views and can share their comments ac-
cording to cross-disciplinary and multi cultural backgrounds. Furthermore, the cultural
resource server includes an ontology management service to support multi-lingual on-
tologies of cross-disciplinary metadata standards and multi-lingual ontologies in Digital

1 arXiv.org e-Print archive: http://arxiv.org/
2 Networked Computer Science Technical Reference Library (NCSTRL): http://www.ncstrl.org/
3 Open Archives Initiative http://www.openarchives.org/
4 Dublin Core: http://dublincore.org/
5 Object ID http://www.object-id.com/
6 Visual Resources Association: http://www.vraweb.org/
7 ASPICO-DSR: http://aspico-dsr.org

186 J. Godard, F. Andrès, E. Andaroodi, K. Maruyama

Silk Roads related fields (e.g. architecture, history, geography, art. . .). We currently use
Prot́eǵe 20008 as the Ontology manager. The start point of the ASPICO storage man-
agement has been the Dspace9. We also have extended Dspace core system to produce
a multi-lingual platform and to support DSR metadata.

Fig. 2. ASPICO architecture

3 Knowledge Management

3.1 Handling Ontologies

DSR’s ASPICO portal has to deal with large repository of multimedia of historical and
cultural resources which come along with the web. For instance, it provides access to
databases containing cultural heritage photography. Meanwhile semantic understand-
ing, access and usages of these materials are not fully possible due to the semantic
gap for their annotation and retrieval [12]. There are still shortcomings of appropriate
methods and tools for multimedia annotation, browsing and retrieval to help the users
to find what they are really looking for. On the other hand, historical and cultural con-
tent of these databases make the process more complicated as there might be different
semantic interpretations toward the subject of the visual information. Development and
application of multi-lingual multimedia ontologies for the conceptual recognition of
the content of cultural heritages of silk roads by using domain knowledge is the ap-
proach of ASPICO to improve multimedia semantic annotation and retrieval. Ontology
is defined as a specification of a conceptualization or as a set of concept-definition,
a representational vocabulary10. Another definition of ontology which emphasizes the

8 http://protege.stanford.edu/
9 DSpace Federation http://www.dspace.org/

10 Gruber-Tom, ”What is an ontology?”
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

Towards a Service-oriented Architecture for Collaborative Management 187

component-base recognition of a subject is a declarative model of the terms and re-
lationships in a domain or, the theory of objects11. Based on these definitions ontol-
ogy provides a hierarchical structured terminology of a domain and is completed by
defining different relationships between term-sets. Ontology is explicitly declared to
be helpful for knowledge representation, knowledge sharing and integration, portability
issues. . . Ontology has application in artificial intelligence, natural language process-
ing, multimedia database. . . Examples of ontology can widely be found in Biomedicine.
Meanwhile recently in the field of multimedia enhanced annotation and retrieval, like
photo annotation and ontology-based image retrieval and in some cases with relation to
cultural heritage and art objects ontologies are designed and applied. In the field of cul-
tural heritage, through application of domain ontology, the domain experts can develop
semantic annotation for the multimedia data like images, and users can have access to a
model of the vocabularies of the subject which will guide them for a more standard and
intelligent search through database and will lead to a better retrieval.

DSR is directly involved in servicing ontology management on a case study of archi-
tectural cultural heritage named caravanserais12. This ontology tries to design a visual
lexical model of terms or components in architectural relic and relationship between
components based on the physical and spatial characteristics of the components. It also
tries to design the ontology in different languages with the help of UNESCO expert
team in order to exchange the content with experts and cover the needs of multilingual
users [2]. This ontology, which is designed with Protéǵe 2000 environment (version
2.1) will be accesible as part of ASPICO and will be used by domain experts in order
to reach a consensus for its content to be extended to other languages and typologies
of architectural heritage. Developing ontology on this case study as part of the portal
is considered as a proper example for involvement of domain experts over internet in
knowledge management and application of it can help enhanced access to large visual
data which DSR is dealing with.

3.2 IMAM , an Information Modeling for Adaptive Management

We have the great opportunity for DSR to be working with more than 400 specialists in
various fields (using 21 languages) who aremotivatedandable to annotate documents
very accurately. These annotations become very valuable once they are related to the
knowledge structure presented above. Then, we need a unified model that enables us to
capture this useful information about the documents and also the available knowledge
about communities, users and devices.

The first requirement that appears to us when aiming at defining a generic model
is to fit standards as much as possible and to adopt efficient technologies (here comes
XML). Then it is necessary to be very rigorous and to describe very precisely the whole
data structure; an information model must be based on a coherent algebraic model that

11 Roberto Poli, ”Framing Ontology - Second Part”
http://www.formalontology.it/Framingsecond.htm

12 This multi-lingual ontology on architecture is constructed as part of a colaboration between
National Institute of Informatics in Japan and the Architecture school of Paris Val de Seine in
France under theDigital Silk Roads Initiative Frameworkin cooperation with UNESCO.

188 J. Godard, F. Andrès, E. Andaroodi, K. Maruyama

can support all the layers of the architecture (physical, logical, semantical, transac-
tional). In our case, it has to handle physical entities (servers,access points, normal
devices), knowledge management entities (resource’s description, community’s, user’s,
and device’sprofiles) and semantic entities (types of documents, i.e.categories, at-
tributes, i.e.descriptors, and characteristics, i.e.descriptors’ values)[6].

In order to categorize and describeresources(i.e. any mono-type multimedia doc-
ument that can be related to at least one topic), we use an ontology-like knowledge
tree calledResource Categorization Tree(RCT,); a node of the RCT is denotedαi. The
knowledge management through the RCT is based on a contextual structure. Our model
aims at describing as clearly as possible the information contained in the annotations
provided on theresources. The primary element in this approach is thedescriptor(δ),
which is a contextual attribute (dimension). The values assigned to the jth descriptor
of the ith node for a specificresourceare denotedσi,j,k. The whole annotation about
a resourceis contained in a complete branch of the RCT calledResource Description
and defined as follows:Dr =

(
<αi>,<δi,j>, <σi,j,k>

)
i=0,...,m−1

j=1,...,p
k=1,...,q

. The information

about communities, users, and devices13 is contained in a quite similar structure called
profile (denotedπ) that is composed ofdescriptorsanddescriptors’ values(without
nodes):π = (<δv>,<σv,w>). We specified DBMS-like operators [5] with the aim to
powerfully manage theresources(e.g.create, insert, edit, intersection, difference. . .)
by usingIMAM.

4 IMAM ’s Services

4.1 Preamble

Services to be proposed to DSR users cover usual database functions, personalized au-
tomated processes, and management of transactions in order to ensure the capability
of the system to work in heterogeneous distributed mobile environments. In fact, more
and more people are showing strong interests in peer-to-peer [1] as a foundation for
creating advanced distributed applications; moreover, innovative sharing strategies are
implemented and used in peer-to-peer [13, 10, 3] and mobile systems [8, 7]. But they
are generally lacking in a unique generic basis for knowledge management that would
allow us taking fully advantage of these powerful distributive environments. We agree
that distributed knowledge management has to assume two principles [4] related to the
classification: autonomy of classification for each knowledge management unit (such
as community), and coordination of these units in order to ensure a global consistency.
Distributed adaptive services require to exploit all the environmental knowledge that
is available about the elements involved. An important category of this knowledge is
related to devices’ states; indeed, knowing if a device is on, in sleep mode, off, if its
battery still has an autonomy of five minutes or four days, or if it has a wired or wireless
connection, etc. helps adapting services that can be delivered to this device. For each
device, we consider a state control that is part of the device’sprofile. And of course

13 NB: a user can be involved in several communities and a device can be shared by different
users being involved in different communities.

Towards a Service-oriented Architecture for Collaborative Management 189

we use the information contained in communities’ and users’profiles. The information
that can be gathered in collaborative environments (i.e. people sharing interests and re-
sources) shall increase the ability to create new kinds of services. Personalized services
finally depend on user-related contexts such as localization, birth date, languages abil-
ities, professional activities, hobbies, communities’ involvement, etc. that give clues to
the system about users’ expectations and abilities. All this information is quite easy to
extract and to manipulate throughIMAM; in the remainder of this section, we present
the two main adaptive services based on our model.

4.2 Authoritarian Data Placement

The main motivation for the data placement is to automatically copy resources that
seems to be very relevant to a user or a community on the appropriate devices. This
operator relies on memory spaces that are allocated on each device for the server to
place the data. Each time aresourceis added to the server, itsResource Descriptionis
used for analyzing the possible correlations with the communities and users interests.
The strategy we are using to evaluate the significance of aresourceplacement on a
device is quite similar to the one used for operatorsim (which evaluates the similarity
between tworesources, see [5]). But in the case of the placement (operator denoted
disp), the descriptorsare replaced by thedescriptors’ values. we extract the ratio of
commondescriptors valueswhere thedescriptorsare similar by using the functionρD:

ρD(A, B) = | TINTER(A, B) |
| TUNION(A,B) | ∈ [0, 1], with:

– TINTER(A,B) = {<σinter > | σinter = σi,j = σk,l,
(σi,j ∈ A) ∧ (σk,l ∈ B) ∧ (δi = δk)}

– TUNION(A,B) = {<σunion > | (σunion ∈ A) Y (σunion ∈ B)}
whereA andB contain ordered families of labels, which are lists of descriptors with
associated values (there can be only one label, in the case of a profile for instance).Y
denotes operatorexclusive-or.

The disp operator first appliesρD to communities. Depending on two threshold
valuessc1 andsc2 (sc1 > sc2), we decide if the resource has to be placed on all the de-
vices used in the community (Case 1 on Fig.5) or only on the community’saccess point
(Case 2 on Fig.5); the operator dispatches theresourceon all devices of a community
for which the value returned byρD is higher thansc1 , and if theresourceseems to be
quite relevant only for a community (i.e. the returned value is betweensc1 andsc2), the
operator copies theresourceon theaccess pointonly. The last option fordisp, when
theresourcedoes not seem to be relevant for a whole community (Case 3 on Fig.5), is
to applyρD on each user in this community; again, this is done by using a threshold
valuesu. If the value returned by the function is higher thansu, then the resource is
placed on the user’s device that is the most able to get it. The selection of the device is
processed by the functionSELECTDEV(i, j) i andj being integers, the function returns
the device (profile) used by thejth member of theith community that has the largest
storage capacity on its placement area (see Fig.3).

We have to mention that each time aresourceis supposed to be placed on a device,
dispfirst checks the ability of the device to store theresourceand if there is not enough

190 J. Godard, F. Andrès, E. Andaroodi, K. Maruyama

SELECTDEV(i, j)

1 device ← ∅
2 a ← 0
3 for k ← 1 to Ki,j

4 do if FSPACE(πdi,j,k) > a andSTATE(di,j,k) = TRUE

5 then a ← FSPACE(πdi,j,k)
6 device ← πdi,j,k

7 return device

Fig. 3. The device selection function pseudo-algorithm

space for it, the operator compares the newresourceto theless interesting resourcethat
is on the placement area of the device. If the newresourceis moreinteresting, then it
shall replace the other one. This is recursively done by the functionPROEMIN(D, π, ρ),
D being a resource description,π a device profile, andρ a value between 0 and 1 (see
Fig.4).

PROEMIN(D, π, ρ)

1 proemin ← TRUE

2 if STATE(π) = TRUE

3 then if ASPACE(π) > SIZE(D)
4 then PUT(D, π)
5 else t ← GETWR(π)
6 if ρ > t[1, 1] andFSPACE(π) > SIZE(D)
7 then DELETE(t[1, 2], π)
8 PROEMIN(D, π)
9 else proemin ← FALSE

10 return proemin

Fig. 4. The Proemin function pseudo-algorithm

Before copying aresourceon a device,dispchecks if the device is online and if it
has enough free space on its placement area (limited predefined space) for theresource
to be stored. The storage capacity (full capacity and empty space) of a device is defined
in order to ensure limits (depending on a minimum and a ratio) that cannot be passed
over; the available space dedicated to automated services on the device must be pre-
cisely defined (default ratio or user’s choice) in order to keep enough memory space for
the user’smanualactivities.disp gets this states’ information from the deviceprofile
via several functions:

– FSPACE(πd) returns the full space allocated for placed data on the deviced (in KB).
– ASPACE(πd) returns the available space in the placement area ond (in KB).

Towards a Service-oriented Architecture for Collaborative Management 191

– SIZE(Dri
) returns the size of Resourceri (in KB).

– STATE(πd) returnsFALSE if the deviced is off, andTRUE if it is on.

Thus appears the update problem: variables we need to handle can change at any
time very irregularly (frequency might anyway be taken into account); for instance, it
is necessary to record the new locations of theresourcein its resource descriptionand
devices’ states. Indeed, to be able taking advantage of the dispatchedresourcesfor the
query management, we have to keep a record of all the locations aresourceis stored
at. So eachPUT andDELETE (see below) implies that theResource Description(which
contains all these locations within thelocations descriptor) is updated. The new version
of theResource Descriptionis first saved on the server, and then it overwrites the other
copies that are on the devices containing theresource. The updates processes have to
take into account the possibility for a device to be offline, and so to ensure that the
update can be performed as soon as the device becomes available. Following the same
strategy, when a device is switched on, it updates its IP address in itsprofile, which
is copied on the server and relatedaccess points(we do not address here the case of
connection loss because of space limitation). We also have to consider the creation of
new communities: each time a community is created, the placement operator must be
applied on the server to check whatresourcesshould be dispatched on the devices of
this community. The functionUPDATEPROF() provides the support described above for
everyResource Descriptionandprofile that has to be updated.

We finally declare all the functions thatdisp uses in order to manipulate there-
sourcesand theirprofiles:

– PUT(r, d) accesses the placement area on the deviced and pastes the Resourcer
there.

– GETPROFCOM(x) (x being the number (i) of the ithcommunity, or the commu-
nity’s identifier comID) returns the profile of the related community.GETPRO-
FUSE(x) works the same way for a user.

– GETAC(πc) returns the profile of theAccess Pointof the communityπc.
– DELETE(x, πd) deletes the resource identified byx on the placement area of the

deviced.
– Each device’s profile contains a table[ri, ρi]i=1...n made ofn columns (n being

the number of resources stored on the device) and two rows (resource identifier
and relatedρD values) such asρD values are increasingly ordered. The function
GETWR(πd) returns this table for the deviced.

– SELECTDEV(i, j) i andj being integers, the function returns the device (profile)
used by thejth member of theith community that has the largest storage capacity
on its placement area (see Fig.3).

NB: some variables are shared and are accessible from all the functions dedicated
to the services; it consists in all the profiles (communities (< πcj >j=1,...,C), users
(< πuj,k

>k=1,...,Uj), and devices (< πdj,k,l
>l=1,...,Lj,k

)), sets’ number of elements
(C is the total number of communities,Uj is the total number of users involved in the
jth community,Ki,j is the total number of devices used by thejth user of theith

community), and threshold values (sc1 , sc2 , su).

192 J. Godard, F. Andrès, E. Andaroodi, K. Maruyama

DISP(Dr)

1 disp ← FALSE

2 for i ← 1 to C
3 do πci ← GETPROFCOM(i)
4 ρ1 ← ρD(Dr, πci)
5 device1 ← GETAC(πci)
6 if ρ1 ≥ sc1

7 then for j ← 1 to Ui ¤ Case 1
8 do πui,j ← GETPROFUSE(i, j) ¤ Case 1
9 device2 ← SELECTDEV(i, j) ¤ Case 1

10 if PROEMIN(Dr, device2 , ρ1) = TRUE ¤ Case 1
11 then UPDATEPROF() ¤ Case 1
12 disp ← TRUE ¤ Case 1
13 elseifsc2 ≤ ρ1 < sc1 andPROEMIN(Dr, device1 , ρ1) = TRUE ¤ Case 2
14 then UPDATEPROF() ¤ Case 2
15 disp ← TRUE ¤ Case 2
16 else forj ← 1 to Ui ¤ Case 3
17 do πui,j ← GETPROFUSE(i, j) ¤ Case 3
18 ρ2 ← ρD(Dr, πuij

) ¤ Case 3
19 device3 ← SELECTDEV(i, j) ¤ Case 3
20 if ρ2 ≥ su anddevice3 6= ∅ ¤ Case 3

andPROEMIN(Dr, device3 , ρ2) = TRUE ¤ Case 3
21 then UPDATEPROF() ¤ Case 3
22 disp ← TRUE ¤ Case 3
23 return disp

Fig. 5. The placement pseudo-algorithm

The disp placement operator has been introduced in [5]; we proposed here a full
description of the pseudo-algorithm (see Fig.5) that moreover takes into account new
features such as checking devices activity and storage capacity.

4.3 Adaptive Query Management

A major benefit of the RCT is to allow us giving an appropriateviewpoint(denotedν) to
each user for a same set ofresources(taking the user’s characteristics and environment
into account). In fact, ourviewpointcan be seen as a query optimizer, since it clears and
modifies an initial set ofresources. It is defined as follows [5]:

ν = ξ ◦ ψ : Rp ×∆p ×Σp ×Π −→ Rq ×∆q ×Σq

(
<Di>i=1,...,p, πe

) Ξ◦Ψ7−→ <Dk>k=1,...,q

wherep is the number of consideredResource Descriptionsandq the number of re-
turnedResource Descriptions(q ≤ p), πe is the profile of the environment e(with
πe = πu ∪ πd, u denotes a user and d a device), andΞ andΨ are two sets of rules:Ξ
contains acceptation rules; if adescriptor valueof theResource Descriptionr (denoted

Towards a Service-oriented Architecture for Collaborative Management 193

Dr) does not respect a rule inΞ, then the set returned byξ does not containDr. Ψ con-
tains transformation rules; if adescriptorof Dr is involved in any rule ofΨ , its value
might be modified depending onπe. Each rule is a test on a pair ofdescriptor values;
one from theResource Descriptionand one from theprofile.
Our query optimization strategy requires a large CPU contribution from the servers and
devices as they have to apply theviewpointon all theResource Descriptionsthey are
receiving from other devices. However, since we are dealing with high resolution mul-
timediaresourcesand as we are reasonably convinced that portable devices processing
capacity will very soon become very high, we claim that the overload on the devices
CPU worths theresources’ selection cost.

The interesting features we are getting from thedisp operator and theviewpoint
can then be enhanced by using an appropriate query management based on our three-
layers architecture (server,access point, normal device). We are currently designing a
distributed query manager based on JXTA and BitTorrent14 (P2P delivery system); in
fact resource descriptionscan partially seen as BitTorrenttrackers, as they contain all
the locations of theresources. We now just have to take advantage ofIMAM’s support
to provide appropriateresourcesto users in the best conditions. Following BitTorrent
strategy, we can provide distributed query processing by using the placed and indexed
data; then a device can access all copies of aresource(even not complete ones).

A simple example of what we want achieve withIMAM: let us consider a class
studying caravans in Iraq with a focus on a the 14th century and looking for people
exchanging specific products. It would be interesting and useful for the students to get
on their laptop maps, pictures, videos that are related to their topic. This could be done
by creating the community some time before the class starts this lesson. The placement
would be then restricted by the viewpoint, being used as a filter for the sets of resources
to be sent on each device. Then the distribution should be improved (regarding time
and bandwidth consumption) by a BitTorrent-like community P2P shared access on the
resources. Moreover, a unified protocol based on JXTA can enable the whole process to
be more efficient and safer.

5 Conclusion

The framework described in this document corresponds to a long-term vision. Indeed,
it requires much time to define the knowledge management structure (i.e. multilingual
ontologies and interrelationships) and to implement the portal that has to gather all the
information and the system that provides the services. At least, we now have a solid
basis for the management of the resources that allow us to design innovative services.
However, many issues are remaining; we need to implement the transaction and query
managers in order to enable users to start using all the portal functionalities. Then,
we have to define some policies to evaluate the relevance and efficiency of adaptive
services (e.g. how to fix the threshold values). We also would like to point out that the
significance of this architecture is not restricted to collaborative cultural projects; we
see valuable possible application in the management of companies’ resources.

14 http://bitconjurer.org/BitTorrent/

194 J. Godard, F. Andrès, E. Andaroodi, K. Maruyama

References

1. Serge Abiteboul. Managing an XML Warehouse in a P2P Context. InProc. of CAiSE, pages
4–13, Klagenfurt, Austria, June 16-18 2003.

2. Elham Andaroodi, Fŕed́eric Andr̀es, Kinji Ono, and Pierre Lebigre. Ontology for cara-
vanserais of Silk Roads: Needs, Processes, Constraints. InProc. of the Nara Symposium
for Digital Silk Roads, pages 361–367, Nara, Japan, December 10-12 2003.

3. Neal Arthorne, Barbak Esfandiari, and Aloke Mukherjee. U-P2P: A Peer-to-Peer Framework
for Universal Resource Sharing and Discovery. InProc. of the FREENIX Track: USENIX
Annual Technical Conference, pages 29–38, San Antonio, Texas, USA, June 9-14 2003.

4. Matteo Bonifacio, Paolo Bouquet, and Roberta Cuel. The Role of Classification(s) in Dis-
tributed Knowledge Management. InProc. of KES, Podere d’Ombriano, Crema, Italy,
September 16-18 2002.

5. Jérôme Godard, Fŕed́eric Andr̀es, William Grosky, and Kinji Ono. Knowledge Management
Framework for the Collaborative Distribution of Information. InProc. of DataX (EDBT
workshop), pages 2–16, Heraklion, Greece, March 14 2004.

6. Jérôme Godard, Fŕed́eric Andr̀es, and Kinji Ono. Management of Cultural Information:
Indexing Strategies for Context-dependent Resources. InProc. of the Nara Symposium for
Digital Silk Roads, pages 369–374, Nara, Japan, December 10-12 2003.

7. Matthias Grimm, Mohammed-Reza Tazari, and Dirk Balfanz. Towards a Framework for
Mobile Knowledge Management. InProc. of PAKM, pages 326–338, Vienna, Austria, De-
cember 2-3 2002.

8. Panu Korpip̈aä and Jani M̈antyj̈arvi. An Ontology for Mobile Device Sensor-Based Context
Awareness. InProc. of CONTEXT, pages 451–458, Stanford, CA, USA, June 23-25 2003.

9. Kurt Maly, Mohammad Zubair, and Xiaoming Liu. Kepler - An OAI Data/Service Provider
for the Individual.D-Lib Magazine, 7(4), April 2001.

10. Aloke Mukherjee, Babak Esfandiari, and Neal Arthorne. U-P2P: A Peer-to-Peer System for
Description and Discovery of Resource-Sharing Communities. InProc. of ICDCS Work-
shops, pages 701–705, Vienna, Austria, July 2-5 2002.

11. Kinji Ono, editor.Proceedings of the Tokyo Symposium for Digital Silk Roads, Tokyo, Japan,
December 11-13 2001. UNESCO & National Institute of Informatics.

12. D.V. Sreenath, William Grosky, and Fréd́eric Andr̀es. Intelligent Virtual Worlds: Tech-
nologies and Applications in Distributed Virtual Environments, chapter Metadata-Mediated
Browsing and Retrieval in a Cultural Heritage Image Collection. World Scientific Publishing
Company, Singapore, 2002.

13. Eun Kyo Park Yugyung Lee, Changgyu Oh. Intelligent Knowledge Discovery in Peer-to-
Peer File Sharing. InProc. of CIKM, pages 308–315, McLean, Virginia, USA, November
4-9 2002.

Supporting Multi-Dimensional Trustworthiness
for Grid Workflows

Elisa Bertino1, Bruno Crispo2, and Pietro Mazzoleni3

1 Computer Sciences Dept. and
CERIAS Purdue University
bertino@cerias.purdue.edu

2 Computer Science Department
Vrije Universiteit
crispo@cs.vu.nl

3 Dipartimento di Informatica e Comunicazione
University of Milan, Italy
mazzolen@dico.unimi.it

Abstract. In this paper we present the problem of trustworthy compu-
tations in Grid systems. Trustworthy computations have several artic-
ulated requirements that are inroduced in the paper. As initial result,
we introduce the notion that applications should be able to specify the
criteria to be privileged when executing computation on a grid. This
specification can be best specified for computations organized according
to workflows in that it is possible to specify different criteria to be opti-
mized for different tasks. In the paper we thus provide an initial definition
of how a workflow specification can extended with the specification of
the trustworthiness criteria to be optimized.

1 Introduction

Grid systems were initially developed for supporting scientific computations, in
areas such as biotechnology, astronomy and physics, and therefore their purpose
was mainly to support computationally intensive tasks. Today, companies, users
and researchers are looking at ways to use the grid approach for commercial uses
and for applications in many different areas, ranging from the entertainment to
the financial industry. The development of techniques and tools for coordinating
the execution of complex tasks over grids, such as workflow management systems,
as well as the development of specialized web services and of storage services, is
simplifying the deployment of grid-based applications.

However, a limiting factor to the wide exploitation of the computational grid
paradigm is represented by the untrusted environment in which computations
are sometimes to be performed. Not only a grid system may encompass a va-
riety of nodes very much heterogeneous with respect to trust- some nodes may
be trustworthy whereas others are not - but also the notion itself of trustwor-
thiness is quite articulated. Trustworthiness may encompass several notions, like
integrity, confidentiality, availability, privacy, reliability, to name some, and may

196 E. Bertino, B. Crispo, P. Mazzoleni

be evaluated according to different criteria and mechanisms. Since we cannot
expect that a single notion be suitable for all the possible applications and users
in a grid environment, we need a more flexible framework to assess and enforce
trustworthiness which should allow users and applications to choose and select
among various security requirements, for example to prioritize availability rather
than confidentiality. It is also important to note that when a grid application is
structured as a workflow process [1, 2], each of the composing steps may have
different requirements with respect to trust.

In this paper, we elaborate on some of the concepts underlying such frame-
work and point out relevant open research directions. This paper is not intended
to be a complete solution to the problem, it is rather a first attempt to create a
general framework to be used to develop trustworthiness-aware grid framework
for uses in application spanning from biotechnology to multimedia data analysis
and dissemination. The paper is organized as follows: Section 2 introduces the
possible types of trustworthiness in Grid with special attention to Grid Workflow
applications. Section 3 describes some research issues that have to be addressed
in order to built a trust-aware grid workflow framework. Section 4 introduces the
notion of Multi-Dimensional Trustworthiness for Grid Workflow, that is the basic
element of our solution. Section 5 extends an existing workflow model with our
notion of trustworthiness while Section 6 presents other grid workflow systems
and compare them with our assumptions. The paper is concluded by Section 7
in which a summary of the solution as well as the future work is presented.

2 Grid trustworthiness

A unique characteristic of Grid provides an abstraction for resource sharing and
collaboration across multiple administrative domains. However, resources in this
environment span across multiple geographical locations, usually heterogeneous
and administered by different resource owners. In this context, the notion of
Trustworthiness results to be variegate and to include different aspects which
are briefly described in what follows.

A first useful distinction concerns the resource to which the trust applies: we
distinguish between data trustworthiness and computational trustworthiness.

Data trustworthiness refers to the trustworthiness of information stored into
the Grid or generated by a computation. For instance, a user might want his/her
data to be stored into a host which is always available, even if the node cannot
perform fine grained access control to authorize/deny requests to the user data.

Computation trustworthiness refers to the trustworthiness of tasks to be ex-
ecuted by the Grid nodes. For example, a user might wish his/her tasks to be
executed only at nodes which guarantee a high level of confidentiality or in which
the availability of the service for the entire computation is guaranteed.

Both computation and Data trustworthiness can be furthermore classified
based on the subject to which trust applies. We have resource owner trustwor-
thiness and data&task owner trustworthiness.

Supporting Multi-Dimensional Trustworthiness for Grid Workflows 197

Resource owner trustworthiness represents the trustworthiness of a node
sharing physical resources (e.g., Data storage or computational power) across
the Grid. It represents the requirements a host should satisfy in order to store
data or to execute a task of a given user. For example, users might not want
their data being stored by a node which is not reliable or their tasks computed
by a host which does not adopt a specific security mechanism.

On the opposite, data&task owner trustworthiness represents the trustwor-
thiness of a user executing tasks as well as storing or retrieving data into the
grid. It represents the requirements a user should have in order to have his tasks
executed (or data stored) by a given node. As an example, a node might not want
data from untrusted (or possible malicious) users being stored into its resources.

Table 1 summarizes such four types of trustworthiness to be considerate
with Grid. In this work, we consider those types of trust when the process to be
executed over the Grid can be represented as a workflow.

Information

Type of User

TRUSTWORTHINESS

DATA
 COMPUTATION

Data

owner

Task

owner

Resource

owner

Resource

owner

Fig. 1. Possible cases of trustworthiness in Grid

2.1 Grid Workflow

When a grid computation is organized according to a workflow, composed by
several activities to be executed sequentially or in parallel by autonomous hosts,
it is likely that security requirements of these activities about nodes storing data
and nodes executing the computations using such data do not match. Thus,
each task needs to identify suitable nodes in which to execute the computations.
Nodes should be able to collect input data and to store output data from the Grid
according to the various classes of trustworthiness described above. Moreover,
to complete a workflow, information needs to migrate or being replicated into
different hosts each satisfying a different subset of the trust requirements.

In such context, it is therefore important to have a comprehensive model
dealing with all different types of trustworthiness at once. Figure 1 shows the
main phases of executing a grid workflow. For sake of simplicity, we assume here
a centralized system aware of all grid nodes available as well as the schema of
the workflow to be executed. The first phase (step 1 in Figure 2) identifies the
set of nodes in which to execute a task. Nodes are normally selected based on

198 E. Bertino, B. Crispo, P. Mazzoleni

user requests (amount of resource available, type of machine). In this phase, the
computation trustworthiness is considered in order to filter the candidate nodes
from the ones which do not fulfill trust requirements. Once a compliant node
is identified, it loads data input eventually from another nodes into the Grid.
Here data trustworthiness is considered (step 1 in Figure 2) to identify nodes
collecting data having a trust level compliant to the one set by the user. The
task can now be computed. Once the task is terminated, output data are stored
back to a grid node again considering data trustworthiness (step 1 in Figure 2)
and the central system can re-start the process with the following workflow task.

Load Input

Execute

Computation

Save

Output

Task execution

process

Grid nodes

(1)

(2)

(3)

(4)

T1

T2
 T3

T4

T6

T5

Workflow
 schema

(1) Schedule available grid node

(2) Load data input

(3) Save data output

(4) Continue with next tasks

Fig. 2. Grid Workflow execution phase

3 Research Issues

In this paper, we elaborate on some of the concepts underlying such framework
and point out relevant open research directions. In particular, our research is
based on the following key concepts:

1. An extensible set of grid node security properties (integrity, confidential-
ity, availability, etc) - we assume that there is no specific single criteria.
Rather there could be several security properties which are fixed by the
user/applications and/or by the administrators of the grid. Security proper-
ties may be dynamically added and removed. Associated with each security
property there will be a rating/label mechanism organized according to a
partial order, that is, a lattice.

Supporting Multi-Dimensional Trustworthiness for Grid Workflows 199

2. Flexible evaluation methodology - we do not assume that each grid node is
rated according to all possible security properties. Rather we assume that
each grid node may be rated according to an arbitrary subset of these prop-
erties or, even, not rated at all. Also, in our approach we assume that each
rating criteria has associated one or more services allowing one to rate a
given grid node with respect to the given security property. We assume both
self-rating, according to which a node voluntarily rates itself for to a cho-
sen set of security properties, and third-party rating, according to which the
rating is performed by entities different from the rated node. The user is
completely free to select which security property to evaluate and which eval-
uation services rely at any time accordingly to his/her trust requirements.
He can even implements his own evaluation service.

3. Trust-annotated workflow specification - in order to support the specification
of articulated trust requirements for grid , we assume that for each task of
the workflow, the user may specify required conditions for one or more se-
curity property and also specify the approach used to evaluated those (i.e.,
subjective rather than using third part evaluation services, etc.).

4. A scheduling algorithm with a set of relaxation strategies - the scheduling
algorithm is in charge of devising the set of nodes where the various workflow
tasks are executed taking into consideration, among the others, the trust-
annotated specification. Since depending on the status of the grid and on the
specification, it may not be always possible to find an execution schedule,
strategies should be provided in order to relax some of the constraints and/or
to modify the workflow. In our solution, constraints can be relaxed or even
better negotiated between parties.

4 Context Lattices

As discussed in the introduction, trustworthiness in Grid may encompass several
aspects, like integrity, confidentiality, authorization, availability, reliability, pri-
vacy, and so on. Therefore, the first issue to be investigated is the development
of a structure to enforce multi-dimensional quality of services for grid workflows.
In the following, we refer to such structure as a Context Lattice. A context lattice
is a set of quality of service criteria (or dimensions) which can be associated with
an host participating to the Grid. A context lattice is a combination of values
for one or more lattice dimensions.

A lattice dimension li is defined as a tuple 〈namei, V aluei,≺i〉 where namei

defines a unique identifier, V aluei is a set {v1, v2, . . . , vn}, and ≺i defines a local
order among values. We say that vi precedes vj in the order if vi ≺ vj .

Examples of lattice dimensions are the following:
〈trust, {a..z}, alphabetical〉}, 〈privacy, {high, medium, low}, {high ≺ medium ≺
low}〉.

By using lattice, each host is therefore classified according to multiple-dimensions
which are used for selecting nodes in which to execute some activities or to store

200 E. Bertino, B. Crispo, P. Mazzoleni

some output. For example, given the two dimensions presented above, a context
lattice for a task ti could be 〈[privacy, high], [trust, a]〉 which specifies ti should
run into a node having a high level of trust as well as a very high level of privacy.
In this context, we assume a lattice being specified for each node (host or user) of
the Grid. Lattice values for a task can be assigned using different strategies such
as directly assigned by a trusted party, automatically inferred by the history or
generated based on a combination of reputation and trust [3].

Moreover, given n possible dimensions, a task can be associated with n lat-
tices values (i.e. one for each dimension) as well as a subset of n. In case a
dimension is not available, we assume to automatically set its value to the low-
est possible value (such as privacy=low and trust=z in our example).

5 Workflow Model

To apply our solution, we adopt the existing workflow model proposed in [4]
because it is formal and flexible enough to describe our approach. However, our
solution can be applied to any other workflow models.

As in most WFMSs, a workflow is defined as a set of tasks with tasks de-
pendencies defined among them. Formally, a workflow W is defined as a pair
〈T, D〉 where T denotes set of tasks t1, t2, . . . , tn composing the workflow and D
denotes the set of intertask dependencies among tasks.

A workflow task, or activity, describes a piece of work that forms one logical
step within a process which can be executed manually or automatically [?].
The host executing the task accepts as input a set of information, processes
them and produces some results as output. Input data can be collected from
the user, loaded from the outputs of previous tasks or by using information
already available within the Grid. Similarly, output data can be sent to the user,
saved temporarily for being used by following tasks in the same workflow or saved
permanently into the Grid and shared among other users. A task can be formally
defined by a tuple 〈Act,Host, I, O〉 in which Act represents the list of activities
to be executed, Host the node in which the task has to be processed, and I
and O represent Input and Output data respectively. In a Grid environment,
it is reasonable to assume many hosts available to execute a certain task. The
user does not specify in advance the host in which to execute a task and host is
replaced with the information about the set of resources (software and hardware)
needed for the task to be properly executed. The node (or set of nodes) where the
task is physically executed will be selected at runtime by the resource allocation
process.

A workflow intertask dependency describes the precedence order among tasks
and the conditions when a task can be executed. A dependency has the form
ti

x−→ tj states that the task tj can start after (or along with) task ti when the
condition x is verified. x represents the dependency type and it is defined as a
logical expression which specify the conditions under which a task can be exe-
cuted. An extensive list of the variety of dependencies supported by a workflow

Supporting Multi-Dimensional Trustworthiness for Grid Workflows 201

can be find in [4]. In the following, we do not further explore dependencies and in
case of ti

x−→ tj we assume tj can be executed when ti is successful terminated.
In order to support multi-dimensional level of trust, we assume that for each

workflow task the user specifies the required values for one or more rating criteria
both for the computational and data trustworthiness.

Therefore, task definition needs to be extended to include contexts. Formally,
a workflow task ti is defined as a tuple
〈Act, {Host, contproc}, {I, contdataI}, {O, contproc}〉 in which Act, host, I and O
are the same as previous whereas contproc, represents computational quality, and
contdataI and contdataO the Input and Output data quality respectively.

In a same way, we assume each grid host being able to specify trust require-
ments for users who are willing both to store data and execute computation
using his/her shared resources.

Such information is the foundations onto which we apply the multi-dimensional
trustworthiness criteria. Through our notion of lattices, that can be applied to
both the host (for Computational trustworthiness) and the I and O (for Data
trustworthiness) of each task of the workflow, users can select multiple trust
criteria. A host will be selected by the scheduler for executing a task (as well as
for storing information) only if it satisfies the security conditions set by the user
on behalf of whom the workflow is executed. However, we also need to deal with
cases in which such conditions cannot be satisfied. As an example, consider a sce-
nario in which a user specifies that the input data for a task ti should be loaded
from nodes whose lattices has a level of confidentiality sets at least as ”high”. If
the input data is available only from a node with confidentiality=”medium”, an
inconsistency arises. To solve such inconsistency, an immediate solution could
be migrating input to another node matching the condition. However, the new
node storing data should match all the security conditions by the task that gen-
erate the data (e.g., store data only into nodes which availability=”high”). In
case of several tasks sharing the same data, there might problems in planning
a suitable assignment without storing information only onto grid nodes having
lattices with higher values for all the possible criteria. In our work, we do not
have trust as stand-alone component for grid workflows, instead we develop a
solution which takes into consideration other elements such as keeping minimal
the number of data-migrations and balancing workload distribution among grid
nodes having different security properties.

6 Related Work

During the last few years, Workflow is gaining always more and more attention
within the Grid community. In fact, the original idea of Grid to have a flexible,
secure, coordinated resource sharing among dynamic collections of individuals,
institutions, and resources as in [5], shows expectations which go beyond the
”simple” execution of a time consuming computation or the storage of large
amount of data into a highly distributed environment. There is the need of
using Grid for more complex processes, in which information or data are passed

202 E. Bertino, B. Crispo, P. Mazzoleni

from one grid resource to another for further analysis, according to a set of
procedural rules. The current efforts direct to finalize and adopt the Open Grid
Service Architecture (OGSA) [6], the Grid architecture based on Web service
standards, shows how Workflow technology and Grid are merging. Even if most
of the problems are still open, some work has been appeared to leverage OGSA
with the concepts of workflow management systems, with particular attention
to the Business Process Execution Language for Web Services (BPEL4WS).

One of the most well known projects that addresses workflow management
in an OGSA environment is the Grid Services Flow Language [2], GSFL which
proposes an XML based language supporting workflow specifications and an
execution engine. However, the project is based on a previous version of Globus
Toolkit, GT, and does not consider any WS-Resource Framework introduced
into the latest releases of GT which can be considerate the de-facto standard.

Another interesting solution is the Grid Workflow Execution Language, GWEL
[7]. GWEL is a XML based language built for integrating grid workflow with
any GT3 compatible service. The proposed solution is based on the fact that
hosts offering services as well as hosts collecting data are made available to users
willing to create workflows into two sets called Factory Links and Data Links
respectively. Workflow schemas created combining those two sets with other el-
ements (such as control flow or lifecycle elements) are then given as input to the
engine which automatically executed it over the Grid.

Similar goals are pursued by another system, GridAnt [8] which explores the
needs of a Grid user to map his processes to the Grid nodes. The solution, based
on Java, makes use of a Workflow dictionary to define the operations (grid-
execute, grid-copy, grid-query) to be executed over a set of predefined tasks
mapped on available grid nodes.

Even if the above solutions address some grid-workflow problems, they go
in a different direction with respect to our notion of Grid workflow according
to which user does not know in advance the exact hosts in which he wants
tasks to be executed or his data to be stored or loaded for computation. User
simply specifies, for each task, his requirements (e.g, amount and type of resource
needed to execute a task) along with the the trust criteria he wants to adopt.
The system automatically collects such information to the compliant hosts which
can execute a task among the ones available.

7 Conclusions and Future work

In this paper we have presented an ongoing work developing a Multi-Dimensional
Trustworthiness for Grid Workflow. The problem is presented along with some of
main research directions we have taken. The work starts from the need of having
a Grid workflow whose tasks should not be executed over predefined Grid nodes
rather than the ones available which offers a better level of trustworthiness.
Trustworthiness requirements which could be different based on the workflow
tasks or the criteria are used to compute the value of each host. A classification

Supporting Multi-Dimensional Trustworthiness for Grid Workflows 203

of trustworthiness types are described, and a first attempt to formalize the notion
of multi-level trustworthiness, such as the lattices, is presented.

As future work, we plan to implement the proposed framework in the con-
text of current workflow and web service standards. We also plan to investigate
how our framework can be used for providing trusted data and query manage-
ment services as well as ensuring user privacy for digital libraries exploiting grid
infrastructures.

8 Acknowledgement

This work has been partially supported by DELOS, a Network of Excellence in
Digital Libraries.

References

1. Junwei Cao and Stephen A. Jarvis and Subhash Saini and Graham R. Nudd. Grid-
Flow: Workflow Management for Grid Computing. 3rd International Symposium on
Cluster Computing and the Grid, 2003

2. Sriram Krishnan and Patrick Wagstrom and Gregor von Laszewski. GSFL: A
Workflow Framework for Grid Services”, Argonne National Laboratory, Preprint
ANL/MCS-P980-0802, Aug 2002

3. F. Azzedin and M. Maheswaran.Integrating Trust into Grid Resource Management
Systems.In International Conference on Parallel Processing (ICPP’02), Vancouver,
B.C., Canada,2002”

4. E. Bertino and Elena Ferrari and V. Atluri. The Specification and Enforcement of
Authorization Constraints in Workflow Management Systems. TISSEC 2(1): 65-104,
1999

5. Ian Foster and Carl Kesselman and Steven Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. Lecture Notes in Computer Science, 2001

6. Foster, I., Kesselman, C., Nick, J. M., and Turcke, S., The physiology of the Grid:
An Open Grid services Architecture for distributed systems integration. Open Grid
Service Infrastructure WG, Global Grid Forum, 2002

7. Dieter Cybok.A Grid Workflow Infrastructure. GGF10 Workshop, Berlin May 2004
8. Kaizar Amin, Gregor von Laszewski, Mihael Hategan, Nestor J. Zaluzec, Shawn

Hampton, Alberto Rossi.GridAnt: A Client-Controllable Grid Work.ow System.
Proceedings of the 37th Hawaii International Conference on System Sciences,2004.

204 E. Bertino, B. Crispo, P. Mazzoleni

Query Trading in Digital Libraries

Fragkiskos Pentaris and Yannis Ioannidis

Department of Informatics and Telecommunications, University of Athens,
Panepistemioupolis, 15771, Athens, Greece
E-mail:{frank,yannis}@di.uoa.gr

Abstract. In this paper we present a distributed query framework suitable for
use in federations of digital libraries (DL). Inspired by e-commerce technology,
we recognize queries (and query answers) as commodities andmodel the task of
query processing as a task of trading queries and queries-answers. We show that
our framework satisfies the needs of modern DL federations byrespecting the
autonomy of DL nodes and natively supporting their businessmodel. Our query
processing conception is independent of the possible distributed architecture and
can be easily implemented over a typical GRID architecturalinfrastructure or a
Peer-To-Peer network.

1 Introduction

Digital Libraries’ users may need to simultaneously use twoor more libraries to find
the information they are looking for. This increases the burden of their work as it forces
them to pose the same query to different DLs multiple times, each time using a possibly
different user interface and a different metadata schema. Digital Libraries are aware of
this deficiency and have been trying for a long time to attack this problem by creating
federations of DLs. Especially for small DLs, joining such federations is necessary for
attracting more users and thus, ensuring their economic survival.

The architectures of these federations usually follow a wrapper-based centralized
mediation approach. Nevertheless, current growth of DL collections and increase in
the number of DLs joining a single federation have rendered these architectures ob-
solete. Almost every major DL is evaluating new architectures to replace its old sys-
tems. For instance, a kind of P2P architecture will be evaluated within the framework
of the BRICKS European Integrated Project (peer nodes are called Bricks nodes in this
project), whereas the GRID architecture will be evaluated within the DILIGENT project
(The University of Athens participates in both consortiums).

Obviously, existing DL federations will benefit a lot by the above architectures as
the improved search and browse response-time will enable them to form even larger
federations. On the other hand, even today’s hardware and software architectures (e.g.,
ultra fast SANs and SMP machines) do provide the means for building fast federations,
yet DLs are still reluctant in unconditionally joining them. It seems that apart from the
scalability problem, there are additional ones that inhibit the creation of large federa-
tions. DLs prefer to keep their systems completely autonomous. They want their nodes
to be treated as black boxes, meaning that remote nodes should make no assumption
on the contents, status and capabilities of their systems. Exporting this information to

206 F. Pentaris, Y. Ioannidis

distant nodes hurts the autonomy of DLs, which in turn reduces their flexibility and
increases the burden of their work. An additional problem isthat DLs are usually com-
petitive institutions, therefore, the proposed distributed architectures should natively
respect and support their business requirements.

The main contribution of this position paper is the presentation of a query process-
ing schema, which may be setup over a P2P or GRID-based network architecture. Our
proposal respects the autonomy of existing DLs and nativelyaddresses their business
model. The rest of the paper is organized as follows: In section 2, we discuss the busi-
ness requirements of DLs. In section 3, we present our query processing architecture.

2 Digital Libraries Federations Requirements

In the introduction we argued that DLs are reluctant in forming federations because
they are not sure that these systems comply with their business model and respect their
autonomy. In the following paragraphs, we briefly examine these requirements focusing
on the problems they create to the two most prominent future DL architectures, i.e, P2P
networks and the GRID.

Business Model - Content Sharing Economic prosperity of Digital Libraries is usu-
ally bound to their ability to sell information (content, annotation and metadata) and
data processing services to their users. These are in fact the only assets that DLs hold,
making them reluctant to give away any data to third-party entities, especially if this
is done over the Internet. For instance, in BRICKS many institutions will not export
or mirror their data to the common BRICKS community network but instead will al-
low access to their data and legacy systems through the use ofconventional wrappers.
Employing a strict security and trust policy in every network node and using state-of-
the-art content-watermarking techniques reduces the objections of DL in sharing their
data. Nevertheless, experience shows that no security system is perfect and DLs are
aware of this fact.

The reluctance of DL to share their content creates a lot of problems in architec-
tures following the GRID paradigm, since the latter model the process of evaluating
queries as a task of moving the data (content) to one or more processing GRID-nodes,
and then executing the distributed query execution plans. Obviously, a completely new
query processing architecture must be used that will minimize the physical movement
of (unprocessed) data.

P2P-based systems are also affected by the content sharing restriction problem.
Building a metadata P2P indexing service, using a Distributed Hash Table (DHT), will
distribute the metadata of a DL to multiple, potentially less trusted nodes, including
other competitive DLs. This is not something that a DL’s manager will easily approve. A
solution would be to use a double hashing technique, i.e., build a DHT of the hash value
of the metadata instead of the metadata themselves. In this way, nodes will know the
hash value of the metadata but not the exact metadata. If the users make only keywords-
based queries, this approach will be satisfactory. But if advanced query capabilities are
required, a traditional query processor that uses DHT indices and requires the physical
movement of data, just like the GRID architecture, will haveto be used. Thus, even in

Query Trading in Digital Libraries 207

the case of P2P-based systems, a new query processing framework is required that will
also minimize the physical movement of unprocessed information.

Business Model - Integration of Query Processing and Accounting Consider a small
federation of two DLs where the first DL holds digital pictures while the second one has
information concerning poetry. Assume that a user of this federated system is looking
for pictures that were created by painters that have also written certain types of poems.
This query combines pieces of information from both DLs, yetonly retrieves/browses
content from the first one. Since DL sell (any possible piece of) information, it is a
matter of the billing policy of each DL, whether the user should be charged only for
the retrieved content, or also for the information of the second DL that was used during
query processing. If DLs choose to charge for any information they provide, which
we expect in the future to be a typical business scenario, thequery optimizer and the
accounting system should be closely integrated.

Competitive Environment The most important business requirement of future DLs
federations is that these should be compatible with the competitive nature of the DLs
market, i.e., information is asset and data should be treated as commodities for trad-
ing in a competitive environment. Competition creates problems in DL federations, as
it results in potentially inconsistent behavior of the nodes at different times. The query
processing architecture should be capable of handling cases where remote nodes expose
imprecise information. Such behavior is typical (and allowed) in competitive environ-
ments.

Autonomy A requirement of modern DL federations is that distributed architectures
should respect the autonomy of DLs and treat them as black boxes. Middle-wares and
wrapper-based architectures help in preserving the autonomy of remote nodes. How-
ever, during query processing and optimization, existing proposals require,a priori, cer-
tain pieces of information (e.g., data statistics, remote nodes status (workload), nodes
capabilities (e.g., which variables must be bound), operators (e.g., union, join) cost
functions and parameters) that clearly violate their autonomy. A proper query process-
ing architecture that respects DL’s autonomy and work only with information that nodes
expose during query processing.

3 The Query Trading architecture

3.1 Overview

We have recently proposed a new query processing architecture [9] that meets the scal-
ability and autonomy requirements of future DLs and perfectly matches their business
requirements. We treat DL nodes as black boxes, assuming nothing on the contents and
capabilities of each node. Execution of distributed queries is handled by splitting them
into pieces (sub-queries), forwarding them to nodes capable of answering them, and
then combining the results of these queries to build the answer of the distributed query.

208 F. Pentaris, Y. Ioannidis

N3

N5

N1

N4

N2

Request for help

U
R

Ls
of

 d
oc

s
50

0B
C

-4
99

BC
in

 2
5s

U
R

Ls
of

 d
oc

s
49

8B
C

in
 2

0s R
equest for help

Request for help

R
eq

ue
st

 fo
r h

el
p

URLs of docs 500BC-499BC in 50s

URLs of docs 498BC in 15s

Fig. 1. Example of query processing.

To make our architecture more concrete, consider the case ofa large federation
of libraries (Fig. 1) and assume that a user at nodeN1 asks for the URLs of every
ancient Greek document that was written in Athens between 500BC and 498BC. Since
DL nodes are black boxes,N1 can do nothing better than asking the rest DL nodes
for any piece of information that might be of some help in evaluating the query. In
this example, assume that two nodes,N2 andN3, have some relevant information and
offer to helpN1. NodeN2 offers to return toN1 a URL list of all relevant documents
that were written between 500BC and 499BC in 25 seconds and the rest documents
(498BC) in 20 seconds. Similarly, nodeN3 offers the same information in 50 and 15
seconds respectively. Obviously, nodeN1 query optimizer will choose nodeN2 for all
URLs concerning documents written in 500-498BC andN3 for the rest ones. That is,
the query processor ofN1 effectively purchases the answer of the original query from
nodesN2 andN3 for 20 and 15 seconds respectively.

The above example shows the main idea behind the query processing architecture
that we propose. It is inspired by e-commerce technology, recognizes queries (and query
answers) as commodities and approaches DL federations as information markets where
the commodities sold are data. Query parts (and their answers) are traded between DL
nodes until deals are struck with some nodes for all of them. Distributed query execution
is thus modeled as a trading of parts of query-answers. Buyernodes (e.g.,N1) are those
requiring certain pieces of information in order to answer auser query. Seller nodes
(e.g.,N2 andN3) are those offering buyers this missing information.

Although the idea is simple, it is difficult to construct an algorithm that can automate
the trading of queries and queries answers. For instance, assume that in the previous
example, nodeN3 offered the URLs of the documents written in 500BC,499BC and
498BC separately for 20s, 30s, and 15s respectively. In thiscase, nodeN1 has many
different ways of combining the offers ofN2 an N3. In fact, it might worth forN1

to negotiate with nodeN2 the case ofN2 also returning the URLs of the documents
written in 500BC and 499BC separately, before nodeN1 decides on which offers can
be combined in the best way.

Query Trading in Digital Libraries 209

3.2 General Trading Negotiation Parameters

There are a lot of parameters that affect the performance of atrading framework such as
the one described in the previous sub-section. For details on these parameters see [1–3,
5–9, 11, 12, 14]. We briefly describe the most important ones:

Negotiation protocol Trading negotiation procedures follow rules defined in a negoti-
ation protocol [14]. In each step of the procedure, the protocol designates a number
of possible actions (e.g., make a better offer, accept offer, reject offer, etc.) that a
node may take. In the previous example, we assumed that the protocol used was
bidding [13]. This protocol is simple but obviously cannot work whenthe number
of nodes are too many. In larger networks a better alternative is to use an agent-
based or P2P-based [7]auction. If the items/properties negotiated are minor and
the nodes participating in the negotiation are few, then theoldest known protocol,
bargainingcan be also used.

Strategy In each step of the negotiation procedure and depending on the negotiation
protocol followed, nodes have multiple possible actions tochoose from. It is the
strategyfollowed by each node that designates which action is the best one. The
strategy can be either cooperative or competitive (non-cooperative). In the first case,
nodes try to maximize the join utility of all nodes that participate in the negotiation.
In the second case, nodes maximize their personal utility. Our architecture supports
both types of strategies. In cooperative ones, nodes exposeinformation that is accu-
rate and complete. In competitive setups, nodes expose information that is usually
imprecise. For instance, a node may lie about the time required for the retrieval of
a piece of information.

User preferences and items valuation In section 3.1 we gave an example where the
value of the commodities (i.e., the pieces of information) offered by remote nodes
was expressed in term of the time required to fetch this information. More generally,
offers of remote nodes will have many different properties,including (e.g.) the time
required to retrieve the information, the precision and ageof the data, and its cost
in monetary units. That is, the valuation of an offer is multi-dimensional (a vector
of values). The user must supply a preference relation over the domain of these
vectors that orders the set of possible offers. This relation is known to buyer nodes
and is used during the negotiation phase (e.g., during bidding) to select the offers
that best fit the needs of the user.

Market Equilibrium In competitive environments, nodes provide imprecise informa-
tion. For instance, if the preference relation is the total cost (in monetary units)
of the answer, then nodes will increase the value of all pieces of information that
have more demand than supply. This will cause a decrease in the demand of this
information and after some time, values will stop fluctuating and the market will
be in equilibrium (This requires all other parameters affecting the value of items to
be static) [4]. The designer of a system can model the market in such a way that
equilibrium values force the system to have a specific behavior (e.g, altruistic nodes
are not overloaded). A nice property of our architecture is that according to the first
welfare theorem [10], equilibriums will always be Pareto optimal, i.e., no node can
increase its utility without decreasing the utility of at least on other node.

210 F. Pentaris, Y. Ioannidis

Message congestion mechanisms Distributed implementation of the previous negoti-
ation protocols have run into message congestion problems [13] caused by offers
flooding. This can be avoided using several different approaches such as agent-
based architectures, focused addressing, audience restriction, use-based communi-
cation charges and, mutual monitoring [8, 13].

3.3 The Proposed Architecture

As it was mentioned earlier, we model query processing as a query trading procedure.
Although there is a lot of existing work in e-commerce and e-trading (see previous sub-
section), there in an important difference between tradingqueries (and their answers)
and the rest commodities. In traditional e-commerce solutions, the buyer receives of-
fers for the complete items that he/she has asked for. However, in our case, it is possible
that no DL node has every piece of information required for answering a user supplied
query. Sellers will have to make offers for parts of the query(sub-queries) depending on
the information that each DL holds locally. Buyers will haveto somehow merge these
offers to produce the answer of the initial queries. Since all nodes are black boxes, most
sellers will make overlapping offers and buyers will have tomake multiple rounds of
communication with the seller nodes to ensure that the accepted offers are not overlap-
ping. The problem of query optimization also complicates the task of the buyer since
better offers not always improve the global distributed query execution plan. In the next
paragraphs, we present how query optimization works in our framework. Further details
on the proposed framework and its performance characteristics are given in [9].

The distributed execution plans produced by our framework consist of the query-
answers offered by remote DL seller nodes together with the processing operations
required to construct the results of the optimized queries from these offers. The query
optimization algorithm [9] finds the combination of offers and local processing oper-
ations that minimizes the valuation (cost) of the final answer. For this reason, it runs
iteratively, progressively selecting the best execution plan. In each iteration, the buyer
node asks (Request for Bids -RFBs) for some queries and the sellers reply with offers
that contain the estimations of the properties of these queries (query-answers). Since
sellers may not have all the data referenced in a query, they are allowed to give offers
for only the part of the data they actually have. At the end of each iteration, the buyer
uses the received offers to find the best possible execution plan, and then, the algorithm
starts again with a possibly new set of queries that might be used to construct an even
better execution plan. The buyer may contact different selling nodes in each iteration,
as the additional queries may be better offered by other nodes. This is in contrast to the
traditional trading framework, where the participants in anegotiation remain constant.

In order to demonstrate our algorithm, we will use Fig. 2 thatshows a typical mes-
sage workflow among the buyer and seller nodes when the numberof nodes is small
(i.e., the bidding protocol is sufficient and we don’t need touse auctions) and nodes
follow a cooperative strategy. In this figure, a node receives a queryQ that cannot be
answered with the data that this node locally holds. For thisreason it acts as a buyer
node and broadcasts a RFB concerning queryQ to some candidate seller nodes. The
sellers in their turn, examine the query and if they locally have any relevant information

Query Trading in Digital Libraries 211

Buyer Sellers

User submits query Q to
a (buyer) node

of the DL federation Buyer node requests for bids concerning query Q from four candidate seller nodes

Two nodes reply with the parts of query Q that

they can answer from their local data. The rest nodes

cannot assist (e.g., they are overloaded) and do not reply

Buyer node examines all received offers and
builds an initial optimal distributed execution plan.

It then analyses this plan and identifies
certain parts of query Q that might worth asking

from sellers

One node replies with offers

concerning some of the parts of query Q that

the buyer asked for. The rest nodes cannot help and sent no reply

Query Q

Buyer node requests for bids concerning parts of query Q from
three candidate seller nodes

Buyer node examines all received offers and
builds an improved optimal distributed execution

plan. It then analyses this distributed plan and
cannot find any part of query Q that could further

improve the currently optimal distributed
execution plan

Buyer node informs sellers of the final distributed query execution plan and asks themto execute the assigned parts of the plan and return to the buyer the partial results

Buyer receives the results of parts of the query
and uses them to construct the answer of the

initial query Q.

Seller nodes return the

answers of the assigned parts of query Q

Result of query Q

Fig. 2. Workflow of network messages between the buyer and seller nodes.

concerning parts of it, they inform the buyer of the properties of these parts (offers). In
our example, only two nodes return some offers back to the buyer.

The buyer node waits for a timer to expire (bidding duration)and then considers all
offers it has received to construct an initial optimal distributed query execution plan.
It then examines this plan to find any other possible part of the query that could help
the buyer further improve the distributed plan. In Fig. 2 we assume that the buyer (e.g.)
found some parts of the initial query that are offered by bothsellers. For this reason it
starts a second iteration of the bidding procedure, this time requesting for bids on these
overlapping parts. Figure 2 shows that only one seller makesan offer in the second
bidding procedure. After the bidding procedure of the second negotiation is over, the
buyer uses the new offer(s) to further improve the distributed plan and then re-examines
it to find any other possible part of the query that can be improved. In our example, we
assume that the buyer cannot find any such sub-query. Therefore, it asks from the se-
lected remote nodes to evaluate the parts of the distributedplan that have been assigned
to them and then return the results of these parts back to the buyer node. The latter uses
these results to construct the answer of the initial query Q.

The above example is a rather simple case. In a more complex scenario, the nodes
may be allowed to make offers which contain parts that have been sub-contracted to
third nodes. The negotiation protocol may include bargaining and complex contracting
details. Nodes may follow a competitive strategy where sellers/buyers maystrategically
delay or even refuse to make offers in an attempt to raise/drop the values of their offers.
These complex scenarios are beyond the scope of this paper.

212 F. Pentaris, Y. Ioannidis

4 Conclusion

We propose a query processing paradigm, that respects the autonomy of DL nodes
and natively supports their business model (information trading). Our query processing
conception is independent of the possible distributed architecture. For instance, it can be
easily implemented over a typical GRID architectural infrastructure, where the GRID
nodes will act as sellers and/or buyers of information. A different option is to use a
decentralized (P2P) agent-based auction mechanism. Our framework can also extend
pure P2P-based architectures to support advanced queries instead of plain keywords-
based queries.

References

1. M. Bichler, M. Kaukal, and A. Segev. Multi-attribute auctions for electronic procurement. In
Proc. of the 1st IBM IAC Workshop on Internet Based Negotiation Technologies, Yorktown
Heights, NY, March 18-19, 1999.

2. John Collins, Maksim Tsvetovat, Rashmi Sundareswara, Joshua van Tonder, Maria L. Gini,
and Bamshad Mobasher. Evaluating risk: Flexibility and feasibility in multi-agent contract-
ing. In Proc. of the 3rd Annual Conf. on Autonomous Agents , Seattle,WA, USA., May 1999.

3. V. Conitzer and T. Sandholm. Complexity results
about nash equilibria. Technical report CMU-CS-02-135,
http://www-2.cs.cmu.edu/∼sandholm/Nash complexity.pdf, 2002.

4. Donald Ferguson, Christos Nicolaou, and Yechiam Yemini.An economy for managing repli-
cated data in autonomous decentralized systems. InProc. of Int. Symposium on Autonomous
and Decentralized Systems, 1993.

5. John H. Kagel.Auctions: A Survey of Experimental Research. The Handbook of Experimen-
tal Economics, edited by John E. Kagel and Alvin E. Roth, Princeton: Princeton University
Press, 1995.

6. Sarit Kraus. Strategic Negotiation in Multiagent Environments (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2001.

7. E. Ogston and Stamatis Vassiliadis. A Peer-to-Peer AgentAuction. In Proc. of AAMAS02,
Bologna, Italy, July 15–19 2002.

8. H. Van Dyke Parunak.Manufacturing experience with the contract net.Distributed Artificial
Intelligence, Michael N. Huhns (editor), Research Notes inArtificial Intelligence, chapter 10,
pages 285-310. Pitman, 1987.

9. Fragkiskos Pentaris and Yannis Ioannidis. Distributed query optimization by query trading.
In Proc. of Int. Conf. on Extending Database Technology (EDBT), Herakleio, Greece, 2003.

10. Mark Pingle and Leigh Tesfatsion. Overlapping generations, intermediation, and the first
welfare theorem.Journal of Economic Behavior and Organization., 3(5):325–345, 1991.

11. J. S. Rosenchein and G. Zlotkin.Rules of Encounter : designing conventions for automated
negotiation among computers. The MIT Press series in artificial intelligence, 1994.

12. Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135:1–54, 2002.

13. Reid G. Smith. The contract net protocol: High-level communication and control in a dis-
tributed problem solver.IEEE Transactions on Computers, 29(12):1104–1113, December
1980.

14. Stanley Y.W. Su, Chunbo Huang, Joachim Hammer, Yihua Huang, Haifei Li, Liu Wang,
Youzhong Liu, Charnyote Pluempitiwiriyawej, Minsoo Lee, and Herman Lam. An internet-
based negotiation server for e-commerce.VLDB Journal, 10:72–90, 2001.

Scalable Similarity Search in Metric Spaces

Michal Batko1, Claudio Gennaro2, Pasquale Savino2, and Pavel Zezula1

1 Masaryk University, Brno, Czech Republic

{zezula, xbatko}@fi.muni.cz
2 ISTI-CNR, Pisa, Italy

{claudio.gennaro, pasquale.savino}@isti.cnr.it

Abstract. Similarity search in metric spaces represents an important

paradigm for content-based retrieval of many applications. Existing cen-

tralized search structures can speed-up retrieval, but they do not scale up

to large volume of data because the response time is linearly increasing

with the size of the searched file. The proposed GHT* index is a scalable

and distributed structure. By exploiting parallelism in a dynamic net-

work of computers, the GHT* achieves practically constant search time

for similarity range queries in data-sets of arbitrary size. The amount of

replicated routing information on each server increases logarithmically.

At the same time, the potential for interquery parallelism is increasing

with the growing data-sets because the relative number of servers uti-

lized by individual queries is decreasing. All these properties are verified

by experiments on a prototype system using real-life data-sets.

1 Introduction

The search operation has traditionally been applied to structured (attribute-
type) data. Complex data types – such as images, videos, time series, text doc-
uments, DNA sequences, etc. – are becoming increasingly important in modern
digital libraries. Searching in such data requires a gradual rather than the exact
relevance, so it is called the similarity retrieval. Given a query object q, this
process involves finding objects in the database D that are similar to q. It has
become customary to assume the similarity measure as a distance metric d. The
primary challenge in performing similarity search is to structure the database D

in such a way so that the search can be performed fast.
Though many metric index structures have been proposed, see the recent

surveys [2] and [6], most of them are only main memory structures and thus
not suitable for a large volume of data. The scalability of two disk oriented
metric indexes (the M-tree [3] and the D-index [5]) have recently been studied
in [4]. The results demonstrate significant speed-up (both in terms of distance
computations and disk-page reads) in comparison with the sequential search.
Unfortunately, the search costs are also linearly increasing with the size of the
data-set.

On the other hand, it is estimated that 93% of data now produced is in a
digital form. The amount of data added each year exceeds exabyte (i.e. 1018

214 M. Batko, C. Gennaro, P. Savino, P. Zezula

bytes) and it is estimated to grow exponentially. In order to manage similarity
search in multimedia data types such as plain text, music, images, and video, this
trend calls for putting equally scalable infrastructures in motion. In this respect,
the Grid infrastructures and the Peer-to-Peer (P2P) communication paradigm
are quickly gaining in popularity due to their scalability and self-organizing
nature, forming bases for building large-scale similarity search indexes at low
costs. However, most of the numerous P2P search techniques proposed in the
recent years have focused on the single-key retrieval. See for example the Content

Addressable Network (CAN) [9], which is a distributed hash table abstraction
over the Cartesian space.

Our objective is to develop a distributed storage structure for similarity
search in metric spaces that would scale up with (nearly) constant search time.
In this respect, our proposal can be seen as a Scalable and Distributed Data

Structure (SDDS), which uses the P2P paradigm for the communication in a
Grid-like computing infrastructure. We achieve the desired effects in a given
(arbitrary) metric by linearly increasing the number of network nodes (whole
computers), where each of them can act as a client and some of them can also
be servers. Clients insert metric objects and issue queries, but there is no spe-
cific (centralized) node to be accessed for all (insertion or search) operations. At
the same time, insertion of an object, even the one causing a node split, does
not require immediate update propagation to all network nodes. A certain data
replication is tolerable. Each server provides some storage space for objects and
servers also have the capacity to compute distances between pairs of objects. A
server can send objects to other peer servers and can also allocate a new server.

The rest of the paper is organized as follows. In Section 2, we summarize
the necessary background information. Section 3 presents the GHT* distributed
structure and its functionality. Section 4 reports some results of our performance
evaluation experiments. Section 5 concludes the paper and outlines directions for
future work.

2 Preliminaries

Probably the most famous scalable and distributed data structure is the LH*
[8], which is an extension of the linear hashing (LH) for a dynamic network of
computers enabling the exact-match queries. The paper also clearly defines the
desirable properties of SDDSs in terms of scalability, no hot-spots, and update

independence.

2.1 Metric Space Searching Methods

The effectiveness of metric search structures [2,6] consists in their considerable
extensibility, i.e. the degree of ability to support execution of a variety of queries.
Metric structures can support not only the exact-match and range queries on
sortable domains, but they are also able to perform similarity queries in the

Scalable Similarity Search in Metric Spaces 215

generic metric space, considering the important Euclidean vector spaces as a
special case.

The mathematical metric space is a pair (D, d), where D is the domain of
objects and d is the distance function able to compute distances between any
pair of objects from D. It is assumed that the smaller the distance, the closer
or more similar the objects are. For any distinct objects x, y, z ∈ D, the dis-
tance must satisfy the following properties of reflexivity, d(x, x) = 0, strict

positiveness, d(x, y) > 0, symmetry, d(x, y) = d(y, x), and triangle inequality,
d(x, y) ≤ d(x, z) + d(z, y).

Though several sophisticated metric search structures have been proposed in
literature, the two fundamental principles are called the ball and the generalized

hyperplane partitioning [10]. In this article, we have concentrated on the recur-
sive application of the second principle, which can be seen as the Generalized

Hyperplane Tree (GHT). For the sake of clarity of the further discussion, we
describe the main features of the GHT in the following.

Generalized Hyperplane Tree – GHT The GHT is a binary tree with metric
objects kept in leaf nodes (buckets) of fixed capacity. The internal nodes contain
two pointers to descendant nodes (sub-trees) represented by a pair of objects
called the pivots. In the leaf nodes of the left sub-tree are objects closer to the
first pivot, objects closer to the second pivot are in the leaf nodes of the right
sub-tree.

The creation of the GHT structure starts with the bucket B0. When the
bucket B0 is full, we create a new empty bucket, say B1, and move some objects
from B0 to B1. This idea of split is implemented by choosing a pair of pivots P1

and P2 (P1 6= P2) from B0 and by moving all the objects O, which are closer to
P2 than to P1, into the bucket B1. The pivots P1 and P2 are then placed into a
new root node and the tree grows by one more level. In general, given an internal
node i of the GHT structure with the pivots P1(i) and P2(i), the objects that
meet Condition (1) are stored in the right sub-tree. Otherwise, they are found
in the left sub-tree.

d(P1(i), O) > d(P2(i), O). (1)

To Insert a new object O, we first traverse the GHT to find the correct storage
bucket. In each inner node i, we test Condition (1): if it is true, we follow the
right branch. Otherwise, we follow the left one. This is repeated until a leaf node
is found and the object O is inserted – the split is applied if necessary.

In order to perform a similarity Range Search for the query object Q and
the search radius r, we recursively traverse the GHT following the left child of
each inner node if d(P1(i), Q)−r 6 d(P2(i), Q)+r is satisfied and the right child
if d(P1(i), Q) + r > d(P2(i), Q) − r is true. Observe that, depending on the size
of the radius r, both the conditions can be met simultaneously, which implies
necessity of searching the left and the right subtrees at the same time.

216 M. Batko, C. Gennaro, P. Savino, P. Zezula

3 GHT*

In general, the scalable and distributed data structure GHT* consists of a net-
work of nodes that can insert, store, and retrieve objects using similarity queries.
The nodes with all these functions are called servers and the nodes with only the
insertion and query formulation functions are called clients. The GHT* archi-
tecture assumes that network nodes communicate through the message passing

paradigm. For consistency reasons, each request message expects a confirmation
by a proper reply message. Each node of the network has a unique Network

Node IDentifier (NNID). Each server maintains data objects in a set of buckets.
Within a server, the Bucket IDentifier (BID) is used to address a bucket. Each
object is stored exactly in one bucket.

An essential part of the GHT* structure is the Address Search Tree (AST),
which is a structure similar to the GHT. The AST is used to actually determine
the necessary (distributed) buckets when inserting and retrieving objects.

3.1 The Address Search Tree

Contrary to the GHT containing data objects in leaves, every leaf of the AST
includes exactly one pointer to either a bucket (using BID) or a server (using
NNID) holding the data. Specifically, NNIDs are used if the data are on a remote
server. BIDs are used if the data are in a bucket on the local server. Since the
clients do not maintain data buckets, their ASTs contain only the NNID pointers
in leaf nodes.

A form of the AST structure is present in every network node, which natu-
rally implies some replication. Due to the autonomous update policy, the AST
structures in individual network nodes may not be identical – with respect to
the complete tree view, some sub-trees may be missing. As we shall see in the
next section, the GHT* provides a mechanism for updating the AST automat-
ically during the insertion or search operations. Figure 1a illustrates the AST
structure in a network of one client and two servers. The dashed arrows indicate
the NNID pointers while the solid arrows represent the BID pointers.

Insert Insertion of an object starts in the node asking for insertion by traversing
its AST from the root to a leaf using Condition (1). If a BID pointer is found, the
inserted object is stored in this bucket. Otherwise, the found NNID pointer is
applied to forward the request to the proper server where the insertion continues
recursively until an AST leaf with the BID pointer is reached.

In order to avoid repeated distance computations when searching the AST
on the new server, a once-determined path specification in the original AST is
also forwarded. The path sent to the server is encoded as a bit-string designated
BPATH, where each node is represented by one bit – “0” for the left branch, and
“1” for the right branch. Due to the construction of the GHT*, it is guaranteed
that the forwarded path always exists on the target server.

Scalable Similarity Search in Metric Spaces 217

Client

Server 1 Server 2

Legend:

Bucket

NNID or BID

Inner node

Server 2

Logarithmic AST

Server 1

Standard AST

Server 1

Server 2 Server 3

(a) (b)

Fig. 1. AST and the GHT* network (a); example of logarithmic AST (b)

Range Search The range search also starts by traversing its local AST, but
multiple paths can qualify. For all qualifying paths having a NNID pointer in
their leaves, the query request with known BPATH is recursively forwarded to
identified servers until a BID pointer occurs in every leaf. If multiple paths point
to the same server, the request is sent only once but with multiple BPATH
attachments. The range search condition is evaluated by the servers in every
bucket determined by the BID pointers.

3.2 Image Adjustment

During insertion, servers split buckets without informing the other nodes of
the network. Consequently, the network nodes need not have their ASTs up to
date with respect to the data, but the advantage is that the network is not
flooded with multiple messages at every split. The updates of the ASTs are
thus postponed and actually done when respective insertion or range search
operations are executed.

The inconsistency in the ASTs is recognized on a server that receives an
operation request with corresponding BPATH from another client or server. In
fact, if the BPATH derived from the AST of the current server is longer than the
received BPATH, this indicates that the sending server (client) has an out-of-date
version of the AST and must be updated. The current server easily determines
a sub-tree that is missing on the sending server (client) because the root of this
sub-tree is the last element of the received BPATH. Such a sub-tree is sent back
to the server (client) through the Image Adjustment Message, IAM.

If multiple BPATHs are received by the current server, more sub-trees are
sent back through one IAM (provided inconsistencies are found). Naturally, the
IAM process can also involve more pairs of servers. This is a recursive procedure

218 M. Batko, C. Gennaro, P. Savino, P. Zezula

which guarantees that, for an insert or a search operation, ASTs of every involved
server (client) are correctly updated.

3.3 Logarithmic Replication Strategy

Using the described IAM mechanism, the GHT* structure maintains the ASTs
practically equal on all servers. However, since every inner node of the AST
contains two pivots, the number of replicated pivots increases linearly with the
number of servers used. In order to reduce the replication, we have also imple-
mented a much more economical strategy which achieves logarithmic replication
on servers at the cost of moderately increased number of forwarded requests.

Inspired by the lazy updates strategy from [7], our logarithmic AST on a
specific server stores only the nodes containing pointers to the local buckets
(i.e. leaf nodes with BID pointers) and all their ancestors. So that the resulting
AST is still a binary tree, all the sub-trees leading to leaf nodes with the NNID
pointers are substituted by the leftmost leaf node of this sub-tree. The reason for
choosing the leftmost leaf node is connected with our split strategy which always
keeps the left node and adds the right one. Figure 1b illustrates this principle.
In a way, the logarithmic AST can be seen as the minimum sub-tree of the fully
updated AST. Furthermore, the image adjustment is only required when a split
allocates a new bucket on a different server.

3.4 Storage Management

As we have already explained, the atomic storage unit of the GHT* is the bucket.
The number of buckets and their capacity on a server are bounded by specified
constant numbers, which can be different for different servers. To achieve scal-
ability, the GHT* must be able to split buckets and allocate new storage and
network resources.

Bucket Splitting The bucket splitting operation is performed in the following
three steps: (1) a new bucket is allocated. If there is a capacity on the current
server, the bucket is activated there. Otherwise, the bucket is allocated either
on another existing server with free capacity or a new server is used; (2) a pair
of pivots is chosen from the objects of the overflowing bucket. (3) objects from
the overflowing bucket that are closer to the second pivot than to the first one
are moved to the new bucket.

New Server Allocation In our prototype implementation, we use a pool of
available servers which is known to every active server. We do not use a cen-
tralized registering service. Instead, we exploit the broadcast messaging to notify
the active servers. When a new network node becomes available, the following
actions occur: (1) the new node with its NNID sends a broadcast message saying
“I am here” (this message is received by each active server in the network); (2)
the receiving servers add the announced NNID to theirs local pool of available

Scalable Similarity Search in Metric Spaces 219

servers. When an additional server is required, the active server picks up one
item from the pool of available servers. An activation message is sent to the
chosen server. With another broadcast message, the chosen server announces: “I
am being used now” so that other active servers can remove its NNID from their
pools of available servers. The chosen server initializes its own pool of available
servers, creates a copy of the AST, and sends to the caller the “Ready to serve”
reply message.

Choosing Pivots We use an incremental pivot selection algorithm from [1],
which tries to find a pair of distant objects. At the beginning, the first two
objects inserted into an empty bucket become the candidates for pivots. Then,
we compute distances to the current candidates for every additionally inserted
object. If at least one of these distances is greater than the distance between the
current candidates, the new object replaces one of the candidates so that the
distance between the new pair of candidates grows. When the bucket overflows,
the candidates become pivots and the split is executed.

4 Performance Evaluation

In this section, we present results of performance experiments that assess dif-
ferent aspects of our GHT* prototype implemented in Java. The system was
executed on a cluster of 100 Linux workstations connected with a 100Mbps net-
work using the standard TCP/IP protocol.

We conducted our experiments on 45-dimensional vectors (VEC) of color
image features with the L2 (Euclidian) metric distance function and on sentences
of the Czech national corpus with the edit distance as the metric (TXT). See [4]
for more details about these data sets.

In the following, we designate the maximal number of buckets per server as
nb, and the maximal number of objects in a bucket as bs. Due to the space
limitations, we only report results concerning the range search performance and
the parallel aspects of query execution.

4.1 Range Search Performance

For the range search, we have analyzed the performance with respect to different
sizes of query radii. We have measured the search costs in terms of: (1) the
number of servers involved in the execution of a query, (2) the number of buckets
accessed, (3) the number of distance computations in the AST and in all the
buckets accessed. We have not used the query execution time as the relevant
criterion because we could not ensure the same environment for all participating
workstations.

Experiments were executed on the GHT* structure with configuration nb =
10, bs = 1, 000, which was filled with 100,000 objects either from the VEC or
the TXT data-set. The average load of buckets was about 50 percent of their
capacity. We have used the logarithmic replication strategy. Each point of every

220 M. Batko, C. Gennaro, P. Savino, P. Zezula

graph was obtained by averaging results of 50 range queries with the same radius
and a different (randomly chosen) query object.

In the first experiment, we have focused on relationships between query ra-
dius sizes and the number of buckets (servers) accessed. Figure 2 reports the
results of these experiments together with the number of objects retrieved. If
the radius increases, the number of accessed servers grows practically linearly,
but the number of accessed buckets grows a bit faster. However, the number of
retrieved objects satisfying the query grows even exponentially. This is in accor-
dance with the behavior of centralized metric indexes such as the M-tree or the
D-index on the global (not distributed) scale. The main advantages of the GHT*
structure are demonstrated in Section 4.2 when the parallel execution costs are
considered.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20
range query radius

TXT

result set size/100
buckets accessed
servers accessed

 0

 10

 20

 30

 40

 50

 200 400 600 800 1000
range query radius

VEC

result set size/1000
buckets accessed
servers accessed

Fig. 2. Average number of buckets, servers, and retrieved objects (divided by
100 and 1,000) as a function of the radius.

Another important aspect of a distributed structure is the number of mes-
sages exchanged during search operations. Figure 3 presents the average number
of messages sent by a client and the number of forwarded messages initiated on
servers during a query evaluation. In fact, if we sum the number of messages
sent by a client and by the servers we get the total number of servers involved
in a query execution, see Figure 2 for verification. Observe that even with the
logarithmic replication strategy the number of forwardings is reasonably low.

In Figure 4 we show the average number of distance computations performed
by a client and the necessary servers during a query execution. We only report
distance computations needed during the traversal of the AST (two distance
computations must be evaluated per each inner node traversed). We do not
show the number of distance computations inside the accessed buckets, because
they depend on the bucket implementation strategy. In our current implemen-
tation, the buckets are organized in a dynamic list so the number of distance
computations per bucket is simply given by the number of objects stored in the
bucket. We are planning to use more sophisticated strategies in the future.

Scalable Similarity Search in Metric Spaces 221

 0

 1

 2

 3

 0 5 10 15 20

av
. n

um
be

r
of

 m
es

sa
ge

s

range query radius

TXT

server
client/10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 200 400 600 800 1000

av
. n

um
be

r
of

 m
es

sa
ge

s

range query radius

VEC

server
client/10

Fig. 3. Average number of messages sent by a client and server as a function of
the radius.

 0

 5

 10

 15

 20

 0 5 10 15 20av
. n

um
be

r
of

 d
is

ta
nc

e
co

m
p.

range query radius

TXT

server
client/10

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000av
. n

um
be

r
of

 d
is

ta
nc

e
co

m
p.

range query radius

VEC

server
client/10

Fig. 4. Average number of distance computations in the AST for clients (divided
by 10) and servers as a function of the radius.

4.2 Parallel Performance Scalability

The most important advantage of the GHT* with respect to the single-site access
structures concerns its scalability through parallelism. As the size of a data-set
grows, new server nodes are plugged in and their storage as well as the computing
capacity is exploited. By assuming the same number of buckets of equal capacity
on each server, the number of used servers grows linearly with the data-set size.
This was also experimentally confirmed.

We focused on experimental studies of the intrinsic aspects of the intraquery

and interquery parallelism to show how they actually contribute to the GHT*
scalability. First, we consider the scalability from the perspective of a growing
data-set and a fixed set of queries, i.e. the data volume scalability. Then, we
consider a constant data-set and study how the structure scales up with the
growing search radii, i.e. the query volume scalability.

We quantify the intraquery parallelism as the parallel response time of a
range query. It is determined as the maximum of the costs incurred on servers
involved in the query evaluation plus the serial search costs of the ASTs. For
the evaluation purposes, we use the number of distance computations (both
in the ASTs and in all the accessed buckets) as the computational costs of a
query execution. In our experiments, we have neglected the communication time

222 M. Batko, C. Gennaro, P. Savino, P. Zezula

because the distance computations were more time consuming than sending a
message to a network node.

The interquery parallelism is more difficult to quantify. To simplify the anal-
ysis, we characterize the interquery parallelism as the ratio of the number of
servers involved in a range query to the total number of servers – the lower the
ratio, the higher the chances for other queries to be executed in parallel. Under
the above assumptions, the intraquery parallelism is proportional to the response
time of a query and the interquery parallelism represents the relative utilization
of computing resources.

To evaluate the data volume scalability, we used the GHT* configuration of
nb = 10 bs = 1, 000. The graphs in Figure 5 represent the parallel search time
for two different query radii as a function of the data-set size. The results are
available separately for the vector (VEC) and the sentence (TXT) data-sets. By
analogy, Figure 6 shows the relative utilization of servers for two types of queries
and growing data-sets. The results are again averages of costs measured for 50
range queries of constant radius and different (randomly chosen) query objects.

Our experiments show that the intraquery parallelism remains very stable
and the parallel search time is practically constant, i.e. independent of the data-
set size. Though the number of distance computations needed for the AST traver-
sal grows with the size of the data-set, this contribution is not visible. The reason
is that the AST grow is logarithmic, while the server expansion is linear.

At the same time, the ratio characterizing the interquery parallelism in Figure
6 is even decreasing as the data-set grows in size. This means that the number
of servers needed to execute the query grows much more slowly than the number
of incoming active servers, thus the percentage of servers used to evaluate the
query is on a down curve.

 0

 1000

 2000

 3000

 4000

 20000 40000 60000 80000 100000av
.

n
u

m
b

er
 o

f
d

is
ta

n
ce

 c
o

m
p

.

data−set size

TXT

range 5

range 15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20000 40000 60000 80000 100000av
.

n
u

m
b

er
 o

f
d

is
ta

n
ce

 c
o

m
p

.

data−set size

VEC

range 300

range 500

Fig. 5. Average intraquery parallelism as a function of the data-set size for two
different query radii.

To evaluate the query volume scalability, we have fixed the data-set size at
100,000 objects and used queries with growing radii. Figure 7 shows the rela-
tionships between the size of a range query radius and the number of distance
computations – the upper curve represents the total costs (in distance compu-
tations) to solve the query. Observe that this upper curve is closely related with

Scalable Similarity Search in Metric Spaces 223

 0

 0.2

 0.4

 0.6

 0.8

 1

 20000 40000 60000 80000 100000p
er

ce
n

ta
g

e
o

f
ac

ce
ss

ed
 s

er
v

er
s

data−set size

TXT

range 5

range 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 20000 40000 60000 80000 100000p
er

ce
n

ta
g

e
o

f
ac

ce
ss

ed
 s

er
v

er
s

data−set size

VEC

range 300

range 500

Fig. 6. Average interquery parallelism as a function of the data-set size for two
different query radii.

the number of accessed buckets shown in Figure 2. The parallel cost curve rep-
resents the intraquery parallelism for the query volume scalability. Though the
total computational cost of the query grows quickly as the size of the radius
increases, the parallel cost remains stable after some starting phase, i.e. when
retrieving very small sub-sets.

As intuitively clear, the level of the interquery parallelism for the increasing
radius is actually decreasing. In fact, the larger the query radius the more servers
are used from a constant set of active servers. Such property is demonstrated in
Figure 2 as the linear dependence of the number of accessed servers on the radii
size.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20av
. n

um
be

r
of

 d
is

ta
nc

e
co

m
p.

range query radius

TXT

total cost
parallel cost

 0

 5000

 10000

 15000

 20000

 25000

 200 400 600 800 1000av
. n

um
be

r
of

 d
is

ta
nc

e
co

m
p.

range query radius

VEC

total cost
parallel cost

Fig. 7. Average intraquery parallelism as a function of the radius.

5 Conclusions and Future Work

To the best of our knowledge, the problem of distributed index structures for
the similarity search in metric data has not been studied yet. Our structure is
thus the first attempt at combining properties of scalable and distributed data
structures and the principles of metric space indexing.

224 M. Batko, C. Gennaro, P. Savino, P. Zezula

The GHT* structure stores and retrieves data from domains of arbitrary
metric spaces and satisfies all the necessary conditions of SDDSs. It is scalable
in that it distributes the structure over more and more independent servers. The
parallel search time becomes practically constant for arbitrary data volume and
the larger the data-set the higher the potential for the interquery parallelism.
It has no hot spots – all clients and servers use as precise addressing scheme as
possible and they all incrementally learn from misaddressing. Finally, updates are
performed locally and a node splitting never requires sending multiple messages
to many clients or servers.

The main contributions of our paper can be summarized as follows: (1) we
have defined a metric scalable and distributed similarity search structure; (2)
we have experimentally validated its functionality on real-life data-sets. Our fu-
ture work will concentrate on strategies for updates, pre-splitting policies, and
more sophisticated strategies for organizing buckets. We will also develop search
algorithms for the Nearest Neighbor queries. An interesting research challenge
is to consider other metric space partitioning schemes (not only the general-
ized hyperplane) and study their suitability for implementation in distributed
environments.

References

1. B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for proximity

searching in metric spaces. In Proc. of the XXI Conference of the Chilean Computer

Science Society (SCCC’01), pages 33–40, 2001.

2. E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Proximity searching in

metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

3. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for

similarity search in metric spaces. In Proc. of 23rd International Conference on

Very Large Data Bases (VLDB), pages 426–435, 1997.

4. V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching

index for metric data sets. Multimedia Tools and Applications, 21(1):9–13, 2003.

5. C. Gennaro, P. Savino, and P. Zezula. Similarity search in metric databases through

hashing. In Proc. of the 3rd International Workshop on Multimedia Information

Retrieval, pages 1–5, October 2001.

6. G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces.

ACM Trans. Database Syst., 28(4):517–580, 2003.

7. T. Johnson and P. Krishna. Lazy updates for distributed search structure. In Proc.

of the ACM SIGMOD International Conference on Management of Data, volume

22(2), pages 337–346, 1993.

8. W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* - a scalable, distributed data

structure. TODS, 21(4):480–525, 1996.

9. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content

addressable network. In Proc. of ACM SIGCOMM 2001, pages 161–172, 2001.

10. Uhlmann. Satisfying general proximity / similarity queries with metric trees. IPL:

Information Processing Letters, 40:175–179, 1991.

Author Index

Agosti, M., 115

Andaroodi, E., 183

Andrès, F., 183

Anestis, G., 93

Batko, M., 213

Bender, M., 61

Bertino, E., 195

Bischofs, L., 105

Brettlecker, G., 37

Candela, L., 13

Castelli, D., 13

Catarci, T., 151

Christodoulakis, S., 93

Cinque, L., 151

Cramer, C., 127

Crispo, B., 195

De Rosa, F., 151

Delcambre, L., 139

Ferro, N., 115

Freeston, M., 175

Frommholz, I., 49

Fuhrmann, T., 127

Gennaro, C., 213

Gioldasis, N., 93

Godard, J., 183

Hasselbring, W., 105

Ioannidis, Y., 205

Kazasis, F., 93

Knežević, P., 49

Kováks, L., 85

Maier, D., 139

Malizia, A., 151

Maruyama, K., 183

Mazzoleni, P., 195

Mecella, M., 151

Mehta, B., 49

Michel, S., 61

Micsik, A., 85

Mlivoncic, M., 25

Murthy, S., 139

Niederée, C., 49

Pagano, P., 13

Pappas, N., 93

Pentaris, F., 205

Risse, R., 49

Savino, P., 213

Schafferhans, A., 127

Schlegelmilch, J., 105

Schuldt, H., 37

Schuler, C., 25

Simi, M., 13

Stachel, R., 85

Steffens, U., 105

Suleman, H., 163

Türker, C., 25

Talia, D., 73

Thiel, U., 49

Trunfio, P., 73

Viglas, S. D., 1

Weikum, G., 61

Wurz, M., 37

Zezula, P., 213

Zimmer, C., 61

