

Future Digital Library
Management Systems:
System Architecture
and Information Access

8th DELOS thematic workshop
Schloss Dagstuhl, Germany
March 29 – April 1, 2005

Editors:

Yannis Ioannidis – University of Athens, Greece (Program Co-Chair)
Hans-Jörg Schek – ETH Zurich, Switzerland and UMIT Innsbruck,
 Austria (Program Co-Chair)
Gerhard Weikum – MPI Saarbrucken, Germany (General Chair)

DELOS: a Network of Excellence on Digital Libraries

www.delos.info

Table of Contents

INTRODUCTION ..1

PRELIMINARY SCHEDULE ..4

LIST OF PARTICIPANTS..7

PAPERS...9

Dynamically Making Use of Distributed Data Sources in a Grid Environment (Ext. Abstract)

Manfred Wurz, Heiko Schuldt………………………………...……………………………………………9

Influence of Replication on Availability within P2P Systems

Timo Warns, Wilhelm Hasselbring, Mark Roantree………………………………………………………15

Adaptive Replication Strategies and Software Architectures for Peer-to-Peer Systems

Ludger Bischofs, Simon Giesecke, Wilhelm Hasselbring, Heiko Niemann, Ulrike Steffens ……………20

Distributed Services Architecture in dLibra Digital Library Framework

Cezary Mazurek, Marcin Werla …………………………………………………………………………26

Integrating XML Data Sources using RDF/S Schemas: The ICS-FORTH Semantic Web Integration
Middleware (SWIM)

Ioanna Koffina, Giorgos Serfiotis, Vassilis Christophides, Val Tannen, Alin Deutsch ………………….32

Semantic Query Routing and Processing in P2P Digital Libraries

George Kokkinidis, Lefteris Sidirourgos, Theodore Dalamagas, Vassilis Christophides …………..……38

Publish/Subscribe Functionalities for Future Digital Libraries using Structured Overlay Networks

Christos Tryfonopoulos, Stratos Ideos, Manolis Koubarakis ………………………………………..……43

Information Access in Digital Libraries: Steps Towards a Conceptual Schema

Carlo Meghini, Nicolas Spyratos …………………………………………………………………………48

Challenges of Distributed Search Across Digital Libraries

Matthias Bender, Sebastian Michel, Gerhard Weikum, Christian Zimmer ………………………………53

DIRECT: a Distributed Tool for Information Retrieval Evaluation Campaigns

Giorgio Maria Di Nunzio, Nicola Ferro ………………………………..…………………………………58

p-index - An Index for Graph Structured Data

Stanislav Barton, Pavel Zezula ……………………………………………………………………………61

Efficient and Effective Matching of Compound Patient Records

Michael Springmann, Sören Balko, Hans-Jörg Schek ……………………………………………………72

User-Adaptable Browsing and Relevance Feedback in Image Databases

Dragana Damjanovic, Claudia Plant, Sören Balko, Hans-Jörg Schek ……………………………………83

Indexing the Distance Using Chord: A Distributed Similarity Search Structure

David Novák, Pavel Zezula ……………………………………………………………………………….95

Query Tuning Through Refinement / Enlargement in a Formal Context

Carlo Meghini, Nicolas Spyratos ……………………………………………………..…………………110

I Know I Stored It Somewhere - Contextual Information and Ranking on our Desktop

Wolfgang Nejdl, Raluca Paiu ……………………………………………………………………………118

Future Digital Library Management Systems:
System Architecture and Information Access

8th International Workshop of the DELOS Network of Excellence on Digital Libraries

Schloss Dagstuhl, Germany
March 29 – April 1, 2005

Compiled by
Yannis Ioannidis (Program Co-Chair)
Hans-Jörg Schek (Program Co-Chair)

Gerhard Weikum (General Chair)

th International Workshop
of the DELOS Network of Excellence
on Digital Libraries

on Future Digital Library Management
Systems

System Architecture & Information
Access

Call for Participation

DELOS is an EU-funded interdisciplinary Network of
Excellence on Digital Libraries (www.delos.info) with
a broad vision: Future digital libraries (DLs) should
enable any citizen to access human knowledge any
time and anywhere, in a friendly, multi-modal, effi-
cient and effective way. Achieving this vision requires
development of a next generation of Digital Library
Management Systems (DLMSs) that will dramatically
change Digital Libraries from the form we know them
currently. At the forefront of such development are
two main issues:

System Architecture
Information Access

This workshop, the 8th in the DELOS series of
Thematic Workshops, is devoted to these two critical
themes. The objective of the workshop is to bring
together researchers and practitioners interested in
these two areas and their inter-connections, to identi-
fy fundamental system services that allow the deve-
lopment and operation of future Digital Libraries, and
to explore the main relevant technical directions.

With respect to system architecture, Peer-to-Peer
(P2P) Data Management, Grid Middleware (Grid), and
Service-oriented Architecture (SoA) are the topics of
primary interest. P2P architectures allow for loosely-
coupled integration of information services and sha-
ring of information. Different aspects of P2P systems
(e.g., indexes and application platforms) must be com-
bined to achieve the desired functionality. On the
other hand, Grid computing middleware is needed
because certain services within Digital Libraries are
complex and computationally intensive (e.g., for
extraction of features in multimedia documents to
support content-based similarity search or for infor-
mation mining in bio-medical data). Finally, SoA provi-
des mechanisms to describe the semantics and usage
of information services. In addition, in an SoA, we
have mechanisms to combine services into workflow
processes for sophisticated search and maintenance
of dependencies.
With respect to information access, a fundamental
challenge arises from the great variety of content that
future Digital Libraries are called to manage, each one
with its own characteristics and particularities, with

respect to both format and meaning. Organization of
information within an individual source and efficient
and effective search are key issues that need to be
addressed. An additional challenge arises from the
user interfaces planned for future systems, where the
general trend is towards richer languages and diverse
interaction styles both at the syntactic and at the
semantic level. New interaction management, optimi-
zation, execution, and result consolidation algorithms
need to be devised to support the emerging functio-
nalities.

Clearly, the two themes are closely interrelated
and some of the most exciting problems arise at the
intersection of the two. The goal of this workshop is
to provide a forum for discussing the latest advances
and on-going efforts in these and related areas as the
field moves towards future DLMSs.

program
start: Thuesday, March 29th, 12:00 Lunch
end: Friday, April 1st, 12:00 Lunch

keynote
I Peter Buneman
The two Cultures of Digital Curation

invited talks
I Stefan Gradmann
Specific Aspects of e-science scenarios in the herme-
neutical disciplines
I Keith Jeffery
Digital Libraries in a Grid Environment
I Michalis Vazirgiannis
Semantic overlay generation in P2P architectures

session 1: "Architectural Issues"
I Wurz, Schuldt
Dynamically Making Use of Distributed Data Sources
in a Grid Environment
I Warns, Hasselbring, Roantree
Influence of Replication on Availability within P2P
Systems
I Bischofs, Giesecke, Hasselbring, Niemann, Steffens
Adaptive replication strategies and software architec-
tures for P2P systems
I Mazurek, Werla
Distributed Services Architecture in dLibra Digital
Library Framework

Schloss Dagstuhl, Germany, March 29 - April 1st, 20058

page 1

Program Committee
I Maristella Agosti (Univ. of Padua, Italy)
I Elisa Bertino (Univ. of Milano, Italy & Purdue Univ,
USA)
I Donatella Castelli (CNR-ISTI, Italy)
I Hsinchun Chen (Univ. of Arizona, Tuscon, AZ, USA)
I Stavros Christodoulakis (Technical Univ. of Crete,
Greece)
I Bruce Croft (Univ. of Massachussetts, Amherst, MA,
USA)
I Alex Delis (Univ. of Athens, Greece)
I Ed Fox (Virginia Tech., VA, USA)
I Michael Fresston (UC Santa Barbara, CA, USA)
I Norbert Fuhr (Univ. of Duisburg, Germany)
I Wilhelm Hasselbring (OFFIS Oldenburg, Germany)
I Yannis Ioannidis (Univ. of Athens, Greece)
I Carlo Meghini (CNR-ISTI, Pisa, Italy)
I Reagan Moore (SDSC, San Diego, CA, USA)
I Erich Neuhold (FhG Darmstadt, Germany)
I Hans-Jorg Schek (ETH Zurich, Switzerland & UMIT
Innsbruck, Austria)
I Timos Sellis (Nat. Technical Univ. of Athens, Greece)
I Can Turker (ETH Zurich, Switzerland)
I Heiko Schuldt (UMIT Innsbruck, Austria)
I Stratis Viglas (Univ. of Edinburgh, Edinburgh,
Scottland)
I Gerhard Weikum (MPI Saarbrucken, Germany)
I Pavel Zezula (Masaryk Univ. Brno, Czech Republic)

Workshop Organization
I Gerhard Weikum, General Chair
Max-Planck Institute of Computer Science
Saarbruecken, Germany
Email: weikum@mpi-sb.mpg.de

I Yannis Ioannidis, PC co-Chair
University of Athens
Athens, Greece
Email: yannis@di.uoa.gr

I Hans-Jorg Schek, PC co-Chair
ETH Zurich, Switzerland and
UMIT Innsbruck, Austria
Email: hans.joerg.schek@umit.at

Registration
Email: Isabella.Fritz@umit.at

Information
http://www.dagstuhl.de/

session 2: "Semantics and Context"
I Koffina, Serfiotis, Christophides, Tannen, Deutsch
Integrating XML Data Sources using RDF/S Schemas:
The ICS-FORTH Semantic Web Integration Middleware
(SWIM)
I Kokkinidis, Sidirourgos, Dalamagas, Christophides
Semantic Query Routing and Processing in P2P Digital
Libraries
I Tryfonopoulos, Idreos, Koubarakis
Publish/Subscribe Functionalities for Future Digital
Libraries using Structured Overlay Networks
I Meghini, Spyratos
Information Access in Digital Libraries: Steps Towards
a Conceptual Schema

session 3: "Search and Indexing I"
I Bender, Michel, Weikum, Zimmer
Challenges of Distributed Search Across Digital
Libraries
I Di Nunzio, Ferro
DIRECT: a Distributed Tool for Information Retrieval
Evaluation Campaigns
I Barton, Zezula
p-index - An Index for Graph Structured Data
I Springmann, Balko, Schek
Efficient and Effective Matching of Compound Patient
Records

session 4: "Search and Indexing II"
I Damjanovic, Plant, Balko, Schek
User-Adaptable Browsing and Relevance Feedback in
Image Databases
I Novak, Zezula
Indexing the Distance Using Chord: A Distributed
Similarity Search Structure
I Meghini, Spyratos
Query Tuning through Refinement / Enlargement in a
Formal Context
I Nejdl, Paiu
I know I stored it somewhere-Contextual Information
and Ranking on our Desktop

Complementing the technical program, there will be a
"gong show" like event in an evening session where
participants may introduce and discuss own ideas. In
addition, there will be administrative sessions on
DELOS WP1 and WP2 management issues followed by
dedicated working group meetings that are to be held
in parallel. Workshop participants are invited to pro-
pose ideas in a brainstorming session. The workshop
will be concluded by presenting the working group
results. A hiking tour to the area surrounding
Dagstuhl will be taking place as social event.

8

page 2

Preliminary Schedule

Tuesday, March 29, 2005

12:15 Lunch

13:50 Welcome

14:00 Invited Talk by Stefan Gradmann: Specific Aspects of E-Science Scenarios

in the Hermeneutical Disciplines

14:30 – 16:00 Session 1: Architectural Issues

Manfred Wurz, Heiko Schuldt
Dynamically Making Use of Distributed Data Sources in a Grid Environment

Timo Warns, Wilhelm Hasselbring, Mark Roantree
Influence of Replication on Availability within P2P Systems

Ludger Bischofs, Simon Giesecke, Wilhelm Hasselbring, Heiko Niemann, Ulrike Steffens
Adaptive replication strategies and software architectures for P2P systems

Cezary Mazurek, Marcin Werla
Distributed Services Architecture in dLibra Digital Library Framework

16:00 Coffee Break

16:30 – 18:00 Session 2: Semantics and Context

Ioanna Koffina, Giorgos Serfiotis, Vassilis Christophides, Val Tannen, Alin Deutsch
Integrating XML Data Sources using RDF/S Schemas: The ICS-FORTH Semantic Web
Integration Middleware (SWIM)

George Kokkinidis, Lefteris Sidirourgos, Theodore Dalamagas, Vassilis Christophides
Semantic Query Routing and Processing in P2P Digital Libraries

Christos Tryfonopoulos, Stratos Idreos, Manolis Koubarakis
Publish/Subscribe Functionalities for Future Digital Libraries using Structured Overlay
Networks

Carlo Meghini, Nicolas Spyratos
Information Access in Digital Libraries: Steps Towards a Conceptual Schema

18:00 Dinner

20:00 DELOS WP1/WP2 Meeting

Wednesday, March 30, 2005

9:00 Invited Talk by Michalis Vazirgiannis: Semantic Overlay Generation in
P2P Architectures

9:30 – 11:00 Session 3: Search and Indexing

Matthias Bender, Sebastian Michel, Gerhard Weikum, Christian Zimmer
Challenges of Distributed Search Across Digital Libraries

Georgio Maria Di Nunzio, Nicola Ferro
DIRECT: a Distributed Tool for Information Retrieval Evaluation Campaigns

Stanislav Barton, Pavel Zezula
p-index - An Index for Graph Structured Data

Michael Springmann, Sören Balko, Hans-Jörg Schek
Efficient and Effective Matching of Compound Patient Records

11:00 Coffee Break

11:30 Discussion of Working Group Topics

12:15 Lunch

14:00 Joint Hiking Tour

18:00 Dinner

20:00 DELOS WP1/WP2 Meeting (Continued)

Thursday, March 31, 2005

9:00-10:00 Keynote by Peter Buneman: The Two Cultures of Digital Curation

10:00 Coffee Break

10:30 – 12:00 Session 4: Search and Indexing (Continued)

Dragana Damjanovic, Claudia Plant, Sören Balko, Hans-Jörg Schek
User-Adaptable Browsing and Relevance Feedback in Image Databases

David Novak, Pavel Zezula
Indexing the Distance Using Chord: A Distributed Similarity Search Structure

Carlo Meghini, Nicolas Spyratos
Query Tuning through Refinement / Enlargement in a Formal Context

Wolfgang Nejdl, Raluca Paiu
I know I stored it somewhere - Contextual Information and Ranking on our Desktop

12:15 Lunch

14:00 – 14:30 Invited Talk by Keith Jeffery: Digital Libraries in a Grid

Environment

14:30 – 15:30 Working Groups

15:30 Coffee Break

16:00 – 17:30 Working Groups

18:00 Dinner

20:00 Gong Show

Friday, April 1, 2005

9:00 – 10:30 Presentations of Working Group Results

10:30 Coffee Break

11:00 – 12:00 Wrap-up Discussion

12:15 Lunch

Departure

Preliminary List of Participants

Maristella Agosti, Department of Information Engineering, University of Padua, agosti@dei.unipd.it

Sören Balko, ETH, sbalko@inf.ethz.ch

Stanislav Barton, Faculty of Informatics, Masaryk University of Brno, xbarton@fi.muni.cz

Matthias Bender, MPI, mbender@mpi-sb.mpg.de

Klaus Berberich, MPI, kberberi@mpi-sb.mpg.de

Ludger Bischofs, Software Engineering, University of Oldenburg, ludger.bischofs@informatik.uni-
oldenburg.de

Peter Buneman, School of Informatics, University of Edinburgh, peter@cis.upenn.edu

Donatella Castelli, ISTI, donatella.castelli@isti.cnr.it

Sebastiano Colazzo, Polimi, colazzo@elet.polimi.it

Dragana Damjanovic, UMIT, dragana.damjanovic@umit.at

Giorgio Maria Di Nunzio, Department of Information Engineering, University of Padua,
dinunzio@dei.unipd.it

Andrea Ernst-Gerlach, Institute of Informatics and Interactive Systems, University of Duisburg-Essen
(for Norbert Fuhr), ernst@is.informatik.uni-duisburg.de

Nicola Ferro, Department of Information Engineering, University of Padua, nf76@dei.unipd.it

Peter Fischer, ETH (Kossmann), peter.fischer@inf.ethz.ch

Mike Freeston, UCSB, freeston@alexandria.ucsb.edu

Stefan Gradmann, Regionales Rechenzentrum, Universität Hamburg, stefan.gradmann@rrz.uni-
hamburg.de

Fabian Groffen, CWI, Fabian.Groffen@cwi.nl

Wilhelm Hasselbring, Software Engineering, University of Oldenburg, hasselbring@informatik.uni-
oldenburg.de

Yannis Ioannidis, University of Athens, yannis@di.uoa.gr

Keith Jeffery, CCLRC RAL, K.G.Jeffery@rl.ac.uk

Brian Kelly, UKOLN, University of Bath, B.Kelly@ukoln.ac.uk

Anastasios Kementsietsidis, University of Edinburgh, akements@inf.ed.ac.uk

Ioanna Koffina, ICS Forth, koffina@ics.forth.gr

George Kokkinidis, ICS Forth, kokkinid@ics.forth.gr

Manolis Koubarakis, Intelligence, TUC, manolis@intelligence.tuc.gr

Harald Krottmaier, Institute for Information Systems and Computer Media, University of Technology
Graz, hkrott@iicm.edu

Steffanie Linde, ETH

Stefan Manegold, CWI, Stefan.Manegold@cwi.nl

Carlo Meghini, ISTI CNR, carlo.meghini@isti.cnr.it

David Novak, Faculty of Informatics, Masaryk University of Brno, xnovak@fi.muni.cz

Raluca Paiu, L3S, paiu@l3s.de

Paolo Paolini, Polimi, paolo.paolini@polimi.it

Frank Pentaris, UOA, frank@di.uoa.gr

Vito Perrone, Polimi, perrone@elet.polimi.it

Claudia Plant, UMIT, claudia.plant@umit.at

Hans-Jörg Schek, UMIT / ETH, hans-joerg.schek@umit.at

Heiko Schuldt, Information & Software Engineering, UMIT, heiko.schuldt@umit.at

Timos Sellis, National Technical University of Athens, timos@dblab.ece.ntua.gr

Michael Springmann, UMIT, michael.springmann@umit.at

Martin Theobald, MPI, martin.theobald@mpi-sb.mpg.de

Christos Tryfonopoulos, Intelligence, TUC, trifon@intelligence.tuc.gr

Michalis Vazirgiannis, Department of Informatics, Athens University of Economics & Business,
mvazirg@aueb.gr

Timo Warns, Software Engineering, University of Oldenburg, timo.warns@informatik.uni-
oldenburg.de

Gerhard Weikum, MPI, weikum@mpi-sb.mpg.de

Marcin Werla, Poznań Supercomputing and Networking Center, mwerla@man.poznan.pl

Manfred Wurz, Information & Software Engineering, UMIT, manfred.wurz@umit.at

Pavel Zezula, Faculty of Informatics, Masaryk University of Brno, zezula@fi.muni.cz

Christian Zimmer, MPI, czimmer@mpi-sb.mpg.de

Dynamically Making Use of Distributed Data
Sources in a Grid Environment (Ext. Abstract)

Manfred Wurz and Heiko Schuldt

University for Health Sciences, Medical Informatics and Technology
Eduard-Wallnöfer–Zentrum 1 A–6060 Hall in Tyrol, Austria

[manfred.wurz|heiko.schuldt@umit.at]

Abstract. To avoid the cost of multiple and costly examinations, health
care institutions are in need to share information about scientific insights
and patient data more intensively and transparently. The need for seam-
less but still robust and secure collaboration is rising. Based on that
scenario, this paper proposes an architecture for dynamically paralleliz-
ing service requests in a grid environment without the need to change
existing and conscientiously tested functionality. The task of preparing
software for parallel execution is split into an application-specific part
of partitioning requests and re-integrating results and a generic compo-
nent responsible for the actual parallel calls, state management, failure
handling, and robustness.

Introduction

One major goal of grid computing is to establish highly flexible and robust en-
vironments to utilize distributed resources in an efficient and transparent way.
Due to the highly dynamic nature of such environments where computational
nodes may leave or join in, it is essential to bind service invocations to concrete
service instances at run-time. This allows to flexibly react to changes in the envi-
ronment. In a service-oriented world, application logic is encapsulated by means
of services. Standards like SOAP over HTTP can be used for the invocation
of (Web) services, and WSDL for accessing information on the capabilities of
services. When several instances of the same service exist in a grid environment,
then it should be possible to dynamically make use of as many service instances
as possible by parallelizing a (Web) service call and by submitting requests in
parallel to them.

The goal of this parallelization is twofold and depends on the characteristics
of the services which are subject to parallelization. First, we aim to make use
of as many services as possible (and therefore of the data accessible by those),
to increase the quality of the result. This is particularly true for the access to
data sources, encapsulated by dedicated services. Second, having multiple service
instances accessible opens the possibility to speed up the processing of compu-
tationally intensive tasks. Whereas examples for the latter have been presented
in detail in [6, 5] and large scale experiments with more than 2500 worker nodes
have been demonstrated in [1] using MW class library [3], this work focuses on

the goal of enhancing the quality of the request when accessing data sources by
means of services.

The contribution of this work is to introduce an architecture of a service
seeming to be an ordinary, callable service to the outside world, which is able
to adopt its behavior controllable by optional quality of service criteria, and the
resources available on a grid. In short, such dynamic services use meta infor-
mation on the currently available service providers and their capabilities and
partition the original request into a set of simpler requests of the same service
types. These (sub-)requests are then submitted in parallel to as many service
providers as reasonable, and their responses are finally integrated and returned
as the result of the original request. In particular, this parallelization shall be
carried out without the need to modify existing functionality or interfaces, and
transparently to the user and developer. Due to its master/slave nature, it is
especially suitable for grid environments [2].

To better illustrate the benefits of such an approach, the following scenario
describes how these dynamic services can be used in healthcare applications.

A Sample Scenario: Genotype/Phenotype Correlation. Donald, a pa-
tient, consults his family doctor telling him about pain in his chest, shortage of
breath, and drowsiness. Besides these symptoms being an indicator for angina
pectoris, Donald describes that starting a few hours ago, he additionally suffers
from pain in his abdomen and changing paralysis of his right and left leg. Based
on this description, the physician wants to ask for a second opinion and admits
the patient to a hospital for further examination. The specialist who examines
Donald in the hospital recognizes some very specific clinical artifacts which rise
his interest (gigantism, a funnel chest, scoliosis, and acromacria). Due to these
symptoms, Donald has to undergo clinical as well as molecular genetic examina-
tions, since this clinical fingerprint might be caused through a fibrillin-1 (FBN1)
gene mutation. To find out more about Donald’s potential genetic mutation, his
clinical fingerprint is used as an input for a genotype/phenotype correlation. The
quality and statement of such a correlation is highly influenced by the amount
of data that can be processed. Collaboration among various healthcare institu-
tions, where data is made available by genotype/phenotype correlation services,
is therefore of great importance. Luckily, the clinical fingerprint of Donald was
indeed listed in the data set of a partnering hospital, connected to the grid and
dynamically included in the search, and correlates with the Marfan–Syndrome.
An expensive molecular biological examination in which this genetic defect is
confirmed is conducted. Therefore, in addition to the acute vascular operation
he has to undergo because of his clinical symptoms, his family can be invited for
genetic screening to avoid similar costly, high risk operations in the future.

Using the approach described in this work, the correlation service does not
only consider the in-house service of a single hospital. Rather, it is a self-
adaptive, virtual service that dynamically and in parallel calls all available geno-
type/phenotype correlation services in the system, thereby jointly accessing the
data sources of several healthcare institutions. As a benefit of the architecture
proposed, the client application as well as the genotype/phenotype correlation

functionality does not have to be updated or rewritten to participate in or benefit
from such a self adaptive environment.

Although the above example is taken from eHealth digital libraries, the pro-
posed architecture can of course be applied to other domains as well. Whenever it
is appropriate to dynamically replace a single invocation of a service by multiple
invocations, dynamic adaptation and parallelization can be highly beneficial.

The remainder of this extended abstract is organized as follows. We briefly
describe the overall architecture and show the benefits of dynamic paralleliza-
tion for the application scenario introduced above. Finally, a conclusion and an
outlook on future work is given.

Overall Architecture

The goal of the architecture we propose is to improve the usability of a single
(Web) service, as well as to facilitate faster and less error prone development
for grid environments. This approach is based on the observation that, following
the current proliferation of service-oriented architectures, the number of services
and service providers in a grid will significantly increase. Especially services
which are provider independent and are not bound to special resources can be
distributed fast and widely in a grid environment or be deployed numerously
on demand. Although the availability of many congruent services as well as
the computational resources thereby offered seem to be within reach, adapting
functionality for parallel execution is still necessary and tedious.

The task of partitioning request parameters and re-integrating results after-
wards is highly application-specific and, from our perspective, cannot be solved
in a generic way. Although we see the potential to identify classes of applica-
tions according to the mechanism they partition and re-integrate requests which
allows to have pre-built splitter and merger services, an expert in the problem
domain will be necessary to tailor them for the specific need or perform some
additional, application domain specific work. We name a service, enriched with
the capability to partition incoming requests and reintegrate partial results, a
dynamic service.

Apart from that we introduce a Dynamizer component, which can be built
generically and which is responsible for state management, failure handling, and
service discovery. While the latter characteristic is independent concerning the
twofold approach described in the previous section, failure handling and state
management differs. In case of a dynamic service aiming to leverage the result
quality, the unexpected absence of a ’worker’ service already in charge of a
partial task does not hinder in producing a result. If partitioning the request of
a computationally intensive task to gain better performance, the overall results
rely on each sub task and the Dynamizer is responsible for compensating any
failing ’worker’ service.

As shown in Figure 1, the following logical units can be identified for dy-
namic services. The box in the center of the left side, labeled ’Payload Service’,
represents the actual service. It is responsible for providing application seman-

Payload Service

Common Interface

Wrapper

Partition Request

Merge Results
Registry

Dynamizer

Splitter

Merger

QoS Policy
Dynamic Service

Fig. 1. Overall Architecture

tics, e.g., a genotype/phenotype correlation on a local database. This is usually
a piece of business logic that has existed beforehand and is now supposed to
be opened to the grid and enabled for parallel execution. To achieve this goal,
it is surrounded by another box, labeled ’Common Interface Wrapper’, which
encapsulates the ’Payload Service’ and enhances it with a common interface.

On top, ’Partition Request’ encapsulates knowledge on how incoming param-
eters for the ’Payload Service’ have to be partitioned, so that the original request
can be decomposed into numerous new sub-requests. Each of these sub-requests
can then be distributed on the grid and be processed by other instances of the
originally targeted service. The box at the bottom (’Merge Results’) integrates
(partial) results returned from the grid to provide the original service requester
with a consolidated result. It can therefore be seen as the counter operation to
the ’Partition Request’ service. The combination of these elements is referred to
as ’Dynamic Service’.

To find instances of the originally targeted service (e.g., services where the
description equals the one of the ’Payload Service’), a registry is used (depicted in
the lower right corner of Figure 1) . This registry provides information on which
services are available, how they can be accessed, and what their properties are
(e.g., CPU load, connection bandwidth, access restrictions, etc).

The ’Dynamizer’, depicted on the right hand side, makes use of the ser-
vices mentioned above. It glues together the previously described services by
making the parallel calls and coordinating incoming results. The ’Dynamizer’
can interact with all services that adhere to a common interface, as ensured by
the ’Common Interface Wrapper’. It can be integrated in environments able to
call and orchestrate services, or it can be packaged and deployed together with
specific services.

To make the best possible use of the ’Dynamizer’, the user can send an op-
tional description of the desired service quality along with the mandatory param-
eters needed to process the request. In this Quality of Service (QoS) policy, the
user can, for example, describe whether the request should be optimized in terms
of speed (select high performance nodes, and partition the input parameters ac-
cordingly), in terms of bandwidth (try to keep network usage low) or if it should
aim for best accuracy (important for iterative approaches or database queries,

where there is an option to use different data sources). Since these specifications
can be contradictory, adding preferences to rank the user’s requirements is of im-
portance. To better illustrate the mechanisms within the ’Dynamizer’ regarding
the user specified QoS policy, we consider the following example: the special-
ist from the previously introduced healthcare scenario specifies that he wants
to use as many genotype/phenotype correlation information as possible and as
affordable within a 300 Euro budget. The ’Dynamizer’ finds 7 services with a
total of 2 gigabytes of searchable data, each charging 60 Euros per query. Alter-
natively, there are 40 services available provided by smaller institutions, having
just searchable amounts of data starting from 4 megabytes up to 30 megabytes
and charging .50 per query. The algorithms on how to reconcile the user speci-
fications, the details of the QoS description language and how to integrate this
best with our existing implementation is currently investigated.

Conclusion and Outlook

In this paper, we have stated the importance and the usefulness of an easy to
use, straightforward to develop and robust architecture to dynamically paral-
lelize (Web) service calls without the need to change existing functionality. In
future work, we plan to implement the assignment of QoS policies to service
requests as well as adding the ability to use semantically equivalent instead of
congruent services. First experimental results will be refined and further empir-
ical studies will be conducted to verify the validity of the approach described.
When dealing with semantically equivalent services, (partial) results are likely
to be heterogeneous, and mechanisms for integrating them have to be developed.
This, additionally to defining appropriate metrics for semantic equivalence in the
context described, is currently under investigation. Along with these changes, the
fault tolerance, robustness, and scalability of the introduced ’Dynamizer’ com-
ponent is improved by integrating it with OSIRIS [4], a distributed workflow
environment.

References

1. Kurt Anstreicher, Nathan Brixius, Jean-Pierre Goux, and Jeff Linderoth. Solving
Large Quadratic Assignment Problems on Computational Grids. In Mathematical
Programming 91(3), pages 563–588, 2002.

2. Ian Foster and Carl Kesselman, editors. The Grid 2, Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 2004.

3. Jean-Pierre Goux, Sanjeev Kulkarni, Jeff Linderoth, and Michael Yoder. An En-
abling Framework for Master-Worker Applications on the Computational Grid. In
9th IEEE Int’l Symp. on High Performance Dist. Comp., pages 43–50, Los Alamitos,
CA, 2000. IEE Computer Society Press.

4. C. Schuler, R. Weber, H. Schuldt, and H.-J. Schek. Scalable Peer-to-Peer Process
Management - The OSIRIS Approach. In Proceedings of the 2nd International Con-
ference on Web Services (ICWS’2004), pages 26–34, San Diego, CA, USA, July
2004. IEEE Computer Society.

5. M. Wurz, G. Brettlecker, and H. Schuldt. Data Stream Management and Digital
Library Processes on Top of a Hyperdatabase and Grid Infrastructure. In Pre-
Proceedings of the 6th Thematic Workshop of the EU Network of Excellence DELOS:
Digital Library Architectures - Peer-to-Peer, Grid, and Service-Orientation (DLA
2004), pages 37–48, Cagliari, Italy, June 2004. Edizioni Progetto Padova.

6. M. Wurz and H. Schuldt. Dynamic parallelization of grid–enabled web services. In
Proceedings of European Grid Conference 2005 (EGC 2005) (to appear), 2005.

Influence of Replication on Availability within
P2P Systems

Timo Warns1, Wilhelm Hasselbring12, and Mark Roantree3

1 Software Engineering Group, Carl von Ossietzky Universität Oldenburg, Germany,
(timo.warns|hasselbring)@informatik.uni-oldenburg.de

2 OFFIS Research Institute, Germany,
3 Interoperable Systems Group, Dublin City University, Ireland,

mark@computing.dcu.ie

Abstract. An increasing number of digital library management systems
is developed following P2P architectures to overcome the bottlenecks
of client/server architectures. Usually, the participating peers are less
dependable than traditional servers. Hence, a P2P system needs to deal
with failures of single peers to avoid overall system failures. Replication
is a means to improve availability of resources. We empirically investigate
the influence of replication techniques on availability by simulations. We
focus on voting-based replication control strategies which offer one-copy-
serializability in the context of our XPeer architecture.

1 Introduction

Peer-to-peer (P2P) digital libraries are highly dynamic as they shall facilitate
data sharing among users. The churn rate is high as their peers enter and leave
the system frequently. Hence, the dependability of peers is worse than the cor-
responding characteristics of traditional servers. Particularly, current P2P sys-
tems employ small-world topologies, cross-partition pointers, self-organization
and periodic description updates to improve dependability [10]. In summary,
these means aim at maintaining the topology and communication among avail-
able peers in the presence of failing peers.

P2P systems offer services which are delivered by participating peers. The
operation of a service requires access to resources, like databases. Usually, these
resources are hosted by the peers which deliver the service. If the hosting peers
fail, the service crashes jointly. Hence, means of retaining communication and
topology do not suffice to improve dependability of P2P services. Means must
address the resources hosted on peers as well.

Replication and caching are suitable means to improve availability of re-
sources [6]. Digital library systems provide data and metadata. Usually, caching
is preferred to replication for data like audio and video files as this kind of
content changes rarely. However, metadata is subject to replication, because it
is updated by users frequently, e.g., to rate content. For example, Kovács et
al. describe a peer-to-peer digital library which caches content and replicates
metadata [7].

2

P2P systems differ from traditional distributed systems. For example, inter-
mediate peers influence the dependability of communication, and fault character-
istics of peers are worse than the corresponding attributes of traditional servers.
Therefore, replication has to be investigated specifically for P2P contexts, be-
cause solutions for traditional distributed systems may not be appropriate. Our
work addresses this issue for the voting-based replication strategies Read-One-
Write-All (ROWA) and Majority Consensus [9] as a first step. Particularly,
we explore the availability of read and write operations on replicated resources
compared to non-replicated resources.

2 Related Work

Vanthournot et al. propose small-world topologies, self-organization, and cross-
partition pointers as means of fault-tolerance within P2P systems [10]. They
simulate P2P systems to investigate the resulting dependability. They focus on
failures of peers and connections, but omit the issue of resources on peers.

Replication based on rumour spreading is proposed for P-Grid [4]. These
algorithms ease consistency conditions to improve availability and performance.
They focus on analyzing the communication overhead.

3 The XPeer architecture

P2P systems which are required to be highly dependable in the presence of
frequent updates under a sequential consistency model come into question for
voting-based replication. Our current work includes the XPeer architecture for
data integration within such systems.

XPeer is a logical super-peer architecture which is well suited for digital li-
braries [1]. It addresses the issue of querying distributed data in a large scale con-
text by realizing an integrated schema. This schema is formed from heterogenous
information sources by classifying data sources into domains and creating user
profiles for query optimizations. Information sources are integrated using XPeer’s
novel concept of super-peer application in a database environment. Super-peers
are used to integrate information sources from clusters of interest or similarity.
However, these sources are prone to disappear in a P2P architecture, causing
problems for the query service and the optimisation process. The Replication
Service described here is used to extend the original architecture.

4 Method

The availability of reading a replicated resource must be considered separately
from the availability of writing, because the behaviour of replication control
strategies may differ for reading and writing. We evaluated the resulting val-
ues by discrete event-simulation of scenarios. We developed a simulation model

3

of peers following real-world implementations like Freenet [3] and incorporated
techniques of replication.

A scenario consists of a P2P system with specific peers, connections, and their
availabilities, a replication strategy and a distribution of replicas to peers. The
set of all possible scenarios is infinite. We restrict ourselves to a subset of scenario
classes for the investigation. The set of all scenarios can be characterized along
five main dimensions: P2P architecture, P2P instantiation, faults, replication
architecture, and replication deployment.

The P2P architecture describes the conceptual layout of a P2P system. The
dimension is subdivided into degree of centralization, structure, and style of com-
munication. The degree of centralization determines whether a system may have
centralized elements, e.g., index servers. The topology of P2P systems may be
structured, e.g., to a ring or small-world topology. The style of communication
describes whether peers are able to communicate indirectly by relaying and for-
warding messages. A P2P instantiation is a derivation of an actual P2P system
from an architecture. It describes how many peers participate in the system and
how they are connected. The faults dimension specifies the fault characteristics
of peers and connections. We assume an exponential distribution of faults. For
our purposes, the mean time to failure and the mean time to repair suffice, be-
cause the availability and reliability of peers and connections can be derived from
these values [8]. The replication architecture describes the conceptual behaviour
of replicas. Several classifications of replication are known [5, 12]. The replication
instantiation specifies the actual number and distribution of replicas to peers.

5 Results

We derived 36 scenarios classes from the dimensions above. We chose decentral-
ized and super-peer architectures with unstructured, mesh-like, and small-world
topologies and indirect communication. The mesh-like topology is a special type
of a structured topology, whereby each peer is connected to four neighbors to
form a net. A small-world topology is characterized by short paths of interme-
diate peers between any pair of peers [11]. The number of peers is fixed to 49
for each scenario. The connections are chosen depending on the demands of the
topology. The range of mean times to failure and mean times to repair is derived
from observations of a real-world system [2]. Two simple types of weighted vot-
ing are considered for the replication architecture: Read-One-Write-All (ROWA)
and Majority Consensus. The number of replicas is fixed to five for deployment.
Their distribution to peers is managed in two ways: They are located on peers
with best fault characteristics or are allocated according to a normal distribu-
tion. Each scenario class is simulated with a single read or a single write access to
acquire the resulting availability. Additionally, each obtained P2P system is sim-
ulated with a non-replicated resource to be able to evaluate the relative influence
of ROWA and Majority Consensus.

The results of the simulations for each scenario class are presented in table 1.
The relative influence of the replication techniques compared to the correspond-

4

Table 1. Resulting Availability

Scenario Classes
1 Unstructured, Uniform Good
2 Unstructured, Uniform Medium
3 Unstructured, Norm. Distr., Best Peers
4 Unstructured, Norm. Distr., Norm. Distr.
5 Mesh, Uniform Good
6 Mesh, Uniform Medium
7 Mesh, Norm. Distr., Best Peers
8 Mesh, Norm. Distr., Norm. Distr.
9 Super Peer, Uniform Good

10 Super-Peer, Uniform Medium
11 Super-Peer, Norm. Distr., Best Peers
12 Super-Peer, Norm. Distr., Norm. Distr.

Fig. 1. Relative Change Reading / Writing

ing scenario classes without replication is illustrated in figure 1. The ROWA
strategy requires access to a single replica for reading. We expected that the
strategy heavily improves the availability of reading. It has its best influence
for availability of reading for scenario class 12 with about 4.25%. The worst in-
fluence occurs for scenario class 5 where no influence was measured at all. Not
surprisingly, it improves reading for most scenarios. However, for some scenario
classes (1, 5, 9) the influence is negligible.

The ROWA strategy requires access to all replicas for writing. Hence, all
hosting peers must be available for executing a write operation successfully. We
expected that the strategy heavily decreases availability of writing, which was
confirmed with relative influences ranging from −32.89% to 0.15%.

The Majority Consensus strategy requires access to more than half of the
replicas for reading and writing. We expected that the strategy improves both
availabilities. The influence for reading was expected to be worse than the influ-
ence of ROWA, because access to more than one replica is required. It has its
best influence for scenario class 8 with a relative improvement of about 3.68%.
The worst influence occurs for class 5 where its influence is negligible. In general
our expectation was confirmed as the strategy improves availability for reading
and writing. The influence for read operations was worse than the influence of

5

ROWA. However, it exceeds ROWA for the scenario classes 2, 3, and 7. It is in-
teresting to see that it does not decrease availability significantly for any scenario
class we chose.

A broader generalization of the simulation results is a topic for future work.
Even small changes to the scenario may have high impact on the resulting values.
However, our results already indicate at this stage that voting-based replication
strategies are a favourable replication technique for P2P systems when high con-
sistency is required. Even if the peers of the scenario classes had fault character-
istics worse than traditional servers, Majority Consensus improves availability
of reading and writing.

References

1. Z. Bellahsène and M. Roantree. Querying distributed data in a super-peer based
architecture. In F. Galindo, M. Takizawa, and R. Traunmüller, editors, Database
and Expert Systems Applications, 15th International Conference, DEXA 2004, vol-
ume 3180 of Lecture Notes in Computer Science, pages 296–305. Springer, 2004.

2. R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. In
F. Kaashoek and I. Stoica, editors, Peer-to-Peer Systems II, Second International
Workshop, volume 2735 of Lecture Notes in Computer Science, pages 256–267.
Springer, 2003.

3. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In H. Federrath, editor, Proceedings
of the Workshop on Design Issues in Anonymity and Unobservability, volume 2009
/ 2001 of Lecture Notes in Computer Science, pages 46–66. Springer, July 2000.

4. A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable, replicated
peer-to-peer systems. In 23rd International Conference on Distributed Computing
Systems (ICDCS 2003), pages 76–87. IEEE Computer Society, 2003.

5. S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned net-
works. ACM Comput. Surv., 17(3):341–370, 1985.

6. W. Hasselbring. Federated integration of replicated information within hospitals.
International Journal on Digital Libraries, 1(3):192–208, Nov. 1997.

7. L. Kovács, A. Micsik, M. Pataki, and R. Stachel. Collaboration of loosely coupled
repositories using peer-to-peer paradigm. In M. Agosti, H.-J. Schek, and C. Türker,
editors, DELOS Workshop: Digital Library Architectures, pages 85–92. Edizioni
Libreria Progetto, Padova, 2004.

8. M. R. Lyu, editor. Handbook of Software Reliability Engineering. IEEE Computer
Society Press and McGraw-Hill Book Company, 1996.

9. R. H. Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM Trans. Database Syst., 4(2):180–209, 1979.

10. K. Vanthournot and G. Deconinck. Building dependable peer-to-peer systems. In
DSN 2004 Workshop on Architecting Dependable Systems, 2004.

11. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393:440–442, June 1998.

12. M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database repli-
cation techniques: a three parameter classification. In Proceedings of 19th IEEE
Symposium on Reliable Distributed Systems (SRDS 2000), pages 206–217. IEEE
Computer Society, 2000.

Adaptive replication strategies and software

architectures for peer-to-peer systems

Ludger Bischofs1,2, Simon Giesecke1, Wilhelm Hasselbring1,2, Heiko Niemann1,
and Ulrike Ste�ens2

1 Carl von Ossietzky University of Oldenburg, Software Engineering Group,
26111 Oldenburg (Oldb.), Germany,

{giesecke,hasselbring,niemann }@informatik.uni-oldenburg.de
2 Kuratorium OFFIS e.V., Escherweg 2, 26121 Oldenburg (Oldb.), Germany,

{ludger.bischofs,ulrike.steffens }@offis.de

1 Introduction

The use of replication techniques for data in distributed information systems
aims at improving non-functional properties of these systems. Particularly, avail-
ability, reliability, and performance should be increased. When considering het-
erogeneous, autonomy-preserving systems such as distributed digital libraries,
the replication techniques employed should be able to adapt to varying proper-
ties of the individual systems at run-time.

Adaptive replication strategies need to be realized by a software architecture
which provides the context for their implementation. Digital library systems
whose information providers are organizationally closely related, for example
under the umbrella of a single institution, should be tightly coupled, in order to
allow for a high degree of consistency to be maintained. Other digital libraries,
such as those of separate publishers, should be coupled less tightly, to allow for
retaining their autonomy. This can be realized by a replication strategy based
on peer-to-peer (P2P) techniques which combines intra-institutional and inter-
institutional replication strategies. The overall replication strategy is evaluated
and optimized at run-time, such that domain-speci�c requirements are incorpo-
rated into a multi-dimensional problem model.

2 Data replication strategies

Data replication aims at increasing availability, reliability and performance of
data accesses by storing data redundantly [1�3]. A copy of a replicated data
object is called a replica. Replication ensures that all replicas of one data ob-
ject are automatically updated when one of its replicas is modi�ed. Replication
involves con�icting goals with respect to guaranteeing consistency, availability
and performance [4]. An improvement of one of these properties usually implies
a degradation of the others.

Replication in a distributed system is realized by a replication strategy, which
is often controlled by replication managers. The quality of a strategy can be mea-
sured by the correctness criterion it safeguards. The strictest criterion is that of

one-copy-serializability : The concurrent execution of a set of distributed transac-
tions is one-copy serializable, if its e�ect is equivalent to the sequential execution
of the transactions on a non-replicated database [5]. Besides this criterion a num-
ber of other correctness criteria have been de�ned, which are less strict and thus
easier to ful�l.

Replication can be performed in an eager or lazy way [6]. In the case of ea-
ger replication, when one replica is modi�ed by a transaction, the other replicas
of the concerned data object are updated within the original database transac-
tion, as opposed to lazy replication where only the originally accessed replica
is updated within the original transaction, while the other replicas are updated
in separate transactions. The classi�cation into synchronous and asynchronous

replication strategies is essentially equivalent to this classi�cation. Combinations
of synchronous and asynchronous replication have also been studied [7, 8].

The concept of an adaptive replication manager was �rst proposed in [9]. Its
goal is to achieve an optimal trade-o� between tight and loose coupling of in-
formation systems [10], which is realized by dynamically switching participating
systems between being synchronously and asynchronously updated.

3 Peer-to-peer systems

Peer-to-peer systems are distributed systems that follow a communication model
of equal nodes (peers) which communicate directly with each other. In the follow-
ing we introduce di�erent styles of peer-to-peer architectures before we describe
the speci�c bene�ts of replication within peer-to-peer architectures.

3.1 Styles of peer-to-peer architectures

The class of peer-to-peer architectures can roughly be divided into pure and
hybrid peer-to-peer architectures. Pure peer-to-peer architectures are completely
decentralized. Each peer in the network is equipped with both client and server
functionality and the architecture does not contain any central servers at all.

Hybrid peer-to-peer architectures combine characteristics of pure peer-to-peer
architectures and client/server architectures. Some services are o�ered by servers
and are therefore centralized, whereas other services are based on the peer-to-
peer communication model. Hybrid architectures can further be subdivided into
centralized architectures and super-peer architectures. In centralized architectures
there are nodes with pure server functionality which o�er exclusive services.
Super-peer architectures are also called hierarchical architectures and combine
the concepts of decentralized and centralized architectures. A super-peer is a
peer which acts as a server for a set of ordinary peers and usually interacts
with other super-peers. Ordinary peers are typically organized in clusters to-
gether with a single super-peer. Super-peer architectures are particularly suited
to support both intra- and inter-institutional cooperation because they allow for
representing the structures of an institution within the super-peers' clusters as
well as the structures among di�erent institutions by connecting the di�erent
super-peers accordingly.

3.2 Peer-to-peer replication

Today's replication strategies often depend on centralized solutions. Replicating
heterogeneous, autonomy-preserving information systems, however, requires �ex-
ible and well-coordinated approaches. Intra- and inter-institutional replication
should be addressed by an integrated approach, where institutions are coupled
via a suitable peer-to-peer infrastructure.

S2

S3

S4

DL

P

C

S1

...

...

...

S

DL

C

P

super-peer

digital library
peer

collection peer

person peer

cluster

organisational
relationship

registration

messages

PP P

P P

C

C C

Fig. 1. Organization-oriented super-peer architecture for digital libraries

In �gure 1, a super-peer architecture re�ecting the requirements of di�er-
ent cooperative digital library systems is shown. We have chosen a super-peer
approach because it allows to structure the logical network in accordance with
the organizational structure. This architecture is one example of how to model
speci�c organizational requirements by extending peer-to-peer architectures by
an additional layer which provides information on the organizational context
(cf. [11�13]). The architecture forms a basis for intra- and inter-institutional
integration and replication of distributed data resources and services. Digital
libraries together with specialized subcollections as well as individual users are
represented by di�erent types of peers. The connections among these peers as
shown in the upper right of �gure 1 are only one example of how a library may
be organizationally structured. Other, non-hierarchical structures are also sup-
ported. Documents and also services may be controlled by the digital library as
superordinate institution, by single collections and also by single person peers
who e.g. can o�er their individual metadata or link lists to interesting web doc-
uments.

The intra-institutional structure as described above is complemented by an
inter-institutional coupling with the help of super-peers. The super-peers impose
a partition into clusters of organizationally closely related peers, where one clus-
ter may comprise one or more institutions. Super-peers have more responsibili-

ties than ordinary peers. A super-peer stores metadata concerning the structure
of the institutions under its auspices and of the data resources and services it
provides. Thus, its main task is to mediate between the di�erent clusters.

�����������
	������� ������� ����	�����������

����	�� � �!� ���"�����#��$%����&'��� &���()����(����

*+��(�,���-�,��(���.��/����,0�	1�������'�,� / 2 ���������'�3����/����,0�	1�������'�4	������� ������� ���5	�����'������

6�*7�'(#�,����$������ ��8

6�*+�'(#�,���5�,�,���9�����$ ��� 8

: � ;%�����<�,�,��������

6 �7�%� ������#�����4$1�������=�';5�</'������>?� �4���,�#�A@"� ����0,��B� ��8

: � ;��,���C$������=��	��

6 �D���C$����=�E���';5�9/��9����>"�F��	��5�A@"� ����0,��B� ��8

Fig. 2. Adaptive replication strategy

The structure given by an organization-oriented super-peer network can serve
as foundation for the realization of adaptive intra- and inter-institutional repli-
cation strategies. Within a single institution the overall information system is
usually composed of multiple component information systems, which must repli-
cate data permanently due to high availability requirements. An advanced repli-
cation strategy is required to facilitate both high consistency and autonomy of
the component information systems, each of which must not be vitally impaired
when other systems fail. An optimal trade-o� between these con�icting require-
ments can be reached by combining synchronous and asynchronous replication
into an adaptive replication strategy. Each system may be replicated either syn-
chronously or asynchronously at any time. Switching between synchronous and
asynchronous replication should be con�gurable and adaptive with respect to the
current network con�guration status. The con�guration is performed using a sys-
tem of rules, which is continuously evaluated at run-time to ensure adaptivity.
The correctness criterion of the replication strategy is evaluated by means of an
appropriate consistency measure, i.e. a measure of the probability of consistent
accesses.

A transaction that modi�es a replicated data object is called a replication
request. It is initiated by any node connected to the peer-to-peer network and is
sent to its replication manager: One possibility to determine the replication man-
ager is to use the digital library peer as intra-institutional replication manager,
if the initiating node is contained within an institution (cf. 1). If the replication

request is not con�ned to the originating institution, or if the initiating peer
is not assigned to an institutional digital library peer, its super peer is used as
an inter-institutional replication manager. In �gure 2, the process realizing an
adaptive replication strategy is illustrated for one replication request. By evalu-
ating the system of rules, the involved nodes are split into two groups, those that
are to be updated synchronously and asynchronously, respectively. After that,
both groups of nodes are processed. The nodes in the synchronous group are
directly updated, while the update requests for the nodes in the asynchronous
group are enqueued into a message queue. All node updates are performed in
parallel within one transaction. If all synchronous updates were successful, the
processing of the replication request is completed and positively acknowledged.
If a synchronous update fails, the replication manager checks whether the failing
systems may be switched to asynchronous update mode. If this is the case, the
corresponding systems are switched and the processing of the replication request
is restarted. If some system could not be switched, the replication request fails.

Asynchronous replication requests in the message queue are continuously
processed in an independent thread of execution. If a system to be updated is
not available, the corresponding request stays in the queue until the update has
successfully been performed.

4 Peer-to-peer replication for digital libraries

Today's digital library systems cooperate in manifold ways. They exhibit a vary-
ing internal organizational structure, e.g. given by the introduction of specialized
subcollections or by extraction of project-speci�c reference libraries [14]. Fur-
thermore, di�erent business models also including the ability to count the cost
of library access have to be taken into account [15]. Against this background,
the ability to map intra- and inter-institutional requirements to the underlying
digital library system as presented above is of paramount importance. Libraries
including resources other than traditional library documents like e.g. resource
collections in e-science [16] or health information systems [10,11,13,17] emerge.
This calls for the determination of detailed strategies not only for searching these
collections [18] but also for replication of both resources and services as claimed
in this paper.

References

1. Bernstein, P.A., Goodman, N.: The failure and recovery problem for replicated
databases. In: Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing, New York, NY, ACM Press (1983) 114�122

2. Mustafa, M., Nathrah, B., Suzuri, M., Osman, M.A.: Improving data availability
using hybrid replication technique in peer-to-peer environments. In: Proc. 18th
International Conference on Advanced Information Networking and Applications
(AINA'04), IEEE CS Press (2004) 593�598

3. Loukopoulos, T., Ahmad, I.: Static and adaptive data replication algorithms for
fast information access in large distributed systems. In: Proc. 20th International
Conference on Distributed Computing Systems (ICDCS 2000), IEEE CS Press
(2000) 385�392

4. Hasselbring, W.: Federated integration of replicated information within hospitals.
International Journal on Digital Libraries 1 (1997) 192�208

5. Traiger, I.L., Gray, J., Galthier, C.A., Lindsay, B.G.: Transactions and consistency
in distributed database systems. ACM Transactions on Database Systems 7 (1982)
323�342

6. Gray, J., Helland, P., O'Neil, P., Shasha, D.: The dangers of replication and a
solution. SIGMOD Rec. 25 (1996) 173�182 Proceedings of the SIGMOD 1996
conference.

7. Lubinski, A., Heuer, A.: Con�gured replication for mobile applications. In
Barzdins, J., Caplinskas, A., eds.: Databases and information systems, Dordrecht,
Niederlande, Kluwer Academic Publishers (2001) 139�151

8. Röhm, U., Böhm, K., Schek, H.J., Schuldt, H.: FAS � A Freshness-Sensitive Co-
ordination Middleware for a Cluster of OLAP Components. In: 28th International
Conference on Very Large Data Bases (VLDB 2002). (2002) 754�765

9. Niemann, H., Hasselbring, W., Hülsmann, M., Theel, O.: Realisierung eines adap-
tiven Replikationsmanagers auf Basis der J2EE-Technologie. In: Datenbanksys-
teme für Business, Technologie und Web (BTW). Volume 26 of GI-Edition � Lec-
ture Notes in Informatics., Bonn, Bonner Köllen Verlag (2003) 443�452

10. Niemann, H., Hasselbring, W., Wendt, T., Winter, A., Meierhofer, M.: Kop-
plungsstrategien für Anwendungssysteme im Krankenhaus. Wirtschaftsinformatik
44 (2002) 425�434

11. Bischofs, L., Hasselbring, W., Schlegelmilch, J., Ste�ens, U.: A hierarchical super
peer network for distributed artifacts. In Agosti, M., Schek, H.J., Türker, C., eds.:
DELOS Workshop: Digital Library Architectures. (2004) 105�114

12. Bischofs, L., Hasselbring, W.: A hierarchical super peer network for distributed
software development. In: Proc. Workshop on Cooperative Support for Distributed
Software Engineering Processes (CSSE 04). (2004) 99�106

13. Bischofs, L., Hasselbring, W., Niemann, H., Schuldt, H., Wurz, M.: Verteilte Ar-
chitekturen zur intra- und inter-institutionellen Integration von Patientendaten.
In: Tagungsband der 49. Jahrestagung der Deutschen Gesellschaft für Medizinis-
che Informatik, Biometrie und Epidemiologie (GMDS 2004). (2004) 87�89

14. Schmidt, J.W., Schröder, G., Niederée, C., Matthes, F.: Linguistic and Archi-
tectural Requirements for Personalized Digital Libraries. International Journal of
Digital Libraries 1 (1997) 89�104

15. Weber, R.: Chablis - Market Analysis of Digital Payment Systems. Institutsbericht,
Technische Universität München, Institut für Informatik (1998)

16. Frommholz, I., Knezevic, P., Mehta, B., Niederée, C., Risse, T., Thiel, U.: Sup-
porting Information Access in Next Generation Digital Library. In: Sixth Interna-
tional Workshop on Digital Library Architectures, Cagliari, Italy, Edizioni Progetto
Padova (2004) 49�60

17. Wurz, M., Brettlecker, G., Schuldt, H.: Data stream management and digital
library processes on top of a hyperdatabase and grid infrastructure. In: DELOS
Workshop: Digital Library Architectures. (2004) 37�48

18. Klas, C.P., Fuhr, N., Schaefer, A.: Evaluating Strategic Support for Information
Access in the DAFFODIL System. In: Research and Advanced Technology for
Digital Libraries. Proc. European Conference on Digital Libraries (ECDL 2004).
Volume 3232 of Lecture Notes in Computer Science., Springer (2004) 476�487

Distributed Services Architecture in dLibra Digital
Library Framework

Cezary Mazurek and Marcin Werla

Poznan Supercomputing and Networking Center
Poznan, Poland

{mazurek,mwerla}@man.poznan.pl

Abstract. Architecture is one of the key factors influencing all distributed
system components. It often decides about overall functionality, performance
and flexibility. In this article we intend to describe the design of the first Polish
digital library framework called dLibra, which has been developed in PSNC
since 1999. We show how architecture based on modular and distributed
services can be used to split digital library functionality. Such division gives
opportunities for improving services availability and expansion possibilities.
We also want to present mechanisms that we use to assure stable and
continuous work of our distributed digital library framework, making it
independent of various negative circumstances.

1 Introduction

The dLibra Digital Library Framework [1, 2] has been developed in Poznan
Supercomputing and Networking Center since 1999. The first dLibra-based digital
library (DL) was the Digital Library of the Wielkopolska Region (WBC) [3]. It was
started in October 2002 and now it consists of over 3000 various publications grouped
into four thematic collections: cultural heritage, regional materials, educational
materials and music notes. Such number of publications makes from WBC one of the
largest Polish digital libraries. In the end of November 2004 the second dLibra-based
digital library was deployed – the Wroclaw University of Technology Digital Library
(BCPWr) [4]. There are also four other test dLibra installations academic libraries,
and in the nearest future three new regional digital libraries will be started.

Due to the diversity of mentioned digital libraries, many different aspects must be
taken into account during the dLibra development. Each DL has its own specific
publications – for example the majority of WBC publications are relicts of writing
and old documents associated with social life of the Wielkopolska Region. Such
resources are mostly stored in a graphical form, in formats like DjVu, PDF or JPG
scans. All that publications consist of quite large files and their content is often not
searchable. On the other hand, there are academic DL systems, like one of test dLibra
installations in AGH University of Science and Technology, where a typical
publication is an academic script stored as a set of HTML pages or small PDF file
with searchable text content. Such differences requires support in many areas – from
format dependent publication structure analysis during the publication upload process,

2 Cezary Mazurek and Marcin Werla

to sophisticated mechanisms for content indexing and searching, to different
publication view and download possibilities. Another important element is the amount
of stored publications. When there are many gathered resources, and a large number
of readers accessing it, the overall system performance becomes a crucial parameter.

In the following sections we want to show the way in which we designed the
internal dLibra architecture and its basic mechanisms to create an efficient, flexible,
distributed and error-resistant digital library system. The next section describes the
structure of distributed services architecture developed in the dLibra Digital Library
Framework. We also show an overview of these services functionality. The third
section is focused on mechanisms for improving services reliability and availability in
the dLibra framework. We try to demonstrate our approach to improving the dLibra
stability in some extreme situations, like very heavy user requests load or network
communication errors. Those mechanisms are an integral part of dLibra services and
service management system. In the last section we point out some directions of our
future, digital library-related works.

2 dLibra Architecture

The initial dLibra architecture and design was based on experiences from previous
PSNC projects. We assumed that the dLibra environment should consist of a number
of portable, distributed services. Portability was achieved by choosing Java™ as the
programming language. Further works and practice from dLibra deployments formed
the current dLibra structure. This structure is based on a set of cooperating remote
services. All these services together create the complete dLibra-based digital library.
Each service can be started on a separate computer, but they can also be connected
into service groups running on the same machine. When services are started on
different hosts, they use Java RMI technology to communicate with each other [5].
Six of dLibra services give together the entire dLibra server functionality. These
services are:
− The Metadata Server – gives a possibility to define, modify and remove metadata

attributes that are used to describe digital library publications. It also gives access
to dictionaries and thesauri with values of all attributes. It is responsible for
managing digital library directories and collections. In addition, it allows adding,
modifying and deleting publications, and it has possibilities to manage lists of
languages defined in the DL system. Moreover, it has a module for performing
periodic metadata consistency test.

− The Content Server – gives access to all gathered digital content. Before sending
content to the client, this service is able to compress it or encrypt and send
securely. The Content Server is also used to store the publications content.
Resuming is supported during both publication upload and download.

− The Search server – allows users to search through all gathered content and
metadata. It also contains indexing functionality, which prepares indexes used
during search.

− The Distributed Search Server – is used to harvest remote dLibra instances by
means of the OAI-PMH [6] protocol. It also gives the user a possibility to search

Distributed Services Architecture in dLibra Digital Library Framework 3

through gathered remote metadata. In fact, any OAI-PMH-enabled repository can
be harvested and searched using that service.

− The User Server – contains all user-related data and allows users authentication
and authorization. It is also used to create groups of users and to grant users
different digital library rights, from library administration to simple publication
view.

As we mentioned before, all the above services give together the entire dLibra digital
library functionality. However, at least two more elements are required to create a
fully functional system. There must be a possibility to connect all these services and
create an entry point to the system for both external applications and users.

Fig. 1. Distributed dLibra services architecture

Connection between services is achieved with two additional services (see
Figure 1). The first of them is a service called the System Services. It can be treated as
a broker of services for single instance of the distributed digital library. It allows inter
service communication and handles services addresses resolving, connecting and
authorization. For example, when the Search Server wants to refresh its indexes, it
asks the System Services for the Content Server and the Metadata Server. The System
Service checks if such services are registered, if they are available and if the Search
Server is authorized to access them. If all those conditions are met, as a response the
Search Server receives references to the requested services. In order to become
available to other services, each service must register itself in the chosen System
Services. Services registered in one System Services create a digital library.

The second additional system level service is the Event Server. It allows services to
communicate with the event messaging system. It is very useful when one service
wants to notify some other services about a particular event. A good example of this

4 Cezary Mazurek and Marcin Werla

mechanism can again be a process of refreshing search indexes (see Figure 2). Just
after start, the Search Server registers in the Event Server for events related with the
modification of gathered content and metadata. When a new publication is added,
modified or removed, the Metadata Server sends an event notification to the Event
Server. Next, the Event Server forwards this event to all services registered for this
event type. After receiving such event, the Search Server can decide if index
refreshing is required or maybe just some data should be removed from the index.

Fig.2. Sequence diagram describing Event Server event passing

In Figure 2 there is an element called User Interface. This corresponds to two
additional parts of the dLibra Framework. One of them is WWW Service and the
second is the Editor/Administrator application. The WWW Service is designed as a
read only entry point to the system. It can be used by readers to access gathered
resources. Content browse and searching are the main functionality of this service, but
it is also an OAI-PMH data provider, and it has many user-friendly features like RSS
[7] feeds with information newly added publications, publications ranking etc. This
functionality is realized with the use of all other dLibra services reached through the
System Services. The Editor/Administrator Application is an application for librarians
and library administrators. It allows adding and modifying library resources and
managing all library items.

Distributed Services Architecture in dLibra Digital Library Framework 5

3 Improving services availability in dLibra framework

The distributed architecture of the described dLibra services requires additional
mechanisms for improving system reliability and availability. When one of the
services stops responding, the library may become less functional (for example in
case of the Search Server failure) or may not be functional at all - when the User
Server or Metadata Server fails. To prevent such situations, a number of mechanisms
were introduced.

The first of them is the way of service resolving done by the System Services.
There is a possibility to create such services configuration, in which multiple
instances of the most crucial services are started. Before the System Services gives
one service access to another service, it tests the requested service functionality.
When the tested instance of a given service fails, the System Services can return
reference to other instance. Such instance switch is transparent to other services. With
addition of services load monitoring functionality, this mechanism can also be used
for load balancing between service instances.

The second mechanism is internal services monitoring. Each service is periodically
checked if it is responding or has enough processor time for its tasks. This check is
performed by a special service wrapper based on an open-source Java
ServiceWrapper project [8]. The Wrapper can restart or shutdown the service when,
for some reason, it stops responding or when host processors are overloaded for a
longer period of time (for example during DoS attacks [9]). This service monitoring is
done locally so it is independent of the state of network connections.

Another reliability improving mechanism is implemented in events sending and
receiving parts of the dLibra framework. When service generates an event, it is not
directly sent to the Event Server, but it is stored in a persistent storage. This storage is
implemented with Hibernate [10], so it can be based on many types of relational
databases. All stored events are read by a specialized Event Sender thread. This thread
tries to send events to the Event Server. If connection to the Event Server is lost, all
events stay in the storage until there is a possibility to send them again. On the other
hand, when the Event Server retrieves an event, it also stores the event before trying
to send it to registered services. Each service, while registering for events, gives the
Event Server special timeout parameter. This parameter describes how long the events
should be stored in the Event Server, if the registered service becomes unavailable. If
the registered service becomes available again, all events stored for this service will
be passed to it.

4 Future works

We think that next dLibra development stages will bring this distributed digital library
framework closer to grid technologies. In order to do so, it will be necessary to extend
our services model. Each service should gain the ability of describing itself with
metadata. On top of the System Services there must be some kind of a new, much
more advanced service – a dynamic distributed digital library services broker.

6 Cezary Mazurek and Marcin Werla

This should allow automated service discovery and creation of virtual DL
organizations. Such active organizations of services could be used to create
distributed digital collections from resources gathered in heterogeneous DL systems.
We can also imagine Information Retrieval Grid services based on different
distributed digital libraries [11, 12]. By creating an environment for advanced
cooperation of computational grid services, grid data management systems and digital
libraries we want to give an opportunity for advanced usage of digital libraries in
sophisticated grid scenarios [13].

References

 [1] Gruszczyński, P.; Mazurek, C.; Osinski S.; Swedrzynski A.; Szuber S. “dLibra Content
Maintenance for Digital Libraries” in Euromedia’2002, pages 28–32, 7th Annual
Scientific Conference, April 2002.

 [2] Mazurek C.; Stroiński M.; Swędrzyński A.; „dLibra – Integrated Framework for
Publishers and Libraries” – poster at 7th European Conference on Digital Libraries,
Torndheim, Norway, August 2003.

 [3] Digital Library of Wielkopolska Region. http://www.wbc.poznan.pl/.
 [4] Wroclaw University of Technology Digital Library. http://dlib.bg.pwr.wroc.pl/.
 [5] Hicks, M.; Jagannathan, S.; Kesley, R.; Moore, J.-T.; Ungureanu, C. “Transparent

Communication for Distributed Objects in Java”. ACM Java Grande Conference, pages
160-170, June 1999.

 [6] Lagoze, C.; Van de Sompel, H. – “The Open Archives Initiative: Building a low-barrier
interoperability framework”, pages 54-62, Proceedings of the 1st ACM/IEEE-CS Joint
Conference on Digital Libraries, Roanoke, VA, USA, June 2001.

 [7] Hammersley , B. “Content Syndication with RSS”. O’Reilly. 1st Edition. March 2003.
 [8] Mortenson, L. “What is the Java Service Wrapper?”.

http://wrapper.tanukisoftware.org/doc/english/introduction.html
 [9] CERT Coordination Center. “Denial of Service Attacks”

 http://www.cert.org/tech_tips/denial_of_service.html
[10] Cengija, D. “Hibernate Your Data”. O’Reilly ONJava. 2004.

http://www.onjava.com/pub/a/onjava/2004/01/14/hibernate.html
[11] Larson, R. R. “Distributed IR for Digital Libraries” in LNCS 2769, p. 487 – 498, 7th

European Conference on Digital Libraries, Torndheim, Norway, August 2003.
[12] Dovey, M. J.; Gamiel, K.; “GRID IR — GRID Information Retrieval”. Poster at

EuroWeb 2002. Accessed from http://www.gridir.org/
[13] Kosiedowski, M.; Mazurek, C; Werla, M. – „Digital Library Grid Scenarios” in

European Workshop on the Integration of Knowledge, Semantics and Digital Media
Technology, 25-26.05.2004, London, U.K. Workshop Proceedings, p. 189 – 196.

Integrating XML Data Sources using RDF/S
Schemas: The ICS-FORTH Semantic Web

Integration Middleware (SWIM)

Ioanna Koffina1, Giorgos Serfiotis1, Vassilis Christophides1, Val Tannen2, and
Alin Deutsch3

1 Institute of Computer Science, FORTH
Vassilika Vouton P.O 1385 GR 71110, Heraklion, Greece

and
Department of Computer Science, University of Crete

GR 71409, Heraklion, Greece
{koffina,serfioti,christop}@ics.forth.gr

2 Computer and Information Science Department, UPenn
200 South 33rd Street, Philadelphia, Pennsylvania, USA

val@cis.upenn.edu
3 Department of Computer Science & Engineering, UCSD

9500 Gilman Drive La Jolla, CA 92093, USA
deutsch@cs.ucsd.edu

1 Introduction

Digital libraries are collections of resource descriptions (also called metadata)
that actually describe the catalogue data (i.e., digitized information). In general,
these metadata are stored in diverse sources (e.g., relational or object databases,
XML data sources, text files) distributed on the Web. One of the main challenges
for the digital library community is the integration of such metadata sources in
order to provide users with a common vocabulary for searching and browsing
them.
The Semantic Web (SW) offers relevant approaches and standards that can

handle these problems. More precisely, RDF (or other SW ontology languages)
can be used as a common framework for expressing the information by providing
a semantically rich representation language for metadata. In this context, a SW
integration middleware (SWIM) should be employed for the integration of the
heterogeneous and distributed sources. In particular, we propose a SWIM that
provides a useful, comprehensive and high-level access to library metadata that
reside in relational databases (RDB) or XML sources, by offering a virtual,
mediated RDF/S schema.
There are many issues involved in the functionality of a SWIM. In particular,

a SWIM should facilitate users to formulate queries against the mediated RDF/S
schema using declarative languages (such as RQL [7]), as well as, support further
abstraction levels using declarative view definition languages (e.g., RVL [10]). In
a nutshell, SWIM should offer the following services: (a) establish mapping rules
between XML and RDF and between RDB and RDF, (b) verify the conformance

2 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

of these mappings w.r.t the semantics of the employed schemas, (c) reformulate
RDF/S queries against RDB or XML sources, and (d) combine these queries
with RVL views.

In order to address effectively and efficiently the above requirements, we
should choose a uniform and expressive logic framework to define SWIM integra-
tion services. This framework should exploit background theory on conjunctive
queries and query containment and minimization [1].

An architecture based on mediators is highly beneficial for deploying a SWIM.
There exist two main approaches for integrating data sources [2] using mediator-
based architectures: Global-as-View (GAV) [12] and Local-as-View (LAV) [9],
[8]. The former provides descriptions of the global schema in terms of the views
of local sources and relies on simple query reformulation techniques (i.e., query
unfolding). The latter considers local sources as materialized views specified
in terms of the global schema. LAV supports easily the evolution of the data
integration system by just adding or removing the descriptions of local sources.
In our work we advocate a hybrid approach called GLAV [6], which combines the
previous advantages and exceeds the expressive power of both GAV and LAV.

2 A Motivating Example

Let’s assume an XML source whose content is described by a DTD or an XML
Schema (see Figure 1). XML data from this source contain information about
Museums, exhibiting some artifacts for which we want to know their creator.
Data stored in such sources can be queried using an XML query language like
XPath [13], [14] or XQuery [15].

Now suppose that we add on top of this repository an RDF/S schema from
the cultural domain. This mediated RDF/S schema can be queried using RQL
and it can be used for defining personalized views with the help of RVL. However,
since there are no actual RDF data, we need to reformulate the RQL queries
expressed against this virtual RDF/S schema into queries appropriate for our
XML source. For example, the following RQL query:

SELECT X
FROM {X}exhibits{Y}, {Y}denom{Z}
WHERE Z = “Louvre”

will be reformulated to the following XQuery query:

The ICS-FORTH Semantic Web Integration Middleware (SWIM) 3

SWIM Mapping

XPath,

XQuery

XML DATA

Semantic

Web

RDF Schema (community ontology)

RQL RDF DataRQL RDF Data

XML DTD or Schema (community sources)Deep Web

ReformulationReformulation

Artist
exhibits

Museum

Sculptor

denom
Literal

school
Painter

Literal

Literal

name

Museum

name Collection

@kind Artifact

title Artist

@name @ref

String

String

String

String String

*

*

?
?

Fig. 1. Republishing XML as RDF

<RDF>

{
<Bag>
{
for $var0 in document(“art.xml”)//Museum
for $var1 in $var0/name
for $var2 in $var0//Artist/@name
where $var1/text()=“Louvre”
return {$var2/text()}

}
</Bag>

}
</RDF>

This reformulation involves several challenging issues. First of all, the schemas
employed by our XML sources and the RDF/S mediator are different. Their dis-
crepancies, usually called heterogeneity conflicts, can be classified under three
axes: syntactic, structural and semantic [11]. As we can see in our example
(Figure 1), we need to view the XML data through the RDF data model (syn-
tactic conflict), to resolve categorization conflicts, given that in RDF/S there is a
class hierarchy while in XML there isn’t (structural conflict), as well as address
naming mismatches; for instance the “name” of a Museum in XML is called
“denomination” in RDF/S (semantic conflict).

4 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

In order to reconciliate the heterogeneous representations of our data we
need to define appropriate mapping rules. Choosing an expressive but tractable
logical framework to map data from XML to RDF/S is crucial for the success of
a SWIM. These mappings are used for reformulating queries issued against the
virtual RDF/S schema into queries acceptable by our XML sources. However,
more complex mappings (in order to increase expressiveness) render query re-
formulation harder. Query reformulation becomes more complex if we take into
consideration the presence of constraints capturing the semantics of both the
RDF/S and XML data models, as well as, application-specific constraints com-
ing from the schema (if any) of XML sources (like keys, foreign keys etc.). So,
there is a need for a sound and complete reformulation algorithm.
Since reformulated queries are evaluated to remote sources and mediator

queries resulting from automated manipulation/generation may entail redundan-
cies, their optimization is crucial. In particular, optimization tries to eliminate
redundant queries and to simplify queries by removing redundant predicates.

3 Contributions

In this context, we propose a middleware called ICS-FORTH SWIM (Semantic
Web Integration Middleware) supporting the following functionalities:

3.1 A Formal Framework for Mapping Specification

As discussed previously, choosing a logical framework for defining the mappings
is of great importance. Our idea was to represent both RDF and XML data
models as first-order logic predicates and capture their semantics through ap-
propriate constraints. In this way we reduce RDF to XML query reformulation
problem to the relational equivalent one, and thus, we can reuse existing tech-
niques for relational query containment and minimization.
More precisely, we rely on Linear Datalog (non-recursive Datalog without

negation) for establishing the mappings and translating the RQL/RVL queries
and views issued against the virtual RDF/S schema. The head of the Datalog
rules consists of a conjunction of view clauses employed by the RDF/S view
definition language RVL, and the body consists of XPath atoms that facilitate
querying tree-structured XML sources. The former is used in order to point
out the instantiation of RDF/S schemas with appropriate resources residing
in our XML data sources. Employing some non interpreted built-in predicates
(e.g., concat, split) for handling more intricate cases (like complex keys or string
manipulation) enhances the expressiveness of the mappings.
As far as these mappings are concerned, they are interpreted in a constraint

- oriented way implementing the GLAV approach of our middleware. We can
map a view over the global RDF/S to a view over local XML sources, and each
of these mappings is captured with the help of constraints. Constraints describe
both the RDF/S schema in terms of the XML sources (GAV) and the XML
sources in terms of the global RDF/S schema (LAV).

The ICS-FORTH Semantic Web Integration Middleware (SWIM) 5

3.2 Query Reformulation and Optimization

Another powerful functionality of the SWIM is its ability to reformulate queries.
RQL queries, expressed in terms of the RDF/S virtual schema, result in mini-
mized queries expressed in terms of the XML sources by gradually applying a
number of chasing/backchasing [3], [4], [5] steps. The use of this algorithm is
proven to be sound and complete for disjunctions of conjunctive queries in the
presence of disjunctive embedded dependencies (DEDs). This is guaranteed by
the use of the Chase/Backchase algorithm given this type of input.
A query is chased with the help of the constraints that have been defined

to express the semantics of the XML and RDF data models and in addition,
with constraints (if any) coming from the XML data sources i.e., specification of
keys and foreign keys, as well as, of domain constraints (e.g., enumerated types).
The result of chasing is backchased for producing a minimal reformulation. These
minimized queries are simplified (retaining as few predicates as possible) and the
redundant ones are eliminated. In this way we guarantee that we query the XML
sources with the minimum possible queries. Finally, the minimized reformulated
queries are translated into XPath and/or XQuery.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison - Wesley,
1995.

2. Leopoldo Bertossi and Loreto Bravo. Inconsistency Tolerance in Knowledgebases,
Databases and Software Specifications, chapter Consistent Query Answers in Vir-
tual Data Integration Systems. Springer, 2004.

3. Alin Deutsch and Val Tannen. Querying XML with Mixed and Redundant Storage.
Technical report, University of Pennsylvania, 2002.

4. Alin Deutsch and Val Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. In Proceedings of the 29th VLDB Conference, Berlin,
Germany, 2003.

5. Alin Deutsch and Val Tannen. Reformulation of XML Queries and Constraints.
In Proceedings of the International Conference on Database Theory (ICDT), 2003.

6. Marc Friedman, Alon Levy, and Todd Millstein. Navigational Plans for Data Inte-
gration. In Proceedings of the sixteenth national conference on artificial intelligence
and eleventh innovation applications of AI conference on Artificial intelligence and
innovative applications of artificial intelligence, pages 67–73, 1999.

7. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proceedings of the 11th Inter-
national World Wide Web Conference (WWW), Honolulu, Hawaii, 2002.

8. A. Levy. Answering Queries Using Views: A Survey. The International Journal
on Very Large Data Bases, 2001.

9. Alon Y. Levy. Logic-Based Techniques in Data Integration. In Jack Minker, editor,
Workshop on Logic-Based Artificial Intelligence, Washington, DC, June 14-16,
1999, College Park, Maryland, 1999. Computer Science Department, University of
Maryland.

10. Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and Dimitris Plex-
ousakis. Viewing the Semantic Web Through RVL Lenses. In Proceedings of

6 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

the Second International Semantic Web Conference (ISWC’03), Sanibel Island,
Florida, USA, 20-23 October, 2003.

11. Amit Sheth and Vipul Kashyap. So Far (Schematically) yet So Near (Seman-
tically). In Proceedings of the IFIP WG 2.6 Database Semantics Conference on
Interoperable Database Systems (DS-5), 1992.

12. J. Ullman. Information Integration Using Logical Views. Theoretical Computer
Science, 239(2):189–210, 2000.

13. XML Path Language (XPath) 1.0. http://www.w3.org/tr/xpath/.
14. XML Path Language (XPath) 2.0. http://www.w3.org/tr/xpath20/.
15. XQuery 1.0: An XML Query Language. http://www.w3.org/tr/xquery/.

Semantic Query Routing and Processing in P2P
Digital Libraries

George Kokkinidis1, Lefteris Sidirourgos1, Theodore Dalamagas2, and Vassilis
Christophides1

1 Institute of Computer Science - FORTH
Vassilika Vouton, PO Box 1385, GR 71110, Heraklion, Greece and

Department of Computer Science, University of Crete
GR 71409, Heraklion, Greece

{kokkinid, lsidir, christop}@ics.forth.gr

2 School of Electr. and Comp. Engineering,
National Technical University of Athens, Greece

{dalamag}@dblab.ece.ntua.gr

Abstract. This paper investigates the peer-to-peer (P2P) resource-sha-
ring paradigm for highly distributed Digital Libraries (DL). The objec-
tive is to support decentralized sharing of data and services in a network
of autonomous and heterogeneous DL nodes. P2P DLs can operate with-
out a central coordination and offer important advantages such as a very
dynamic environment where peers can join and leave the network at
any time, while the network can scale up to a large number of peers.
The advanced structuring and retrieval functionality of peers poses new
challenges in query routing and processing over autonomous, distributed
and dynamic networks of DL. The paper considers two fundamental as-
pects of P2P Digital Libraries (P2P DLs): query routing and processing.
Specifically, we design and implement effective and efficient query rout-
ing in P2P DLs, exploiting intensional indexing of DL node views. Also,
we study interleaved query routing and processing algorithms in P2P
DLs to produce as quickly as possible the first query results.

1 Introduction

The digital library community envisions the availability of digital content on
a global scale through Digital Libraries (DL) that can be accessed, integrated
and individualized for any user, anytime and anywhere. A key point in such a
vision is the interaction with multiple DL nodes to support integrated access. We
believe that such interaction is far beyond the traditional information integration
technologies, which impose restrictions on representation and communication
languages used at both the semantic and the structural levels, since:

1. DL nodes should be autonomous. Ideally, a node must not have restrictions
on how to organize its data and what kind of query capabilities to offer.

2. DL services should support decentralized sharing and management of data
through a network of DL nodes. In such a network, a DL node must be able
to provide data to other DL nodes and, at the same time, to have access to
data of other DL nodes.

3. The diversity of DL nodes in terms of availability, processing power and
interface options, makes a DL network a highly heterogeneous environment
in terms of hardware/software setup in addition to the data being provided.

4. Finally, the system needs to be evolving in the sense of DL nodes joining
and leaving the network at their own will. DL node arrivals and departures
affect the data that is available.

Our work explores the application of the peer-to-peer (P2P) paradigm in DL
technologies. In particular, schema-based P2P systems [2, 6] exploit schema in-
formation to specify what kind of data is provided by the involved peers. The
advantages of this approach lies to the fact that (a) more sophisticated than
keyword-based queries can be posed and (b) more efficient approaches can be
developed for identifying peers that are capable of answering the queries. A
natural candidate for representing descriptive schemas of information resources
(ranging from simple structured vocabularies to complex reference models [8]) is
the Resource Description Framework/Schema Language (RDF/S). RDF schemas
offer rich semantics. The primitives of RDF schemas are classes and properties.
Classes describe general concepts or entities. Properties describe the character-
istics of classes or the relationships between classes.
RDF/S (a) enables a modular design of descriptive schemas based on the

mechanism of namespaces; (b) allows easy reuse or refinement of existing schemas
through subsumption of both class and property definitions; (c) supports par-
tial descriptions since properties associated with a resource are by default op-
tional and repeated and (d) permits super-imposed descriptions in the sense that
a resource may be multiply classified under several classes from one or sev-
eral schemas. These modelling primitives are crucial for schema-based P2P sys-
tems where monolithic RDF/S schemas and resource descriptions cannot be
constructed in advance and DL nodes may have only incomplete descriptions
about the available resources.
The advanced structuring and retrieval functionality of schema-based P2P

systems raises new challenges for view integration, query routing and processing
over autonomous, distributed and dynamic networks of DLs.
The main contributions of our work presented in this paper are (a) the design

and implementation of effective and efficient query routing in P2P DLs, exploit-
ing intensional indexing of DL node views and (b) the study of interleaved query
routing and processing algorithms in P2P DLs in order to produce as quickly as
possible the first query results.

1.1 Related Work

Several projects address query processing issues in general P2P systems [9, 7].
However, they require a priori knowledge of the relevant to a query peers. Mu-
tant Query Plans (MQPs) [10] implement efficient query routing. Unlike our

2

approach, MQP reduces the optimization opportunities by simply migrating
possibly big XML fragments of query plans along with partial results of sub-
queries. In [11] indices are used to identify peers that can handle containment
queries (e.g., in XML). However there are no details on how a set of semantically
related peers can actually execute a complex query involving vertical and hor-
izontal distribution. RDFPeers [12] is a scalable distributed RDF/S repository
which efficiently answers multi-attribute and range queries. This approach ig-
nores RDF/S schema information during query routing, while distributed query
processing and execution policies are not addressed. In [13], a P2P architec-
ture is introduced, based on the extension of an existing RDF/S store. Although
schema information is used for indexing, RDF/S class and property subsumption
is not considered. A schema-based P2P infrastructure for the Semantic Web is
described in [6]. Their approach involves exact matching of basic class and prop-
erty pattern and does not consider run-time adaptability of query plans.

2 P2P Digital Libraries

In order to design an efficient P2P DL infrastucture we need to address the
following issues: (a) How DL nodes advertise their bases?, (b) How DL nodes
formulate queries?, (c) How DL nodes route queries?, and (d) How DL nodes
process queries?

2.1 Advertisements of DL Nodes

A schema-based P2P DL infrastructure requires that each DL node advertises
its local base content to other DL nodes. Using these advertisements, a DL node
becomes aware of the bases hosted by other nodes in the DL. In our approach,
we assume that there are global RDF/s schemas for various communities, in
which DL nodes have access through the mechanism of namespaces. However,
a global RDF/S schema may contain numerous classes and properties not nec-
essarily populated in a DL node. Therefore, we need a fine-grained definition
of schema-based advertisements. We employ RVL views [5] to specify the sub-
set of a community RDF/S schema(s) for which all classes and properties are
populated in a DL node base. These views may be broadcasted to (or requested
by) other DL nodes, thus informing the rest of the P2P DL of the information
actually available in the DL nodes.

2.2 Query Formulation in DL Nodes

In this work, queries and views in a P2P DL are formulated by nodes in the
RQL/RVL [4, 5] language. RQL is a typed functional language in the form of
OQL. It uniformly queries both RDF data descriptions and schemas. RVL ex-
tends RQL by supporting views on RDF/S. In RQL/RVL, class and property
path patterns allow users to navigate through the RDF/S schema of a DL node
to retrieve resources. RQL queries allow us to retrieve the contents of any DL

3

node base, namely resources classified under schema classes or associated to other
resources using schema properties. It is worth noticing that RQL queries imply
both intensional (i.e., schema) and extensional (i.e., data) filtering conditions.

2.3 Query Routing in P2P Digital Libraries

Query routing is responsible for finding the relevant to a query DL nodes (or more
precisely their views) by taking into account data distribution (vertical, horizon-
tal and mixed) of their bases committing to an RDF schema. The query-routing
algorithm takes as input a query and the available DL node views and detects
which DL nodes can actually answer the query as a whole or fragments of it. The
latter is important, since there might be answers that can be received by joining
partial answers from different DL nodes. Our approach exploits query/view sub-
sumption algorithms [1] to check whether the classes or properties of the view
are subsumed by the respective classes or properties used in the query. In this
way, query routing takes into consideration semantic information from the RDF
Schemas of the involved DL nodes.
Specifically, a fragmentor breaks the given query into subqueries, whose num-

ber is bounded by an input variable. The query/view subsumption algorithms
of [1] are employed to determine which part of a query can be answered by a DL
node view. For maintaining a distributed catalog of views published by the DL
nodes in a P2P DL, appropriate DHT structures have been designed.

2.4 Query Processing in P2P Digital Libraries

Query processing is responsible for generating query plans according to the re-
sults returned by the routing algorithm (i.e., which DL nodes can actually answer
the query as a whole or fragments of it). If more than one DL nodes can answer
the same query fragment, the results from each such DL node base are “unioned”
(horizontal distribution). The results obtained for different query fragments that
are connected at a specific domain or range class are “joined” (vertical distribu-
tion). The generated query plan reflects the data distribution of the system and
uses it for obtaining at execution time both complete and correct results.
The resulting query plan can be optimized. Compile-time optimization relies

on algebraic equivalences (e.g., distribution of joins and unions) and heuristics
allowing us to push, as much as, possible query evaluation to the same DL nodes.
Additionally, cost-based optimizations based on statistics about the DL node
bases enable to reorder joins and choose between different execution policies for
the query plans (e.g., data versus query shipping).
A key feature of our approach is that query routing and processing are in-

terleaved in several iteration steps. This leads to the creation and execution of
multiple query (sub)plans that when “unioned” offer completeness in the results.
Specifically, starting with the initial query, at each iteration step, smaller sub-
queries are considered in order to find the relevant DL nodes (i.e., routing) that
can actually answer them (i.e., processing). The routing information, i.e., remote
DL node views, is acquired by the lookup service offered by the system on top of

4

intensional DHT structures. The interleaved query evaluation terminates when
the initial query is decomposed into its basic class and property patterns.
The main advantage of the interleaved query routing and processing algo-

rithm is that the query results are collected as quickly as possible since they
require fewer intra-DL node joins. More precisely, each query fragment is looked
up as a whole and only DL nodes that can fully answer it are actually involved
in each query processing iteration step.

References

1. Christophides V, Karvounarakis G, Koffina I, Kokkinidis G, Magkanaraki A, Plex-
ousakis D, Serfiotis G, Tannen V (2003) The ICS-FORTH SWIM: A Powerful
Semantic Web Integration Middleware. In Proc. of the 1st Int’nal Workshop on
Semantic Web and Databases (SWDB), Berlin, Germany.

2. Halevy AY, Ives ZG, Mork P, Tatarinov I (2003) Piazza: Data Management In-
frastructure for Semantic Web Applications. In Proc. of the 12th Int’nal World
Wide Web Conf. (WWW).

3. Ives ZG (2002) Efficient Query Processing for Data Integration. phD Thesis, Uni-
versity of Washington.

4. Karvounarakis G, Alexaki S, Christophides V, Plexousakis D, Scholl M (2002)
RQL: A Declarative Query Language for RDF. In Proc. of the 11th Int’nal World
Wide Web Conf. (WWW), Honolulu, Hawaii, USA.

5. Magkanaraki A, Tannen V, Christophides V, Plexousakis D (2003) Viewing the
Semantic Web Through RVL Lenses. In Proc. of the 2nd Int’nal Semantic Web
Conf. (ISWC).

6. Nejdl W, Wolpers M, Siberski W, Schmitz C, Schlosser M, Brunkhorst I, Loser A
(2003) Super-Peer-Based Routing and Clustering Strategies for RDF-Based P2P
Networks. In Proc. of the 12th Int’nal World Wide Web Conf. (WWW), Hungary.

7. Sahuguet A (2002) ubQL: A Distributed Query Language to Program Distributed
Query Systems. phD Thesis, University of Pennsylvania.

8. Magkanaraki A, Alexaki S, Christophides V, Plexousakis D (2002) Benchmarking
RDF Schemas for the Semantic Web. In Proc. of the 1st Int’nal Semantic Web
Conf. (ISWC’02).

9. Kemper A, Wiesner C (2001) HyperQueries: Dynamic Distributed Query Pro-
cessing on the Internet. In Proc. of the Int’nal Conf. on Very Large Data Bases
(VLDB), Rome, Italy.

10. Papadimos V, Maier D, Tufte K (2003) Distributed Query Processing and Catalogs
for P2P Systems. In Proc. of the 2003 CIDR Conf.

11. Galanis L, Wang Y, Jeffery SR, DeWitt DJ (2003) Processing Queries in a Large
P2P System. In Proc. of the 15th Int’nal Conf. on Advanced Information Systems
Engineering (CAiSE).

12. Cai M, Frank M (2004) RDFPeers: A Scalable Distributed RDF Repository based
on A Structured Peer-to-Peer Network. In Proc. of the 13th Int’nal World Wide
Web Conf. (WWW), New York.

13. Stuckenschmidt H, Vdovjak R, Houben G, Broekstra J (2004) Index Structures
and Algorithms for Querying Distributed RDF Repositories. In Proc. of the Int’nal
World Wide Web Conf. (WWW), New York, USA.

5

Publish/Subscribe Functionalities for Future
Digital Libraries using Structured Overlay

Networks

Christos Tryfonopoulos Stratos Idreos Manolis Koubarakis

Dept. of Electronic & Computer Engineering
Technical University of Crete, 73100 Chania, Crete, Greece

{trifon,sidraios,manolis}@intelligence.tuc.gr

1 Introduction

We are interested in the problem of distributed resource sharing in future digital
libraries (DLs). We adopt a pure P2P architecture (illustrated in Figure 1), but
our ideas can be easily modified to work in the case of hierarchical P2P networks,
as in [3]. Information providers (DLs) and information consumers (users) are
both represented by peers participating in a peer-to-peer (P2P) overlay network.
There are two kinds of basic functionality that we expect this architecture to offer:
information retrieval (IR) and publish/subscribe (pub/sub). In an IR scenario a
user poses a query (e.g., “I am interested in papers on bio-informatics”) and the
system returns information about matching resources. In a pub/sub scenario (also
known as information filtering (IF) or selective dissemination of information
(SDI)) a user posts a subscription (or profile or continuous query) to the system
to receive notifications whenever certain events of interest take place (e.g., when
a paper on bio-informatics becomes available).

In this extended abstract we concentrate on the latter kind of functionality
(pub/sub) and sketch how to provide it by extending the distributed hash table
Chord [4]. Distributed Hash Tables (DHTs) are the second generation structured
P2P overlay networks devised as a remedy for the known limitations of earlier P2P
networks such as Napster and Gnutella. We present a set of protocols, collectively
called DHTrie, that extend the Chord protocols with pub/sub functionality.

We assume that resources are annotated using a well-understood attribute-
value model called AWPS in [2]. Thus publications and subscriptions will also
be expressed in AWPS. AWPS is based on named attributes with value free
text interpreted under the Boolean and vector space (VSM) models. The query
language of AWPS allows Boolean combinations of comparisons A op v, where A
is an attribute, v is a text value and op is one of the operators “equals”, “contains”
or “similar” (“equals” and “contains” are Boolean operators and “similar” is
interpreted using the VSM or LSI model). The following is an example of a
publication in AWPS:

{ (AUTHOR, “John Smith”), (TITLE, “Information dissemination in P2P ...”),
(ABSTRACT, “In this paper we show that ...”) }

The following is an example of a query:

(AUTHOR = “John Smith”) ∧ (TITLE w P2P ∧ (information ≺[0,0] alert)) ∧
(ABSTRACT ∼0.7 “P2P architectures have been...”)

peer
peer

peer
peer

publication

notification

continuous
query

Digital
Library

publication

continuous
query

peer

peer

Digital
Library

user

user

Fig. 1. Distributed resource sharing in future DLs

This query requests resources that have John Smith as their author, and their
title contains the word P2P and a word pattern where the word information
is immediately followed by the word alert. Additionally, the resources should
have an abstract similar to the text value “P2P architectures have been ...” with
similarity greater than 0.7. The contributions of this abstract are the following.

The research presented in this abstract is a continuation of our previous work
on the DL information alert architecture DIAS [2] and the system P2P-DIET [1].
The main contribution of our current work is that our protocols are extensions of
DHTs and achieve much better scalability, robustness, fault-tolerance and load
balancing.

The rest of this extended abstract is as follows. Section 2 gives some details
of the DHTrie protocols and Section 3 discusses very briefly our experimental
evaluation of DHTrie.

2 The DHTrie Protocols

We implement pub/sub functionality by a set of protocols called the DHTrie
protocols (from the words DHT and trie). The DHTrie protocols use two levels
of indexing to store queries submitted by clients. The first level corresponds to
the partitioning of the global query index to different nodes using DHTs as the
underlying infrastructure. Each node is responsible for a fraction of the submitted
user queries through a mapping of attribute values to node identifiers. The DHT
infrastructure is used to define the mapping scheme and also manages the routing
of messages between different nodes. We use an extension of the Chord DHT [4]
to implement our network. The set of protocols that regulate node interactions
are described in the next sections.

The second level of our indexing mechanism is managed locally by each node
and is used for indexing the user queries the node is responsible for. In this level,
each node uses a hash table to index all the atomic queries contained in a query
by using their attribute name as the key. For each atomic Boolean query the
hash table points to a trie-like structure that exploits common words and a hash
table that indexes text values in equalities as in [6]. Additionally for atomic VSM
queries an inverted index for the most “significant” query words is used as in [7].

In this abstract we will focus on the first level of indexing and present the sub-
scription, publication and notification protocols that regulate node interactions.
Protocols for query updating and removal are omitted due to space. The local

indexing algorithms we use and their experimental evaluation are thoroughly
discussed in [6, 7].

2.1 The Subscription Protocol

Let us assume that a node P wants to submit a query q of the form:
∧m

i=1 Ai = si ∧
∧n

i=m+1 Ai w wpi ∧
∧k

i=n+1 Ai ∼ai si

To do so, P randomly selects a single word w contained in any of the text values
s1, . . . , sm, sn+1, . . . , sk or word patterns wpm+1, . . . , wpn and computes H(w)
to obtain the identifier of the node that will be responsible for query q. Then
P creates message FwdQuery(id(P), IP (P), qid(q), q), where qid(q) is a unique
query identifier assigned to q by P and IP (P) is the IP address of P . This message
is then forwarded in O(logN) steps to the node with identifier H(w) using the
routing infrastructure of the DHT. Notice that id(P) and IP (P) need to be sent
to the node that will store Q to facilitate notification delivery (see Section 2.3).

When a node P ′ receives a message FwdQuery containing q, it stores q using
the second level of our indexing mechanism. P ′ uses a hash table to index all the
atomic queries of q, using as key the attributes A1, . . . , Ak. To index each atomic
query, three different data structures are also used: (i) a hash table for text values
s1, . . . , sm, (ii) a trie-like structure that exploits common words in word patterns
wpm+1, . . . , wpn, and (iii) an inverted index for the most “significant” words in
text values sn+1, . . . , sk. P ′ utilises these data structures at filtering time to find
quickly all queries q that match an incoming publication p. This is done using an
algorithm that combines algorithms BestFitTrie [6] and SQI [7].

2.2 The Publication Protocol

When a node P wants to publish a resource, it first constructs a publication
p = {(A1, s1), (A2, s2), . . . , (An, sn)} (the resource description). Let D1, . . . , Dn

be the sets of distinct words in s1, . . . , sn. Then publication p is sent to all nodes
with identifiers in the list L = {H(wj) : wj ∈ D1 ∪ · · · ∪Dn}. The subscription
protocol guarantees that L is a superset of the set of identifiers responsible for
queries that match p.

The propagation of publication p in the DHT proceeds as follows. P removes
duplicates from L and sorts it in ascending order clockwise starting from id(P).
This way we obtain less identifiers than the distinct words in D1∪· · ·∪Dn, since
a node may be responsible for more than one words contained in the document.
Having obtained L, P creates a message FwdResource(id(P), pid(p), p, L),
where pid(p) is a unique metadata identifier assigned to p by P , and sends it
to node with identifier equal to head(L) (the first element of L). This forwarding
is done by the following recursive method: message FwdResource is sent to a
node P ′, where id(P ′) is the greatest identifier contained in the finger table of
P , for which id(P ′) ≤ head(L) holds.

Upon reception of a message FwdResource by a node P , head(L) is checked.
If id(P) < head(L) then P just forwards the message as described in the previous
paragraph. If id(P) ≥ head(L) then P makes a copy of the message, since this
means that P is one of the intended recipients contained in list L (in other

words P is responsible for key head(L)). Subsequently the publication part of
this message is matched with the node’s local query database using the algorithm
mentioned in Section 2.1 and the appropriate subscribers are notified (see Section
2.3). Additionally list L is modified to L′ in the following way. P deletes all
elements of L that are smaller than id(P) starting from head(L), since all these
elements have P as their intended recipient. In the new list L′ that results from
these deletions we have that id(P) < head(L′). This happens because in the
general case L may contain more than one node identifiers that are managed
by P (these identifiers are all located in ascending order at the beginning of L).
Finally, P forwards the message to node with identifier head(L′).

2.3 The Notification Protocol

When a message FwdResource containing a publication p of a resource arrives
at a node P , the queries matching p are found by utilising its local index structures
and using the algorithms briefly described in Section 2.1.

Once all the matching queries have been retrieved from the database, P cre-
ates notification messages of the form QNotification(l(r)) and contacts all the
nodes that their queries where matched against p using their IP address asso-
ciated with the query they submitted. If a node P ′ is not online when P tries
to notify it about the published resource, the notification message is sent to
the successor(P ′). In this way P ′ will be notified the next time it logs on the
network. The modifications to the join and leave protocols of Chord to achieve
this functionality originally presented in the non-DHT system P2P-DIET [1] are
omitted due to space considerations. To utilise the network in a more efficient
way, notifications can also be batched and sent to the subscribers when traffic is
expected to be low.

2.4 Frequency Cache

In this section we introduce an additional routing table that is maintained in
each node. This table, called frequency cache (FCache), is used to reduce the cost
of publishing a resource by storing the IP addresses of the nodes responsible for
frequent words contained in published documents. FCache is a hash table used to
associate each word that appears in a published document with a node IP address.
FCache uses a word w as a key, and each FCache entry is a data structure that
holds an IP address. Thus, whenever P needs to contact another node P ′ that is
responsible for queries containing w, it searches its FCache. If FCache contains
an entry for w, P can directly contact P ′ using the IP stored in its FCache. If w
is not contained in FCache, P uses the standard DHT lookup protocol to locate
P ′ and stores contact information in FCache for further reference. Using FCache
the cost of processing a published resource p is reduced to O(v + (h− v) log N),
where v is the number of words of p contained in FCache.

FCache entries are populated as follows. Each time a resource p is published
at a node P , P contacts the nodes responsible for storing queries with words
contained in p, as we described in Section 2.2. After this process is over, P knows
the contact information (namely the IP address) of those nodes, and stores it
to FCache along with the word each node is responsible for. After that, for

each publication taking place at P , P maintains this routing information for
the most frequent words contained in resources published to it. Notice that the
construction and maintenance of FCache is based only on local information and
that the only extra cost involved is FCache misses (which cost O(logN) and the
routing information discovered is also cached for further reference).

3 Brief Presentation of Experimental Results

We have evaluated DHTrie experimentally in a distributed digital library sce-
nario with hundreds of thousands of nodes and millions of user profiles. For our
experiments we used 10426 documents downloaded from CiteSeer and also used
in [6]. The documents are research papers in the area of Neural Networks and we
will refer to them as the NN corpus. Because no database of queries was available
to us, our queries are synthetically generated by exploiting 2000 documents of
the corpus. The remaining 8426 documents are used to generate publications.

Our experiments show that the DHTrie protocols are scalable: the number of
messages it takes to publish a document and notify interested subscribers remains
almost constant as the network grows. Moreover, the increase in message traffic
shows little sensitivity to increase in document size. We demonstrate that simple
data structures with only local information can make a big difference in a DHT
environment: the routing table FCache manages to reduce network traffic by a
factor of 4 in all the alternative methods we have studied.

Since probability distributions associated with publication and query elements
are expected to be skewed in typical pub/sub scenarios, achieving a balanced load
is an important problem. We have studied an important case of load balancing
for DHTrie and present a new algorithm which is also applicable to the standard
DHT look-up problem.

The details of our experiments appear in [5] and will be discussed in detail in
our workshop presentation.

References

1. S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET: An Extensible P2P
Service that Unifies Ad-hoc and Continuous Querying in Super-Peer Networks. In
Proc. of SIGMOD, 2004. Demo paper.

2. M. Koubarakis, T. Koutris, P. Raftopoulou, and C. Tryfonopoulos. Information
Alert in Distributed Digital Libraries: The Models, Languages and Architecture of
DIAS. In Proc. of ECDL, 2002.

3. J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical
peer-to-peer networks. In Proc. of ECIR, 2005. To appear.

4. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc. of ACM
SIGCOMM, 2001.

5. C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe Functionality
in IR Environments using Structured Overlay Networks. Submitted to a conference.

6. C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Filtering Algorithms for Infor-
mation Retrieval Models with Named Attributes and Proximity Operators. In Proc.
of ACM SIGIR, 2004.

7. T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system. ACM
TODS, 24(4):529–565, 1999.

Information Access in Digital Libraries: Steps
Towards a Conceptual Schema

Carlo Meghini1 and Nicolas Spyratos2

1 CNR – ISTI, Pisa, Italy, meghini@isti.cnr.it
2 Universitè de Paris Sud – LRI, Paris, France, spyratos@lri.fr

Abstract. Two basic factors that influence the quality of information
access are the model of system/user interaction and the mode of inter-
action. The model establishes the language of communication, i.e., the
basic terms in which the user interacts with the system, while the mode
establishes the role played by each actor (passive or active) during in-
teraction. More precisely, the model provides support for representing
the objects to be accessed and the information needs of the user, as well
as for the mapping of a (possibly ordered) set of objects to each infor-
mation need. (I suppose that what you mean here is: information need
= query and mapping=query answering) As for the interaction mode,
it depends on which of the two actors is passive and which is active.
In query-answering systems, only the user is active; in filtering systems,
only the system is active (in the sense that it selects from a stream of
incoming objects, only those that are relevant to the user); in personal-
ized query-answering systems and in recommendation systems, both the
user and the system are active. In this paper, we attempt a classification
of information access techniques for digital libraries, based on the two
aforementioned parameters, namely the model and the mode used for
system/user interaction.

1 Introduction

A digital library (DL) system comprises a large, distributed information space,
where the objects carrying the knowledge required by the users, live. Setting up
and maintaining a DL would be entirely useless if users were not provided with
the adequate tools to access the DL information contents.

In defining the information access service of a DL, there are at least 3 areas
of the information system field which can give significant contributions:

– information retrieval (IR) can contribute content-based methods, that is
methods that exploit the signal (or form, or syntax) level of an information
object [2]. For textual objects, these include all classical methods based on
the statistical properties of language, such as the vector-space method and
the probabilistic method. For non-textual objects, in the last decade there
has been a fluorishing of methods for similarity-based retrieval of images,
video [4] and audio objects.

– The database area can contribute all methods for attribute-based information
querying, ranging from traditional databases, to semi-structured databases;
the methods falling under the last category are especially useful when ad-
dressing the structure of objects.

– Knowledge representation can contribute methods for accessing objects by
querying descriptions of their contents (in the sense of meaning); these de-
scriptions are typically couched in terms of representations of the underlying
domain of discourse, or ontologies as these have come to be termed lately.

Putting the techniques found in the above fields all together at work, requires a
conceptual schema which integrates in a unique framework the different aspects
of DL objects addressed by each of them. In what follows we will try to sketch
such a schema.

2 A conceptual schema of information access

We characterize the space of information access by the following, orthogonal
dimensions:

1. the information access model, which establishes the basic terms of the sys-
tem/user interaction;

2. the information access mode, which establishes the role of the user and that
of the system during their interaction.

2.1 Information access models

Similarly to an information retrieval model, an information access model spec-
ifies: (1) a representation of the objects to be accessed; (2) a representation of
the user information needs; and (3) a function associating a (possibly ordered)
set of objects to each user information need. Information access models can be
categorized according to the options available on each one of their dimensions.

For object representation, following [6] we distinguish between simple objects
and composite objects. Simple objects cannot be further decomposed, and can
be represented along the following dimensions:

– content abstractions: these are representations used to access objects via
IR techniques. They are created by IR indexers in an automatic way, by
extracting low-level features from objects, such as the number of word oc-
currences in a text, or the energy level in a certain region of an image);
content abstractions retain that part of the information originally present in
the object content that is considered sufficient to characterize the object for
access purposes;

– content representations: these are symbolic representations of the meaning of
documents, that is descriptions formulated in some suitable knowledge rep-
resentation language, spelling out the truth conditions of the object. Content
representations can be constructed manually, sometimes with the assistance

of some knowledge extraction tool, or automatically, for instance via ob-
ject classification methods. They can be precise or uncertain, depending on
whether or not the content representation formulas are expressed in an un-
certain logic, such as fuzzy or probabilistic logic.

Composite objects are structured set of simple objects, thus they are typically
represented as mathematical structures, reflecting their internal organization.

Finally, objects, whether simple or composite, can have a profile, that is an
attribute-based description of their external properties, such as the author and
the publisher of a book, or the data and time at which an image has been taken,
and the like.

In the context of digital libraries, the above 4 dimensions of object represen-
tation reduce to 3 only, since content representations and profiles are typically
grouped together under the label of discovery metadata (simply metadata, here-
after). The metadata associated to a DL object can therefore vary from simple
records (set of attribute-value pairs) typically adhering to some standardized
schema (such as Dublin Core [1]), to very complex representations expressed
in some knowledge representation language (such as OWL [5]) which must be
coupled with a representation of the underlying domain of discourse (ontology),
in order to be properly used for, e.g. information access. In summary, we will
therefore consider object representation as being categorized as:

1. Content,
2. Metadata, and
3. Structure.

For information need representation, we have 2 options: formal language
queries or natural language queries.

For the retrieval function, we have 2 options: exact match or best match.
Not all combinations of these options give rise to meaningful information

access models. Considering the object representation options we have the fol-
lowing:

1. Content is typically addressed via IR techniques, based on natural language
queries and best-match retrieval function. For instance, users access the con-
tent of an image base by providing as a query an image itself3 In so doing,
users are implicitly asking the system to retrieve images which “looks” simi-
lar to the image query, at least as far as the system can tell. For this reason,
methods providing access by content are often called “similarity-based” ac-
cess methods. An analogous pattern is found in access models for textual or
for audio content.
Notice that in some models of this kind, the query may not be expressed
in the same medium as the sought objects. For instance, when accessing by
content a video database, users may provide an image as a query, and the
system is expected to retrieve the scenes sharing visual similarity with the
provided image.

3 We consider images, as well as spoken language, as expressions of a natural language.

Similarity-based access models are medium-dependent, in that different me-
dia require different techniques, and the possibility of using the same or
a similar technique across different media is very limited. In addition, ex-
perience has shown that even within the same medium, the effectiveness
of techniques is application-dependent: for example, retrieving by similarity
sport images requires different techniques from those necessary to establish
the similarity of X-ray images.

2. Metadata is typically addressed via formal language queries, thus we are
in the realm of databases or knowledge representation, depending from the
degree of sophisticatedness of the involved representations. For instance, to
query a Dublin Core scheme, one needs a very simple language allowing to
state basic relational conditions on simple numeric- or string-based attribute
values; instead, to query an OWL representation the ability to state condi-
tions involving taxonomies and navigation of graph structures is required.
In general, a query to metadata takes the form of a logical formula, and an
exact match retrieval function is employed for query evaluation, grounded
in some logical theory. We call these models semantic access models.
Some retrieval engines allow to exploit information (namely, text) retrieval
techniques when accessing objects via their metadata records. This is achieved
by seeing metadata records as pieces of text whose words are the attribute
values. Such a text is treated in the same way as textual content, and
matched against a natural language query as in a similarity-based textual ac-
cess method. This kind of access model is widely employed on bibliographic
records, as it frees users from the necessity of knowing the meaning of meta-
data attributes.

3. Also object structure can be queried in two different ways:

– Via exact match retrieval functions, such as the one underlying the query
language XPath [3]. In this case, the structural query is mostly embedded
into a larger query addressing either content or metadata. We do not
have therefore separate classes of access models but sophistications of
similarity-based or semantic access models allowing also the specification
of structural clauses in queries.

– Via best match retrieval functions, which express in a quantitative way
the degree of similarity between the structure of each object and a user
provided structure class. These models have been investigated in the con-
text of XML, and are a structural variation of similarity-based models.
We call the models falling in this class “similar structure-based access
models”.

In summary, we have the following information access model categories:

1. similarity-based access models, possibly with structural conditions;
2. semantic access models, possibly with structural conditions; and
3. similar structure-based access models.

2.2 Information Access Modes

Independently from the access model, the information access modes establishes
the role of the system and that of the user. Each of these two can be either
passive or active. Excluding the case in which they are both passive, we have
the following 3 types of information access systems:

1. (Non-personalized) query-answering systems: in this case the user is active,
that is, poses a query, while the system is passive, that is it just evaluates
the user query and returns the result.

2. Filtering systems, in which the user is passive, that is, does not pose any
query, and the system is active, that is it selects on a stream of incoming ob-
jects, those that are deemed as relevant for the user; the relevance assessment
is performed by relying on a user profile.

3. Personalized query-answering systems, in which the user is active, that is,
poses a query, and the system is active too, in that it alters the query eval-
uation process by taking into account the user preferences, represented as
a profile. Recommendation systems also fall into this category, since they
propose recommendations along with the answer to the query.

3 Conclusions

On the basis of the analysis outlined in this paper, a categorization of information
access in a DL can be derived. This categorization can be used as a basis for the
development of an information access service offering a wide range of possibility
for exploiting the contents of a DL.

References

1. Dublin core metadata element set. http://dublincore.org/documents/dces/, De-
cember 2004.

2. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley Longman Publishing Co. Inc., 1999.

3. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez, Michael
Kay, Jonathan Robie, and Jérôme Simèon. XML path language (XPath) 2.0.
http://www.w3.org/TR/xpath20/, October 2004.

4. Alberto Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers
Inc., 1999.

5. Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language
overview. http://www.w3.org/TR/owl-features/, February 2004. W3C Recom-
mendation.

6. Carlo Meghini, Fabrizio Sebastiani, and Umberto Straccia. A model of multimedia
information retrieval. Journal of the ACM, 48(5):909–970, 2001.

Challenges of Distributed Search Across
Digital Libraries

Matthias Bender, Sebastian Michel, Gerhard Weikum, Christian Zimmer
{mbender, smichel, weikum, czimmer}@mpi-sb.mpg.de

Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. We present the MINERVA1 project that tackles the prob-
lem of collaborative search across a large number of digital libraries.
The search engine is layered on top of a Chord-style peer-to-peer overlay
network that connects an a-priori unlimited number of peers or digital
libraries. Each library posts a small amount of metadata to a conceptu-
ally global, but physically distributed directory. This directory is used
to efficiently select promising libraries to execute a query based on their
local data. The paper discusses current challenges regarding replication,
caching and proactive dissemination, query routing based on local user
profiles such as bookmarks, and benefit/cost models for query routing.

1 Introduction

The peer-to-peer (P2P) approach allows handling huge amounts of data of dig-
ital libraries in a distributed and self-organizing way. These characteristics offer
enormous potential benefit for search capabilities powerful in terms of scalability,
efficiency, and resilience to failures and dynamics. Additionally, such a search en-
gine can potentially benefit from the intellectual input (e.g., bookmarks, query
logs, click streams, etc.) of a large user community. However, recent research
on structured P2P architectures is typically limited to exact-match queries on
keys. This is insufficient for text queries that consist of a variable number of
keywords, and it is absolutely inappropriate for full-fledged Web search where
keyword queries should return a ranked result list of the most relevant approxi-
mate matches [7].

This paper builds upon the MINERVA system architecture presented in [4]
and brings current challenges to ultimatively making distributed search across
digital libraries feasible. MINERVA provides ranked search on data and and
an efficient query mechanism that adheres to reasonable space and bandwidth
limits. Unlike the approach criticized in [10], we do not spread inverted lists
across the directory, but use only pointers to promising digital libraries as com-
pact metadata and utilize these pointers to efficiently answer multiple-keyword
queries. We leverage the extensive local indexes (which would be impossible to
efficiently share across all peers) to incorporate features that are impossible in
the approach studied in [10], such as phrase matching or proximity searches. Our
1 Minerva is the Roman goddess of science, wisdom, and learning, and also happens

to be a Greek underwear manufacturer.

bandwidth requirements are well within the postulation that a query should send
no more data than the size of the documents ultimatively retrieved.

2 Related Work

Recent research on structured P2P systems, such as Chord [17], CAN [13], Pastry
[15], or P-Grid [1] is typically based on various forms of distributed hash tables
(DHTs) and supports mappings from keys to locations in a decentralized manner
such that routing scales well with the number of peers in the system. In the
following we briefly discuss some prior and ongoing projects towards P2P Web
search.

Galanx [19] is a P2P search engine implemented using the Apache HTTP
server and BerkeleyDB. The Web site servers are the peers of this architec-
ture; pages are stored only where they originate from. PlanetP [8] is a publish-
subscribe service for P2P communities, supporting content ranking search. Plan-
etP distinguishes local indexes and a global index to describe all peers and their
shared information. The global index is replicated using a gossiping algorithm.
The system appears to be limited to a few thousand peers.

Odissea [18] assumes a two-layered search engine architecture with a global
index structure distributed over the nodes in the system. A single node holds
the complete, Web-scale, index for a given text term (i.e., keyword or word
stem). Query execution uses a distributed version of Fagin’s threshold algorithm
[9]. The system appears to cause high network traffic when posting document
metadata into the network, and the presented query execution method seems
limited to queries with at most two keywords. The paper actually advocates using
a limited number of nodes, in the spirit of a server farm. The system outlined
in [14] uses a fully distributed inverted text index, in which every participant
is responsible for a specific subset of terms and manages the respective index
structures. Particular emphasis is put on minimizing the bandwidth used during
multi-keyword searches. [11] considers content-based retrieval in hybrid P2P
networks. The peer selection for forwarding queries is based on the Kullback-
Leibler divergence between peer-specific statistical models of term distributions.

In addition to this recent work on P2P search, prior research on distributed
IR and metasearch engines is also potentially relevant; see [6, 20] for overviews.
However, their work has assumed a relatively small number of digital libraries
or databases and a fairly static configuration.

3 System Design

As a detailed description of the system design has already been given in [4], we
only present a brief overview here and refer the interested reader to this prior
work.

We view every library as autonomous. A conceptually global but physically
distributed directory, which is layered on top of a Chord-style dynamic hash
table (DHT) [17], holds only very compact, aggregated information about the
peers’ local indexes and only to the extent that the individual peers are willing to
disclose. Every peer is responsible for a randomized subset of the global directory.

2

The global directory consists of aggregated information (Posts) that contains
contact information about the digital library who posted this summary together
with statistics to calculate IR-style relevance measures that try to estimate the
relevance of a particular digital library to a query. These measures are used to
support the peer selection process, i.e., determining the most promising libraries
for a particular query.

If, at query time, the local query result is considered unsatisfactory by the
user, a library retrieves a list of potentially useful libraries. Using collection
selection methods from distributed IR and metasearch, a number of promising
libraries for the complete query is computed from these PeerLists. In [3] we have
studied promising and efficient techniques for this purpose. Subsequently, the
query is forwarded to these libraries and executed based on their local indexes.
The results from the various libraries are combined at the querying peer into a
single result list; this step is referred to as result merging.

The goal of finding high-quality search results with respect to precision and
recall cannot be easily reconciled with the design goal of unlimited scalability,
as the best information retrieval techniques for query execution rely on large
amounts of document metadata. Posting only compact, aggregated information
about local indexes and using appropriate peer selection methods to limit the
number of peers involved in a query keeps the global directory manageable and
reduces network traffic. We expect this approach to scale very well as more and
more peers jointly maintain the moderately growing global directory.

4 Challenges

Our work is driven by the question of how a collaborative search across digital
libraries can benefit from the unique nature of the P2P paradigm. We want to
address the shortcomings of centralized search engines and further benefit from
the intellectual input of a large user community.

Democratic Community Search: To overcome the danger of the infiltra-
tion of a centralized index by (commercial) interest groups (as increasingly seen
today on popular web search engines) we leverage the indexes from potentially
thousands of digital libraries, making it harder to bias the final query results.

Implicit User Feedback: Additionally, we want to incorporate the fact that
every library has its own local index, e.g., by executing all queries first locally
at the initiating library and using implicit-feedback techniques for automated
query expansion (e.g., using the well-known IR technique of pseudo relevance
feedback [5] or other techniques based on query logs [12] and click streams [16]).

User Recommendations: We want to incorporate local user bookmarks
into our query execution [2]. Bookmarks represent strong recommendations for
specific documents. Also, user bookmarks can be considered as compact samples
of peer indexes that describe their fields of interest. Queries could be exclusively
forwarded to thematically related libraries with similarly interested users, to
improve the chances of finding subjectively relevant pages.

Replication: In order to achieve service levels comparable to today’s search
engines and in order to actually benefit from the infrastructural advantage of a
distributed system, we are going to introduce a certain degree of replication to

3

the directory. Currently, as dictated by the DHT-style maintenance approach, a
peer gracefully leaving the system forwards its share of the global directory to
another peer. Analogously, a library entering the system asks for its appropriate
share of the directory. While one approach to ensure a valid, complete, and up-to-
date directory is to simply rely on the libraries to regularly re-send their Posts to
the directory, it is also necessary to replicate parts of the directory to avoid data
loss as libraries ungracefully leave the system. Also, replication can serve as a
load-balancing measure, relieving the burden from peers that host popular parts
of the directory, and increases data availability. Adaptive, self-tuning strategies
for choosing appropriate degrees of replication and placing replicas are an open
issue in our ongoing work.

Caching and Proactive Dissemination: To further enhance query effi-
ciency, statistical summaries and also the results of queries from across the net-
work may be cached in a way that allows other peers not only to instantly
benefit from the existing query results but also to benefit from click streams
that were recorded on the occasion of similar queries. Statistical summaries may
also be disseminated proactively among thematically related peers. Finding good
strategies to this end is a widely open issue.

Overlap-aware Query Routing: Peer selection has been a research issue
for years. Most of the existing literature estimates the expected result quality
of a collection, typically using precomputed statistics, and ranks the collections
accordingly. We believe that this is insufficient if the collections overlap, e.g., in
the scenario of digital libraries that share an arbitrarily large fraction of docu-
ments. We argue for the extension of existing quality measures using estimators
of mutual overlap among collections. Preliminary experiments show that such
a combination can outperform popular approaches based on quality estimation
only, such as CORI [6]. Taking overlap into account during collection selection
in this scenario can drastically decrease the number of libraries that have to be
contacted in order to reach a satisfactory level of recall, which is a great step
towards the feasibility of distributed search across digital libraries.

Benefit/Cost Optimization: Ultimatively, we want to introduce a sophis-
ticated benefit/cost ratio when selecting remote libraries for query forwarding.
For the benefit estimation, it is intuitive to consider such measures as described
in the previous paragraph. Defining a meaningful cost measure, however, is an
even more challenging issue. While there are techniques for observing and infer-
ring network bandwidth or other infrastructural information, expected response
times (depending on the current system load) are changing over time. One ap-
proach is to create a distributed Quality-of-Service directory that, for all peers,
holds moving averages of recent response times.

References

1. K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving data access in
p2p systems. IEEE Internet Computing, 6(1):58–67, 2002.

2. M. Bender, S. Michel, G. Weikum, and C. Zimmer. Bookmark-driven query routing
in peer-to-peer web search. In J. Callan, N. Fuhr, and W. Nejdl, editors, Proceedings
of the SIGIR Workshop on Peer-to-Peer Information Retrieval, pages 46–57, 2004.

4

3. M. Bender, S. Michel, G. Weikum, and C. Zimmer. The minerva project:
Database selection in the context of p2p search. Accepted to BTW05; Available at
http://www.mpi-sb.mpg.de/units/ag5/software/minerva/
publications/submitted05.pdf, 2005.

4. M. Bender, S. Michel, C. Zimmer, and G. Weikum. Towards collaborative search
in digital libraries using peer-to-peer technology. In DELOS Workshop: Digital
Library Architectures, pages 61–72, 2004.

5. C. Buckley, G. Salton, and J. Allan. The effect of adding relevance information
in a relevance feedback environment. In Proceedings of the seventeenth annual
international ACM-SIGIR conference on research and development in information
retrieval. Springer-Verlag, 1994.

6. J. Callan. Distributed information retrieval. Advances in information retrieval,
Kluwer Academic Publishers., pages 127–150, 2000.

7. S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco, 2002.

8. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Com-
munities. Technical Report DCS-TR-487, Rutgers University, Sept. 2002.

9. R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci., 58(1):83–99, 1999.

10. J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris. On the feasi-
bility of peer-to-peer web indexing and search. In In 2nd International Workshop
on Peer-to-Peer Systems (IPTPS), 2003.

11. J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
Proceedings of CIKM03, pages 199–206. ACM Press, 2003.

12. J. Luxenburger and G. Weikum. Query-log based authority analysis for web infor-
mation search. In WISE04, 2004.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM 2001, pages 161–
172. ACM Press, 2001.

14. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Proceed-
ings of International Middleware Conference, pages 21–40, June 2003.

15. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

16. J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining: Dis-
covery and applications of usage patterns from web data. SIGKDD Explorations,
1(2):12–23, 2000.

17. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM 2001, pages 149–160. ACM Press, 2001.

18. T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and K. Shan-
mugasunderam. Odissea: A peer-to-peer architecture for scalable web search and
information retrieval. Technical report, Polytechnic Univ., 2003.

19. Y. Wang, L. Galanis, and D. J. de Witt. Galanx: An efficient peer-to-peer search
engine system. Available at http://www.cs.wisc.edu/ yuanwang.

20. C. Yu, W. Meng, K.-L. Liu, W. Wu, and N. Rishe. Efficient and effective metasearch
for a large number of text databases. In Proceedings of CIKM99, pages 217–224.
ACM Press, 1999.

5

DIRECT: a Distributed Tool for Information
Retrieval Evaluation Campaigns

Giorgio Maria Di Nunzio and Nicola Ferro

Department of Information Engineering – University of Padua
Via Gradenigo, 6/b – 35131 Padova – Italy
{dinunzio, nicola.ferro}@dei.unipd.it

Abstract. In this paper we describe the architecture of DIRECT, a
Distributed Information Retrieval Evaluation Campaign Tool, which is
an innovative system for managing evaluation campaigns. In particular,
DIRECT deals with the evaluation of the information access and extrac-
tion components of a Digital Library Management System (DLMS).

1 Introduction

Digital Library Management Systems (DLMSs) generally manage collections of
multi-media digitalized data and include components that perform the storage,
access, retrieval, and analysis of the collections of data. The evaluation of DLMSs
is a non trivial issue that should cover different aspects, such as: the DLMS ar-
chitecture, the DLMS information access and extraction capabilities, the man-
agement of multimedia content, the interaction with users, and so on [1]. We
are interested in the evaluation aspects concerned with the information access
and extraction components of a DLMS [2]; this interest ranges from measur-
ing and quantifying the performances of the information access and extraction
components of a DLMS to designing and developing an architecture capable of
supporting this kind of evaluation in the context of DLMSs.

The paper is organized as follows: Section 2 presents the methodologies and
the issues concerned with the evaluation of the information access components
of a DLMS and discusses the motivations and the objectives of our system;
Section 3 presents the architecture and the functionalities of our system; finally,
Section 4 draws some conclusions.

2 Evaluation Issues for the Information Access
Components of a DLMS

Today, this type of evaluation is carried out in important international evaluation
forums which bring research groups together, provide them with the means for
measuring the performances of their systems, discuss and compare their work.
The most important forums for Information Retrieval System (IRS) are: Text
REtrieval Conference (TREC)1, Cross Language Information Retrieval (CLIR)2,
1 http://trec.nist.gov/
2 http://clef.isti.cnr.it/

NII-NACSIS Test Collection for IR Systems (NTCIR)3, and INitiative for the
Evaluation of XML Retrieval (INEX)4. A wide range of questions are covered
by these forums like the quality of the information retrieved, the access of multi-
lingual collections of documents, the retrieval of structured documents and the
access to asian-language collections. In general, these evaluation campaigns fol-
low the Cranfield paradigm [3] giving the participants one or more test-bed
collections, a set of tasks to be performed, and a method by which evaluating
performances of their systems with respect to the defined collections and tasks.

A drawback of the approach followed during these evaluation forums is that
huge chunks of textual files are shifted from side to side. Document collections
usually reside on a single high-loaded server where all participants connect con-
currently in a very short limited time in order to download the collections needed
to carry out the experiments. The experimental results provided by participants
to organizers usually consist of large text files, containing lists of retrieved doc-
uments together with their rank and score, that are numerical data. The per-
formance figures computed by organizers and returned to participants consist of
text files full of numerical data; in particular, the presentation format adopted
by TrecEval5, the de-facto standard tool for computing the performance figures,
is not very suitable for direct processing by a computer program, since it is tai-
lored to be human-readable. These file transfers often requires a mass-mailing
between participants and organizers in order to acknowledge the receipt of the
files or to correct errors. Moreover, if the performance figures are to be accessed
in order to further process them, a lot of textual parsing is needed to transform
chunks of text into numerical values, a process which is prone to errors.

Another drawback is that while the performance of IRS are measured by
means of traditional IR performance indicators, the analysis of the significance
of this results is rarely performed by participants although statistical analysis
is a fundamental step in the experimental evaluation, as pointed out by [4]. We
identify two main reasons for this: first, the analysis of the whole set of runs
submitted is possible only by organizers that collect all the runs, and replicating
experiments of other research groups is seldom possible for participants. Second,
statistical tools are not easy to handle and the possibility to have non coher-
ent results is high when participants make use of different tools. Moreover, the
statistical analysis is burdened by all the textual parsing needed to transform
chunks of text into numerical and processable data.

In this paper we want to tackle the problem of a new approach to evalua-
tion campaigns, able to take into account the distributed nature of the entities
involved during an evaluation campaign: data collections may reside on differ-
ent servers, participants are scattered around the world, as well as assessors
and organizers. Moreover, DLMSs themselves are distributed systems where the
services under evaluation can be developed according to different architectural
paradigms, such as Web Services (WS), Peer-To-Peer (P2P), and Grid. Finally,

3 http://research.nii.ac.jp/ntcir/index-en.html
4 http://inex.is.informatik.uni-duisburg.de/
5 ftp://ftp.cs.cornell.edu/pub/smart/

Ap
pli

ca
tio

n L
og

ic
Da

ta
Lo

gic
Int

efa
ce

 Lo
gic

Distributed Information Retrieval Evaluation Campaign Tool
(DIRECT)

DIRECT
Databases

Campaign
Storing Manager

(CSM)

Pool-Assessment
Storing Manager

(PASM)

Run
Storing Manager

(RSM)

User
Storing Manager

(USM)

Log
Storing Manager

(LSM)

Statistical Analisys
Storing Manager

(SASM)

Storing Abstraction Layer
(SAL)

DIRECT Integration Layer
(DIL)

Participant
User Interface

(PUI)

ASsessor
User Interface

(ASUI)

ADministrator
User Interface

(ADUI)

User
Management Tool

(UMT)

Log
Management Tool

(LMT)

Pool-Assessment
Management Tool

(PAMT)

Statistical Analysis
Management Tool

(SAMT)

Campaign
Management Tool

(CMT)

Run
Management Tool

(RMT)

Fig. 1. DIRECT Architecture

another innovative aspect of our approach is to provide participants with a uni-
form way of performing statistical analysis on their results. In this way, not
only participants benefit from standard experimental collections but also they
may exploit standard tools for the analysis of the experimental results. This
approach, that makes the analysis and assessment of experimental results com-
parable, is quite innovative since up to now participants employed tools built on
their own in order to analyze experimental results, making such analyzes much
more diffucult to compare.

An innovative system named Distributed Information Retrieval Evaluation
Campaign Tool (DIRECT) is being designed and developed to give an alternative
to the management of data of these evaluation forums with the aim of integrating
the activities among the different entities (both of an evaluation campaign and a
DLMS) and giving the tools to make the activities themselves more interactive.
The goal will be to create a unified view of this kind of evaluation forums and to
propose an innovative architecture able to provide dedicated services and tools to
make available data and documents. In particular, the evaluation of information
access components of a DLMS will not be calculated by means of standard IR
measures only, but also with an integrated tools for statistical analysis available
to all participants of evaluation forums.

Since we are are going to provide and manage the technical infrastructure,
both hardware and software, for the Cross-Language Evaluation Forum (CLEF)
2005 ongoing evaluation campaign, the possibility of testing and evaluating the
DIRECT system in real settings will be exploited.

3 DIRECT Architecture and Functionalities

Figure 1 shows the architecture of DIRECT. It consists of three layers – data,
application and interface logic layers – which allow us to achieve a better mod-
ularity and to properly describe the behavior of DIRECT by isolating specific
functionalities at the proper layer. Moreover, this decomposition makes it pos-
sible to clearly define the functioning of DIRECT by means of communication
paths that connect the different components. In this way, the behavior of the
system is designed in a modular and extensible way.

In the following, we briefly describe the architecture shown in Fig. 1, from
bottom to top:

Data Logic The data logic layer deals with the actual storage of the different
information objects coming from the upper layers. There is a set of “storing
managers” which translate the requests that arrive from the upper layers into
Structured Query Language (SQL) statements to operate on the underlying
DataBase Management Systems (DBMSs). The heart of the data logic is an
Entity–Relationship (ER) schema that is designed to fulfill the requirements to
manage a complex evaluation forums like the ones presented in Section 2. Note
that, due to huge quantity of data to be managed, it may be necessary to split
the underlying database across different DBMSs, thus dealing with a distributed
database. Finally, on top of the various “storing managers” there is the Storing
Abstraction Layer (SAL) which hides the details about the storage management
from the upper layers. In this way, the addition of a new “storing manager” is
totally transparent for the upper layers.

Application Logic The application logic layer deals with the flow of opera-
tions within DIRECT. It provides a set of tools capable of managing high-level
tasks. For example, the Statistical Analysis Management Tool (SAMT) offers the
functionalities needed to conduct a statistical analysis on a set of runs; conduct-
ing a statistical analysis involves, in the data logic layer, both the Run Storing
Manager (RSM) to have access to the experimental data, and the Statistical
Analysis Storing Manager (SASM) to store the results of such analysis. Finally,
the DIRECT Integration Layer (DIL) provides the interface logic layer with a
uniform and integrated access to the various tools. As we noticed in the case of
the SAL, thanks to the DIL also the addition of new tools is transparent for the
interface logic layer.

Interface Logic It is the highest level of the architecture, and it is the ac-
cess point for the user to interact with the system. It provides specialised User
Interfaces (UIs) for different types of users, that are the participants, the asses-
sors, and the administrators of DIRECT.

4 Discussion

We introduced DIRECT, a system for managing information retrieval evalua-
tion campaigns, and described its architecture. DIRECT can be implemented
according to different architectural paradigms: for example, the data logic layer
can be implemented as a network of P2P “storing managers” in order to distrib-
ute the databases. On the other hand, the various tools of the application logic
layer could be made available as WSs in order to easily access them and to com-
pose them, if necessary. In conclusion, DIRECT not only allows for managing
evaluation campaigns in a distributed manner but it is also a distributed tool
itself.

DIRECT can be considered a scientific databases manager since it stores
scientific data and makes it possible the analysis of the results of computations
and data itself. It can become also a curated database manager if we partner it
with services for annotating its contents, as those described in [5,6], in order to
allow users to cooperate and discuss about the performances of different DLMSs
in accessing information. In this context, data provenance [7] becomes a relevant
issues and annotations can be further exploited for data provenance purposes,
as described in [8,9].

The main goal of DIRECT is to model the data of the domain of interest
(the evaluation forums) and to make available integrated services to operate on
this data. The modelling is focussed on the problems explained in Sect.1 in order
to efficiently manage the well defined tasks of accessing, (down-)loading, evalu-
ating, submitting data during evaluation forums. In future, the infrastructure of
DIRECT can be thought embedded as a part of a more complex system designed
by means of scientific workflow management systems like Kepler/PtolemyII6 [10].

DIRECT is going to be used and tested in the context of the ongoing CLEF
evaluation campaign and the outcomes of this test can drive the further devel-
opment and refinement of it.

Acknowledgements

The work is partially supported by the DELOS Network of Excellence on Digital
Libraries, as part of the Information Society Technologies (IST) Program of the
European Commission (Contract G038-507618).

References

1. Fuhr, N., Hansen, P., Micsik, A., Sølvberg, I.: Digital Libraries: A Generic Classi-
fication Scheme. In Constantopoulos, P., Sølvberg, I.T., eds.: Proc. 5th European
Conference on Research and Advanced Technology for Digital Libraries (ECDL
2001), Lecture Notes in Computer Science (LNCS) 2163, Springer, Heidelberg,
Germany (2001) 187–199

6 www.kepler-project.org

2. Agosti, M., Di Nunzio, G.M., Ferro, N.: Evaluation of a Digital Library System.
In Agosti, M., Fuhr, N., eds.: Notes of the DELOS WP7 Workshop on the Eval-
uation of Digital Libraries, http://dlib.ionio.gr/wp7/workshop2004 program.

html (2004) 73–78
3. Cleverdon, C.W.: The Cranfield Tests on Index Languages Devices. In Spack Jones,

K., Willett, P., eds.: Readings in Information Retrieval, Morgan Kaufmann Pub-
lisher, Inc., San Francisco, California, USA (1997) 47–60

4. Hull, D.: Using Statistical Testing in the Evaluation of Retrieval Experiments. In
Korfhage, R., Rasmussen, E., Willett, P., eds.: Proc. 16th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 1993), ACM Press, New York, USA (1993) 329–338

5. Agosti, M., Ferro, N.: An Information Service Architecture for Annotations. In
Agosti, M., Schek, H.J., Türker, C., eds.: Digital Library Architectures: Peer-to-
Peer, Grid, and Service-Orientation, Pre-proceedings of the 6th Thematic Work-
shop of the EU Network of Excellence DELOS, Edizioni Libreria Progetto, Padova,
Italy (2004) 115–126

6. Agosti, M., Ferro, N., Frommholz, I., Thiel, U.: Annotations in Digital Libraries
and Collaboratories – Facets, Models and Usage. In Heery, R., Lyon, L., eds.: Proc.
8th European Conference on Research and Advanced Technology for Digital Li-
braries (ECDL 2004), Lecture Notes in Computer Science (LNCS) 3232, Springer,
Heidelberg, Germany (2004) 244–255

7. Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A Characterization of
Data Provenance. In Van den Bussche, J., Vianu, V., eds.: Proc. 8th International
Conference on Database Theory (ICDT 2001), Lecture Notes in Computer Science
(LNCS) 1973, Springer, Heidelberg, Germany (2001) 316–330

8. Buneman, P., Khanna, S., Tan, W.C.: On Propagation of Deletions and Annota-
tions Through Views. In Abiteboul, S., Kolaitis, P.G., Popa, L., eds.: Proc. 21st
ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database Systems
(PODS 2002), ACM Press, New York, USA (2002) 150–158

9. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An Annotation Man-
agement System for Relational Databases. In Nascimento, M.A., Özsu, M.T.,
Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B., eds.: Proc. 30th Inter-
national Conference on Very Large Data Bases (VLDB 2004), Morgan Kaufmann
(2004) 900–911

10. Ludscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M.,
Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience, Special Issue on Scientific
Workflows (2005) (in print)

ρ-index – An Index for Graph Structured Data

Stanislav Bartoň and Pavel Zezula

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbarton, zezula}@fi.muni.cz

Abstract. The effort described in this paper introduces an indexing
structure for path search in the graph structured data called ρ-index. It
is based on a graph segmentation S(G) that is meant to represent the
indexed graph G in a simpler manor yet having similar properties as the
graph G had. This is achieved using graph transformations and a special
type of a matrix used to represent the transformed graph.

1 Introduction

In the context of the Semantic Web, ρ-operators are proposed in [1] as a mean
to explore complex relationships [3] between entities. The problem of searching
for the complex relationships can be modeled as the process of searching paths
in a graph where entities represent vertices and edges the relationships between
them. The notion of complex relationships can be also identified in bibliographic
digital libraries, where entities could represent publications and the relationship
can represent references or citations between them.

As proposed in [1], we recognize two kinds of complex relationships. The first
one is represented by a path lying between two inspected vertices. Speaking in
terms of publications this means that one publication indirectly cites or refer-
ences the other publication – a chain of publications can be built so that one
cites another. The second type of complex relationship is a connection between
two inspected vertices. This symbolizes a fact that the two inspected publica-
tions indirectly cite one common publication, see Fig. 1 for an example of this
kind of complex relationship.

The knowledge about complex relationships among publications can be used
for example for ranking the result of the search for publications. Another use
case can be an automated recommendation of publications based on the preferred
set of publications. For that reason, this paper presents an indexing technique
called the ρ-index that enables efficient discovery of complex relationships in
large collections of graph structured data.

2 Motivation

The graph theory proved that a very handy representation of a directed graph
is its adjacency matrix because using matrix algebra we can comfortably study
the graph’s properties. For instance, if the adjacency matrix is powered by two,

X

’cites’ relation

publication

edge sequence

A

B

Fig. 1. An example of a connection between vertices A and B. Two paths originated
in A and B connected in a common vertex X.

each field in the resulting matrix contains a number of paths of length two
lying between every pair of vertices in the original graph. If the computation
continued, the result would contain amounts of all paths of an arbitrary length.
Moreover, with a slight modification of the matrix that is introduced in section
4.2 we would get not just the amounts of paths but the paths themselves.

The main difficulty of a matrix representation of a graph is that its use is
limited to fairly small graphs, because the matrix grows in the quadratic space
and the multiplication operation on matrices has even cubic time complexity.
Therefore, we introduce graph transformations to enable the use of the matrix
approach to graphs of arbitrary size.

3 Theoretical background

The proposed indexing structure is built upon the theoretical base of the graph
theory and following theses. The necessary background definitions can be found
in Appendix A to this paper. The corner stone of this work is a graph segmenta-
tion. A graph segment is very similar to a graph’s subgraph. The main difference
is that the segment also can contain edges that have only one vertex in the
proper segment. The graph segmentation is then a division of the original graph
into segments where is true that no vertex belongs to two different segments and
that the whole graph is segmented – all vertices and edges are present in the
segmentation. The purpose of the graph segmentation S(G) is a simplified rep-
resentation of a graph G by a segment graph SG(G) that has similar properties
that G had. Basically, following a path p in G implies following a path in SG(G)
represented by a proper segment sequence of p.

Lemma 1. If a graph G = (V, E) has a segmentation S(G) that forms a graph
SG(G), any path p = (v1e1v2e2 . . . envn+1) in G can be represented by its proper
segment sequence in S(G) and this representation is unique.

Proof. A segment sequence is another representation of a path in SG(G). In fact,
(S1 . . . Sl) is a simplified representation of (S1h1S2h2 . . . Sl−1hl−1Sl). Thus, we
show that any path in G can be transformed into a path in SG(G) that actually
represents a segment sequence which is the proper segment sequence for this
path.

From the definition of S(G) we have that each vertex in G belongs exactly
to one segment of S(G). Therefore, we take the path p in G and rename the
vertices by the segments they belong to.

p = (v1e1v2e2 . . . envn+1) −→ (S1e1S2e2 . . . enSn+1)
If Si = Si+1 then ei is not a border edge, therefore we omit the part (ei, Si+1)

from the transformed path. We repeat this step until Si 6= Si+1 is true.
According to the definition of SG(G) we drew an edge h = (S1, S2) in SG(G)

whenever EDGES OUT (S1) ∩ EDGES IN(S2) 6= ∅. Presence of ei between
Si and Si+1 in (S1e1S2e2 . . . enSn+1) implies the presence of such edge in G
connecting two vertices from the particular segments where Si 6= Si+1 which
implies that EDGES OUT (Si) ∩ EDGES IN(Si+1) 6= ∅ and therefore exists
an edge h in SG(G) from Si to Si+1.

Now we have (S1ei1Si1ei2 . . . eil−1Sl), so we replace all ei by the respective
edges hj from SG(G). The result is a correct path (S1h1Si1h2 . . . hlSl) in SG(G)
that represents a proper segment sequence (S1 . . . Sl) for the path p in G.

The uniqueness of the proper segment sequence of a path p results from the
definition of segmentation S(G) because no vertex in V can be included in two
different segments. Thus, the chain of segment labels is unique for any path in
G.

Lemma 2. If a graph G = (V, E) has a segmentation S(G) that forms a graph
SG(G), the length of a path in SG(G) that represents a proper segment sequence
of a path p is always less than or equal to the length of p.

Proof. From Lemma 1 we know that each path in G has its proper segment
sequence representation. From the proof of that lemma we know that during the
transformation of the path in G to a path in SG(G) we omit zero or more edges.
Also some edges from G are replaced by edges from SG(G) but always one edge
by another. This implies that the resulting path in SG(G) can be at most of the
same length as the path in G.

4 Overview of the ρ-index

The main idea of the approach introduced in this paper is to identify certain
units in the indexed graph such that when replaced by single vertices, they would
form a new smaller graph that would be easier to navigate, but yet having the
same properties as the original graph had. The aim is to enable the use of the
matrix approach on SG(G) while it is not possible to use it on G. And because
SG(G) is also a regular graph it can be again segmented.

4.1 Proposed graph transformations

The first graph transformation used is a graph to a forest of trees transformation.
The result of this transformation is a set of trees together with a set of transitions
among those trees. A lot of indexing techniques for trees have been developed
for efficient navigation inside a tree. We have chosen the tree signatures [4].
They enable fast navigation inside a tree using simple and cheap operation – a
comparison of preorder and postorder ranks of nodes in the particular tree. The
ranks are represented by integer numbers thus the comparison of the particular
ranks takes O(1) time.

If we take a closer look on the result of this transformation we see that the
acquired trees form vertices and transitions among them edges in a new graph.
This new graph represents the original graph but in a simplified way. Certainly,
any path that was in the original graph is also in the new graph and vice versa.

If the size of the newly acquired graph is small enough to create the matrix
representation of it, the job is done. The index would be then composed of the
tree signatures and the matrix describing all paths among those trees. However,
we would like to index a graph of an arbitrary size. An obvious idea is to use
this graph transformation recursively onto the newly acquired graph as long as
we get a graph of a desired size. But an evaluation of the recursive application
of this transformation in [2] showed that after few applications this method does
not lead to a significant reduction of the amount of nodes in the new graph.

Therefore, another graph transformation has to be used to lower the amount
of vertices in the new graph. The transformation that we have chosen for this
is vertex clustering. It reduces the amount of vertices in a graph by collapsing
subgraphs (segments) into single vertices. Also in the new graph acquired by
this transformation is true that any path in the new graph is contained in the
original one and vice versa. This graph transformation represents the graph
segmentation, thus, the new graph is a segment graph of the original graph.

The reason why the transformation of graph to forest of trees is used is to
make more dense graph out of a sparse graph. The tree signatures can be applied
to tree of any size. This kind of transformation is used only once as a first step
in the process. In all following steps only the vertex clustering is used because
the number of vertices in the transformed graph does not decrease in a linear
way but rather converges to a certain limit.

4.2 Adjacency matrix of paths

A path type adjacency matrix is a modification of a usual adjacency matrix. It
is designed to represent a graph in a path oriented way. Initially, each field of
our matrix contains a path consisting of a single edge whenever there exists such
an edge between two vertices in the graph. The convenience it presents over the
usual adjacency matrix is that after the transitive closure of the path type matrix
is computed, the fields contain not just an amount of paths lying between any two
vertices, but also the paths themselves. Naturally, the mathematical operations
on numbers + and ∗ are replaced by the respective operations on paths - union
and concatenation.

L
ev

el
 3

...

Original graph

Tree signatures

Top level matrix

Matrices for segments
L

ev
el

 1
L

ev
el

 2

Fig. 2. A ρ-index consisting of three levels.

4.3 Outline of ρ-index’s structure

Let present a brief example of a three level ρ-index visualized in Fig. 2. Firstly,
the graph to a forest of trees transformation is applied to the graph that is
indexed. Subsequently, a tree signature is created to each acquired tree. The
new graph, where vertices represent trees and edges represent transitions among
trees, is then decomposed by the vertex clustering transformation. For each
collapsed subgraph, its path type adjacency matrix is created. After that a path
type adjacency matrix is created to the newly acquired graph, where vertices
represent collapsed subgraphs (segments).

Hence, the ρ-index has the following structure. On the lowest level, there are
tree signatures of trees obtained by the first graph transformation. Above that
is a set of path type matrices describing each collapsed subgraph. And at the
topmost level is a single path type matrix used to navigate among the subgraphs.
This particular example is visualized in Fig. 2.

5 Preliminary experimental evaluation

An experimental implementation of the ρ-index was built to evaluate its prop-
erties. The measurable aspects are the time necessary to build the ρ-index and
the time consumed to discover the relationships. Furthermore, a proportion of
accessible vertices from the inspected vertex in the indexed graph to the amount
of actually accessed vertices in the ρ-index is measured. Also a total number of
accesses to vertices in the ρ-index is recorded.

The both graphs used to evaluate the ρ-index properties are a part of the
Open Directory Project1 representing the connections among categories. They

1 The Open Directory Project can be found at http://www.dmoz.org.

mostly differ in the size and density. We have run the tests on a usual desktop
computer with a 3 GHz Pentium 4 processor and 2 gigabytes of RAM.

of levels in ρ-index 3 3

of vertices 15 214 169 271

of edges 66 478 255 687

Time to create (mins) 0:45 1:52

of accessible vertices 6419 66 065

Resulting relationship found not found found not found

of accessed vertices 462 130 17 11

of accesses 162 492 5534 97 157

Time to find relationship (secs) 10 2 0.01 0.01

Table 1. Experimental evaluation of ρ-index.

The ρ-index was tested on two graphs that differed in the amount of vertices
they contained. The proportions of both graphs are stated in Table 1. As the
total number of edges in each graph proposes, the smaller graph is more dense
than the bigger one. The evaluation consisted of a set of executions of a path
relationship search. Thus, we used the index to retrieve all paths lying between
the two inspected vertices. The result of this search was either the an empty set or
all paths lying between the two vertices. During each execution the total number
of accesses to vertices in the ρ-index was recorded to measure the efficiency of
designed algorithms.

The number of accessible vertices indicates the amount of vertices that can
be accessed in the indexed graph from the starting vertex. Number of accessed
vertices represents an amount of actually accessed vertices in the ρ-index.

The experimental evaluation concludes that the sparser the graph is the
better results we get from the ρ-index . Why is that true indicates the total
number of accesses to vertices in the ρ-index . We found out that not every
segment sequence that is a product of the transitive closure computation of
SG(G) does represent some path on the lower level (in G). And this happens
more often in the denser graph causing a huge amounts of these false segment
sequences to be checked by the search algorithm.

6 Concluding Remarks & Future Work

During the ρ-index implementation, some further modifications had to be done
to the theoretic design of the ρ-index . The theoretic base of the ρ-index counted
on computation and storage of all possible paths along the building phase of
the index. Nonetheless, huge amounts of paths computed at the higher levels of
the structure turn to be a dead end during the retrieval of a real path between

two vertices in the original graph. Therefore, limitations concerning the maximal
amount of paths stored in each path type matrix field and a maximal iteration
step of the transitive closure computation of path type matrix were set during
the ρ-index creation phase. These limitations have impact on the quality of the
response retrieved using the ρ-index, although they enable the user with the
control over the maximal length of an indexed path and a maximal number of
paths indexed between two vertices. Albeit, these do not limit the use of ρ-
index, since in many cases the user’s concern is limited to the most relevant
relationships.

As the experimental evaluation of the ρ-index implied, the future work will
mainly focus on the design improvement of the ρ-index . One of the possible ways
is to control the undesired storage of segment sequences that do not represent
any path on lower levels. Another direction we draw our attention will be to
index paths and connections only to a certain length and to a certain amount
between any two vertices. To achieve that we would like to introduce weights of
vertices to promote their importance.

References

1. Kemafor Anyanwu and Amit Sheth. ρ-queries: enabling querying for semantic asso-
ciations on the semantic web. In Proceedings of the twelfth international conference
on World Wide Web, pages 690–699. ACM Press, 2003.

2. Stanislav Bartoň. Indexing structure for discovering relationships in RDF graph re-
cursively applying tree transformation. In Proceedings of the Semantic Web Work-
shop at 27th Annual International ACM SIGIR Conference, pages 58–68, 2004.

3. Sanjeev Thacker, Amit Sheth, and Shuchi Patel. Complex relationships for the
semantic web. In D. Fensel, J. Hendler, H. Liebermann, and W. Wahlster, editors,
Spinning the Semantic Web. MIT Press, 2002.

4. Pavel Zezula, Giuseppe Amato, Franca Debole, and Fausto Rabitti. Tree signatures
for XML querying and navigation. Lecture Notes in Computer Science, 2824:149–
163, 2003.

Appendix A

Definitions

Definitions necessary to state the theoretical background of the approach intro-
duced in this paper.

1. Vertices V = {v1, ...vn}
2. Edges E = {e1, ...em}, E = V × V, ei = (v, w), v, w ∈ V
3. Graph G = (V,E)
4. Initial vertex of an edge e: LEFT V TX(e) = v1 ⇔ e = (v1, v2)
5. Terminal vertex of an edge e: RIGHT V TX(e) = v2 ⇔ e = (v1, v2)
6. Segment S in graph G : S = (VS , ES) : VS ⊆ V ∧ VE = {e ∈ E |

RIGHT V TX(e) ∈ VS ∨ LEFT V TX(e) ∈ VS}

7. Segmentation S(G) = {S|S is a segment of G} ∧ ⋂
S∈S(G)

VS = ∅ ∧
⋃

S∈S(G)

VS = V

8. EDGES OUT(S) = {e|e ∈ ES ∧LEFT V TX(e) ∈ VS ∧RIGHT V TX(e) 6∈
VS}

9. EDGES IN(S) = {e|e ∈ ES ∧ RIGHT V TX(e) ∈ VS ∧ LEFT V TX(e) 6∈
VS}

10. Sequence of segments (S1 . . . Sl) = S1, . . . Sl ∈ S(G), 1 ≤ i ≤ l − 1 :
EDGES OUT (Si) ∩ EDGES IN(Si+1) 6= ∅

11. Acyclic sequence of segments (S1 . . . Sl) is a sequence of segments where:
1 ≤ i 6= j ≤ l − 1 : Si = Sj ⇒ Si+1 6= Sj+1

12. Acyclic path p = (v1e1v2e2 . . . envn+1) in G : 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1, i 6=
j : ei ∈ E ∧ vi, vj ∈ V ∧ vi = LEFT V TX(ei) ∧ vi+1 = RIGHT V -
TX(ei) ∧ vi 6= vj

13. Simplified path notation: instead of (v1e1v2e2 . . . envn+1) we sometimes use
(e1e2 . . . en) .

14. Connecting path p = (e1e2 . . . en) in a segment sequence (S1 . . . Sl): p ∈
(S1 . . . Sl) : e1 ∈ {EDGES OUT (S1) ∩ EDGES IN(S2)} ∧ en ∈ {EDGES-
OUT (Sl−1) ∩ EDGES IN(Sl)} ∧ ∃i2, i3, . . . il−1 : 1 < i2 < i3 < . . . <

il−1 < n : {e2, . . . ei2} ⊆ ES2 ∧ {ei2 , . . . ei3} ⊆ ES3 ∧ . . . ∧ {eil−2 , . . . eil−1} ⊆
ESl−1

15. Proper segment sequence for a path p = (v1e1v2e2 . . . envn+1) : S(p) =
(S1 . . . Sl) : S(p) is a segment sequence ∧ 1 ≤ i1 < i2 < . . . < il ≤
n + 1 : {v1, . . . vi1} ⊆ VS1 ∧ {vi1 , . . . vi2} ⊆ VS2 ∧ . . . ∧ {vil

, . . . vn+1} ⊆ VSl

16. Segment graph of G: SG(G) = (S(G), X), X = {h|h = (Si, Sj) ⇔ 1 ≤
i, j ≤ k ∧ EDGES OUT (Si) ∩ EDGES IN(Sj) 6= ∅}

Efficient and Effective Matching of
Compound Patient Records

Michael Springmann1, Sören Balko2, and Hans–Jörg Schek12

1 Institute for Information Systems,
University for Health Sciences, Medical Informatics and Technology (UMIT)

EWZ 1, A-6060 Hall i.T., Austria
{michael.springmann,hans-joerg.schek}@umit.at

2 Database Research Group
Swiss Federal Institute of Technology (ETH)
ETH Zentrum, CH-8092 Zurich, Switzerland
{sbalko,schek}@inf.ethz.ch

Abstract. Patient records form an important cornerstone of nowadays medical
information systems. Technically, they represent complex multimedia documents
that comprise temporally interrelated elements of various media types. The col-
lection of patient records of a health care institution forms a digital library, with
access limited to this organization. Efficient similarity search in large patient
record databases is an important foundation for a number of highly rewarding
analysis operations. Therefore we propose a novel approach to similarity retrieval
of complex multimedia documents, in general, and patient records, more specifi-
cally. That is, we adapt and extend a retrieval algorithm that is known to work effi-
ciently for region matching of images. Specifically, we introduce efficient and ef-
fective domain-specific matching of patient records, that (1) exclusively matches
elements of identical media types (like x-ray images) with (2) dedicated measures
(like nearest neighbor on texture features) and (3) only establishes semantically
meaningful matches (like x-rays of same organs in identical orientation). Our ap-
proach is not limited to the medical domain and can be used for any large-scale
digital library of compound multimedia documents.

1 Introduction

This section provides an overview on structure and content of patient records and moti-
vates our contribution on fast matching in large collections of patient records.

1.1 Motivation

Electronic patient records have become an important patient-centered entity in health
care management. They represent complex documents that comprise a wide diversity
of patient-related information, like basic administrative data (patient’s name, address,
birthday, name of physicians, hospitals, etc.), billing details (name of insurance, billing
codes, etc.), and a variety of medical information (symptoms, diagnoses, treatment,
medication, X-ray images, etc.). Most of these details are structurally and temporally

interrelated, like a (1) particular treatment and (2) medication ordered from a (3) physi-
cian on an (4) established diagnosis from patient’s (5) reported symptoms at a (6) certain
date. Each item is of a dedicated media type, like structured alphanumeric data (e.g. pa-
tient name, address, billing information, laboratory values, documentation codes, etc.),
semi-structured text (symptoms description, physician’s notes, etc.), images (X-ray, CT,
MRT, images for documentation in dermatology, etc.), video (endoscopy, sonography,
etc.), time series (cardiograms, EEG, respiration, pulse rate, blood pressure, etc.), and
possibly others, like DNA sequence data.

State-of-the-art medical information systems aggregate massive amounts of data in
patient records. Its exploitation, however, is mainly restricted to accounting and billing
purposes, leaving aside most medical information. In particular, similarity search based
on complex document matching is out of scope for today’s medical information sys-
tems.

1.2 Contribution

As stated in [1] there are many application fields in medicine for content-based retrieval
methods. These application fields can roughly be divided into the three domains teach-
ing, research and diagnosis. We believe that efficient and effective matching of patient
records forms the rewarding foundation for a large application variety. Data mining
applications that rest upon our patient record matching approach will foster enhanced
therapy, in general. Specifically, our proposal allows for effective comparison of simi-
lar cases to (1) shorten necessary treatments, (2) improve diagnoses, and (3) guide the
proper medication to improve patients’ well-being and reduce cost.

Precisely, we introduce a novel matching algorithm that tackles two issues con-
currently. On the one hand, we provide a query model that incorporates the particular
composition of patient records. For the time being, we focus on the aggregate structure
and different domains. On the other hand, our matching algorithms allows for efficient
similarity search with interactive answering times while processing large document col-
lections.

2 Compound Document Matching

Health records like any other compound multimedia documents comprise component
objects. In contrast to many existing digital libraries, these compound documents do
not consist of rather small numbers of objects, but aggregate many multimedia data
items over years. For example, the Radiology Department of the University hospitals
of Geneva produced medical images more than 12,000 per day in 2002 [1]. For a very
rough estimation, when all 2197 beds of the hospital are in use, more than five images
per patient are generated – on one single day of their life. The Picture Archiving and
Communications System (PACS) of Tilak, a local health care provider in Tyrol with
2046 beds, has to cope even with 240 Gbytes of new data for a single day, which cor-
responds to 320.000 images [2]. The aim For this reason, analyzing patient records for
similarity is more complex than comparing two short documents or web pages consist-
ing of only a couple of paragraphs of text and images. But to illustrate the problem, this
might be a good start.

i1

i2

i4

i1

Text 2

Image 2

Image 1

Text 1

Image 3

Text 1

Image 1

Image 2

i3

i2 i3

__ __ ______ __ ____ ___ ___ ____ _____ _____ __ ____ ___ ______
___ ____ __ __ _______ ___ ___ ___ ___ _____ __ _____ ____ ___ ___ ___ ____ ___ _____ ___ ___ __

__ __ __ _ __ ___ _____ ___ ___ ___ _ ____ __ _ _______ __ __ ___ __ ____ ____ _____ ____ __ __ __ ___ ____ ___ ___ ___ ___ __ _ _____ ____ ___ __ __ __ _ __ ___
____ _____ ______
__ ___ __ ____ ____
___ _____ _____
__ ____ __ __ __ ___

_ ___ ___ ___ ___ __
_ __ ____ ______ __
___ ____ ___ ___ __
___ __
____ ___ __ __
______ ____ ___ ___
__
__ ___ ___ __ ___
___ __ ______ ____
_ __ ___ ____ ___
___ _____ ________
__ ___ ___ __ __ __
__ _ ____________
___ ___ ___ __ __
___ _ ____________
__ ____ __ __ ___ _
__ __ ___ __ __ ____
_______ ____ ____
____ ____ ___ _____
__ __ ___ __ ______
_______ ____ ____
__ ___ ______ ____
_
________ ___ ____
____ _____ _____
___ _______ _____

__ __ __ _ __ ___
____ _____ ______
__ ___ __ ____ ____
___ _____ _____
__ ____ __ __ __ ___

_ ___ ___ ___ ___ __ _
__ ____ ______ __
___ ____ ___ ___ __
___ __
____ ___ __ __
______ ____ ___ ___ __
__ ___ ___ __ ___ ___

Image 3

Text 4

Text 3

Image 4

Text 2

__ __ __ _ __ ___ ___ ___ __ ___ ___ _____ _ ____ __ _ _______ __ __ ___ __ __ ____ __ __ __________ ____ __ __ __ ___ __ ____ ___ ___ __ ___ ___ __ _ __

Fig. 1. Matching problem between two compound documents

Similarity search on compound documents needs to establish matches of corre-
sponding media objects. Finding these corresponding objects within large sets of ob-
jects is a computationally intensive task. A similar problem is prevalent in region based
image retrieval (RBIR). That is, regions from two images must be matched to compute
an overall similarity score.

In region matching like it is described in [3], images are partitioned into disjoint re-
gions. Two images’ overall similarity score is computed by finding best pairs of regions
from those two images. This optimization problem of finding best pairs is a general-
ization of the so-called Assignment Problem. Using the Hungarian algorithm [4], the
complexity of similarity computation for two region sets is O(r3) with r being the num-
ber of regions in both sets. From a query processing point of view, a cubic complexity
is unsatisfactory, restricting the applicability to small data sets and few regions.

To perform this task more efficiently, [3] proposes a two-stage filter-and-refinement
approach. Such an approach can reduce both I/O and CPU costs. E.g. in [5], such an
approach is applied to reduce the number of file accesses needed to read feature vectors
for content-based multimedia retrieval from disk. For complex queries, the costs of
computation become more important and may exceed the costs for accessing the data
from storage [6]. In this paper we focus on the CPU cost reduction.

The first stage of the approach yields a small number of candidate matches by com-
puting computationally cheap, yet tight upper and lower bounds to the exact similarity
score. The second stage invokes the exact distance function on the candidates. As the
cost to compute lower and upper bounds is significantly lower than its exact counter-
part, tremendous speed-ups can be achieved. In [3], authors report a factor of five in
query processing time consumption.

Like images can be partitioned into regions, compound documents can be divided
into their component objects. Figure 1 illustrates this for two documents, consisting of
seven and six objects. Calculating the similarity of two compound documents c1, c2

must (1) establish matches between corresponding objects from both documents and
(2) compute the document similarity out of the individual object similarities.

(a) X-Ray (b) MR 1 (c) MR 2

Fig. 2. Various medical images of human skulls

2.1 Finding Corresponding Objects

Every component object of c1 should correspond to exactly one object of c2 and vice
versa. That is, we assign each object to exactly one other object, which is called a
complete match. This is a restriction to the simple approach to match each object in c1

straight forward to the object of c2 which is most similar. This relaxed condition would
allow assigning one object in c2 twice or even to every object in c1. In general, this
is not the correct answer to a compound query document containing several distinct
component objects. In [7] this is explained by requesting an image showing two tigers,
but getting results showing only one.

For compound documents a similar problem may exist: If we query for a document
containing one paragraph about one distinct topic, and another paragraph about one
different topic, we may want to retrieve only documents handling the same two top-
ics individually instead of mixing both topics in a single paragraph. With increasing
number of component objects, the ability the model this distinction and retrieve only
documents fulfilling the complete match criterion gains very much importance.

In contrast to region matching, compound documents may consist of objects from
various domains. In figure 1 both documents have objects of the domains text and im-
ages. In order to form a complete match, we would need to assign one text to an image.
But how can we be sure that the text really relates to the image? To be sure, we would
need a similarity function comparing texts to images.

In general, no meaningful cross-domain similarity function exists, e.g. it is not fea-
sible to match a cardiogram against a CT image of the lung. Even between objects of
the same media type, a comparison can be problematic. If we think of medical imaging,
DICOM files are generated via various techniques (CT, MRI, PET, etc.) which differ all
in the way they represent tissues. Moreover, the screened body function and the spatial
orientation of an image have an impact on the object domain, as well.

For example, all three images in figure 2 show the head of human patients which
were stored in the DICOM file format. Traditional x-ray images show a 2D projec-
tion of whole 3D object, shown in 2(a), whereas newer technologies like computerized
tomography (CT) and magnetic resonance imaging (MRI) allow to view discrete, two-
dimensional cuts through the objects. But still, matching of CT and MRI according

0.90.1N/AN/AN/AN/A

0.20.7N/AN/AN/AN/A

0.60.5N/AN/AN/AN/A

0.30.8N/AN/AN/AN/A

N/AN/A0.20.60.10.3

N/AN/A0.30.20.70.4

N/AN/A0.10.30.50.1

c2

c1

(a) Disregarding Domains

p1p1p1p1

0.20.60.10.3

0.30.20.70.4

0.10.30.50.1

c2

c1

(b) Domain 1

p2p20.90.1

p2p20.20.7

p2p20.60.5

p2p20.30.8

c2

c1

(c) Domain 2

Fig. 3. Example similarity matrices for two documents c1 and c2 with 2 domains

to [8] can be performed only under certain conditions. And even if the same technol-
ogy is used, like in 2(b) and 2(c), computing image similarity based on visual features
may return poor result when the viewing perspective changes. One solution to the prob-
lem of coding the anatomical region, body orientation and used technology of medical
images is suggested in [9], using the so-called IRMA code. It is a string of at most
13 characters {0–9,a–z} of the format TTTT–DDD–AAA–BBB, where T specifies the
technology used, D the direction or body orientation, A the anatomical region, and B the
biological system examined. This kind of knowledge can be used to provide similarity
functions and judge their significance for application specific problems.

Therefore, the structure of a compound query document with regard to its compo-
nent objects and their media types is one possible feature of the query. An improved
approach might even define domains not solely on media types, but whether there ex-
ists a meaningful similarity measurement between two objects. The similarity between
any two objects is computed using an appropriate similarity function for their domain
and the result is normalized to the interval [0,1], such that 1 denotes most similar and 0
not similar.

We can build a similarity matrix where the rows depict objects from the compound
(query) document c1 and the columns the objects of the compared document c2. The
matrix is filled with the similarity score returned by the function for the respective
objects. We do not limit ourselves to any particular similarity function. In fact, it is one
of the major goals of this approach to be able to use an arbitrary existing similarity
measure instead of developing new ones for each domain.

An example with 7 objects in c1 and 6 in c2 is shown in figure 3(a). The value
N/A indicates that no meaningful match exists. Therefore, we split the matrix into the
domain-specific matrices. Since it is not possible to find exact matches in non-quadratic
matrices, we extend the split matrices until each has as many columns as rows and fill
these new fields with so-called penalty values (cf. p1 and p2 in figure 3(b) and 3(c)).
In this way, we may penalize (or reward) missing counterparts in c2 to objects from
c1 (and vice versa). Notice that any complete match within a domain needs to assign
the same number of penalty values. Hence, finding the best complete match of two
distinct compound documents is orthogonal to the choice of penalty values. Therefore,
the actual values of p1 and p2 do not affect the solution to our example. Their values
gain only importance when ranking of the similarity between one query document and

several other documents is performed and those other compound documents differ in
the number of objects within at least one domain.

2.2 Document Similarity

Document matching solves an optimization problem, which is on finding the maximum
overall similarity of two compound documents. That is, sim(c1, c2) computes two doc-
uments’ similarity out of their component object similarities. For the time being, we
use the unweighted average of the objects’ similarities, using a separate similarity ma-
trix for each domain. By defining domains according to the availability of a meaningful
similarity measure, we can guarantee that finding the best matches for each domain will
also find the overall best match for the complete documents. This is due to the fact that
every pair which is not covered within the restriction to domains can achieve only the
similarity score N/A – which has to be treated as being worse than any other similarity
score including any penalty value.

Performing similarity search using independent domains decreases the complexity
of the computation significantly. If we would not distinguish between domains and
would use a brute force approach to find the best match, we needed to compute the
similarity for all 7!

(7−6)! = 5040 possible matches in 3(a). Opposed to this, only 4!
(4−3)! =

24 possible matches in 3(b) and 4!
(4−2)! = 12 in 3(c) exist, and the optimum within

each domain can be determined independently. Using the Hungarian algorithm reduces
the complexity to O(n3), where without respect to domains n = 7 and with domains
n = max (4, 4).

The execution of the Hungarian algorithm is still computationally expensive for
documents with many objects distributed among few domains. Following [3], we use
a two-stage filter-and-refinement-algorithm. In a first stage, we find a small set of can-
didate documents using less expensive, approximative similarity functions. The second
stage invokes the costly Hungarian algorithm on the remaining candidates.

To determine the set of candidates, we employ approximative, yet tight bounds on
the document similarity. That is, we introduce an upper bound document similarity
simub(c1, c2) ≥ sim(c1, c2) and a lower bound similarity simlb(c1, c2) ≤ sim(c1, c2).

A valid upper bound to the document similarity is to simply choose a locally best
match (maximum similarity) for each component object in the similarity matrix, as
indicated in figure 3 by green bars above the numbers. In this way, we achieve upper
bounds of (0.5 + 0.7 + 0.6 + p1)/4 (domain 1) and (0.8 + 0.6 + 0.7 + 0.9)/4 (domain
2). Notice, that neither matches are complete, as two objects from c1 match to the same
object from c2 (domain 1) with a similar situation in domain 2.

On the contrary, any complete match is a valid lower bound. To get a tight bound,
we choose again the maximum similarity for each object match, but this time enforce
a complete match. In the example, this is indicated by red bars below the numbers.
The lower bound might return the overall best solution, but since it also uses only local
maxima, it is not guaranteed to return the global maximum. In the example, the lower
bound similarity is (0.5 + 0.4 + 0.6 + p1)/4 (domain 1) and (0.8 + 0.6 + p2 + p2)/4
(domain 2).

FIND-MOST-SIMILAR-DOCUMENT(cQ, C)

� First phase: Find candidates
� Let heap be decreasingly ordered on upper bounds

1 threshold← 0 � initialize to worst possible score
2 for each Compound Document ci ∈ C
3 do
4 determine simub(cQ, ci)
5 if simub(cQ, ci) ≥ threshold � ci is a candidate
6 then heap.push(simub(cQ, ci), ci) � insert ci to queue of candidates
7 determine simlb(cQ, ci)
8 if simlb(cQ, ci) > threshold � threshold needs to be updated
9 then threshold← simlb(cQ, ci)

� Second phase: Compute exact similarity
10 while (!heap.isEmpty())
11 do (simub, c)← heap.pop() � retrieve next candidate
12 if simub is not the exact similarity
13 then determine sim(cQ, c) � this calls the Hungarian algorithm
14 heap.push(sim(cQ, c), c) � enqueue again with exact similarity
15 else return c � c is the most similar document to cQ

Fig. 4. Filter-and-refinement algorithm

Using the Hungarian algorithm, we can compute the overall maximum for each
domain. The result is indicated by blue circles around the similarity scores. For domain
1 it is the same as the lower bound, for domain 2 it is (0.8 + p2 + p2 + 0.9)/4.

To calculate the global document similarity we simply compute the average of the
domains’ similarities. This can be done with either similarity score: upper bound, lower
bound, or exact value. For instance, simub(c1, c2) actually is the average of the upper
bounds for all domains in c1 and c2.

The two-stage filter-and-refinement algorithm is shown in figure 4. cQ denotes the
query document and C the collection of all compound documents to which we want to
compare cQ. The filter-and-refinement algorithm uses a heap as a priority queue ordered
by the evaluated similarity values.

In the first stage ci is the current document to which cQ is compared. threshold is a
lower bound threshold value. If the upper bound for ci exceeds the threshold or, in other
words, whenever there is a chance that this document may achieve a better similarity
score than the threshold, the document is inserted according to its upper bound similar-
ity into the priority queue. Then we compute the similarity for the document, that we can
guarantee it will achieve (lower bound). If this more than the current threshold, we can
be more selective for the following documents and therefore updated threshold to this
value. This way, if one document’s upper bound similarity does not exceed threshold,
we know that this document can even in the best case not achieve a better similarity
than some document, which we already added to our candidate set. Hence, we do not

need to pay further attention to it and, especially, do not need to perform the expensive
Hungarian algorithm on it.

The second stage takes the document with the highest upper bound similarity. If we
do not know the exact document similarity yet, it is now computed using the Hungarian
algorithm. The result is stored again in the priority queue. By this, we can guarantee
that whenever we pick a document from the queue for which we already computed the
exact similarity, it has to be the most similar document in the entire collection since
none of the remaining candidates has higher upper bound similarity.

This algorithm can easily be extended to return an ordered list of documents (Top-
k results) instead of just one. The only two changes needed are (1) make sure that
threshold in line 9 is set to the k-th highest lower bound and (2) continue to execute the
second phase until k documents have been returned (or the heap is empty, because C
did not contain k documents).

3 Related Work

Much effort has been spent on finding appropriate algorithms to match objects of iden-
tical type in various fields.

For instance, information retrieval developed several models for finding text in large
document collections, starting from Boolean retrieval, reaching to vector space and
probabilistic models, which can be used for matching complete text documents. Inexact
matches in text and coded information can be found using a thesaurus. Since there exist
many different coding standards for medical information, in 1986 the National Library
of Medicine (NLM) started a project to build a meta-thesaurus named Unified Medical
Language System (UMLS) [10]. The improvement of retrieval effectiveness exploiting
a controlled vocabulary in medicine have been studied e.g. in [11].

Content-based image retrieval frequently employs numeric features like histograms,
wavelet coefficients, Fourier descriptors, etc. to express low level image characteristics
like color distribution, texture and shape properties. An overview on existing techniques
for content-based image retrieval with respect to applications in medical imaging is
presented in [1]. Despite of those low-level features, the so-called semantic gap between
a user’s perception of alike images and computed image similarity persists. Research
has come up with complex, object-centered query models that incorporate and weight
various features of different query objects.

Algorithms for similarity search in time series caught attention within the last decade
(e.g. [12]) in the database and data mining community. But as [13] remarks, many of
these are not applicable to any domain. Similarity search in the biomedical domain is
widely used in sequence alignment, for which the most prominent example is BLAST
[14].

Compared to similarity on individual object domains, complex multimedia docu-
ments that comprise many different media objects have received little attention, so far.
The main focus has been on compound documents containing images and texts. E.g.
[15] provides a model for querying documents according to their structure, text, and
image components. The authors of [16] propose a query language for structured multi-
media documents named POQLMM, which is capable of including audio and video con-

tent and uses conversation functions to combine this with text retrieval. The language is
described in more detail in [17]. However, in both approaches it is not possible to pro-
hibit duplicate assignment of objects to several query objects. Many systems, especially
in the medical domain, like CBIR2 [18] for instance, have the structural restriction that
each document can contain only one text object and exactly one image. For this reason,
their usage for general digital libraries of compound documents is very limited.

Other approaches generate textual annotations, which can be queried based on key-
words. For this purpose, CIMWOS [19] uses audio, text, and image processing and
[20] uses object recognition and spatial orientation. These approaches cannot provide
query-by-example based on similarity measures requiring non-textual represented fea-
tures, like nearest neighbor image search base on shape, which would be needed for
some applications. Even the opposite approach is thinkable: [21] describes a system to
characterize documents only based on visual similarity, not employing any textual data.
This approach is clearly restricted to an even smaller application domain.

4 Summary

We proposed a novel approach to compound document matching in which it is possible
to use existing similarity functions for component objects. Specifically, we have adapted
a filter-and-refinement algorithm from region-based image retrieval to cope with funda-
mental concepts of similarity search in medical information systems. That is, we have
introduced the notion of domains to incorporate the inherently heterogeneous structure
of complex patient records. A domain subsumes distinct characteristics of a compo-
nent object including its media type (e.g. text, image, signal, numeric, etc.), the origin
(e.g. CT, MRI, sonography), and the subject (e.g. organ, tissue, etc.).

In terms of query processing, we exploit this concept to exclude cross-domain
matchings of component objects. As computing the similarity matrix is the most time-
consuming part of document matching, we achieve noticeable speed-ups as opposed to
the native algorithm.

5 Outlook

For the time being, this paper has classified patient records as instances of plain multi-
media documents. Precisely, matching rests upon equally weighted incoherent compo-
nent objects. Future extensions of our matching approach must incorporate a complex
query model that allows the adjustment of influence of component objects by assigning
individual weights, but also covers temporally and structurally interrelated content, like
treatments conducted on a diagnosis given at a certain point in time. A clear separa-
tion of self-contained component objects and metadata that attributes these objects will
(1) address effectiveness of object matching incorporating additional object-centric at-
tributes and (2) increase efficiency of document matching by having fewer component
objects. The query model also needs to be extended to deal with predicate-like exact
matching conditions.

There is still some room left for improvement of the retrieval efficiency of the two-
stage filter-and-refinement algorithm. The algorithms can easily be parallelized, e.g.

distributing the computationally intensive task of solving the assignment problem to a
Grid infrastructure. The next intensive task of computing the individual domain similar-
ity matrices is also a candidate for distributed computing. Another, orthogonal approach
would be to incrementally narrow the upper and lower document similarity by comput-
ing the exact similarity first only on the domains, which have the highest possible impact
of changing to the document similarity. By this, a (near) optimal multi-step approach
similar to [22] can be achieved. Performance evaluations on synthetic and real-world
data have to proof the gained speed-up.

In general, two different patient records will seldomly contain the same number
of objects in the same domains. Query processing must cope with incomplete pa-
tient records that lack certain component objects. Penalties, as introduced by RBIR
algorithms, do not fully reflect this scenario. Therefore, further investigation of the
choice of penalty values and assigning weights to specific domains is necessary. Cross-
domain object matching based on domain knowledge might relieve the situation of
non-complementary object domains, e.g. a textual diagnosis containing the term “my-
ocardial infarction” can be matched with a cardiogram that exhibits typical patterns.

References

1. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content–based image
retrieval systems in medical applications — clinical benefits and future directions. Interna-
tional Journal of Medical Informatics 73 (2004) 1–23

2. Vogl, R., Berreck, M., Pellizzari, T., Pirchl, C., Reiter, D., Schwab, M., Stark, C., Wallinger,
M., Wilhelmy, I.: The innsbruck advanced image management (aim) project: a comprehen-
sive archive for large volume medical data with tight integration to the cis/epr. In: gmds2004:
49. Jahrestagung der Deutschen Gesellschaft fr Medizinische Informatik, Biometrie und Epi-
demiologie (gmds), gms (2004)

3. Weber, R., Mlivoncic, M.: Efficient region-based image retrieval. In: CIKM ’03: Proceedings
of the twelfth International Conference on Information and Knowledge Management, ACM
Press (2003) 69–76

4. Knuth, D.E. In: The StanfordGraph Base. ACM Press (1993) 41–43
5. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for

similarity-search methods in high-dimensional spaces. In: VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, Morgan Kaufmann (1998) 194–205

6. Böhm, K., Mlivoncic, M., Schek, H.J., Weber, R.: Fast evaluation techniques for complex
similarity queries. In: VLDB ’01: Proceedings of the 27th International Conference on Very
Large Data Bases, Morgan Kaufmann Publishers Inc. (2001) 211–220

7. Bartolini, I., Ciaccia, P., Patella, M.: A sound algorithm for region-based image retrieval
using an index. In: DEXA ’00: Proceedings of the 11th International Workshop on Database
and Expert Systems Applications, IEEE Computer Society (2000) 930–934

8. Maintz, J.B.A., van der Elsen, P.A., Viergewer, M.A.: Comparison of feature-based matching
of ct and mr brain images. In: CVRMed ’95: Proceedings of the First International Confer-
ence on Computer Vision, Virtual Reality and Robotics in Medicine, Springer-Verlag (1995)
219–228

9. Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The irma code for
unique classification of medical images. In: Proceedings of SPIE Medical Imaging 2003:
PACS and Integrated Medical Information Systems. Volume 5033. (2003) 440–451

10. Lindberg, D.A., Humphreys, B., McCray, A.: The unified medical language system. Methods
of Information in Medicine 32 (1993) 281–291

11. French, J.C., Powell, A.L., Gey, F., Perelman, N.: Exploiting a controlled vocabulary to im-
prove collection selection and retrieval effectiveness. In: CIKM ’01: Proceedings of the tenth
international conference on Information and knowledge management, ACM Press (2001)
199–206

12. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases.
In: FODO ’93: Proceedings of the 4th International Conference on Foundations of Data
Organization and Algorithms, Springer-Verlag (1993) 69–84

13. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and
empirical demonstration. In: KDD ’02: Proceedings of the eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ACM Press (2002) 102–111

14. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.: Basic local alignment search
tool. Journal of Molecular Biology 215 (1990) 403–410

15. Meghini, C., Sebastiani, F., Straccia, U.: Modelling the retrieval of structured documents
containing texts and images. In: ECDL ’97: Proceedings of the First European Conference
on Research and Advanced Technology for Digital Libraries, Springer-Verlag (1997) 325–
344

16. Henrich, A., Robbert, G.: Combining multimedia retrieval and text retrieval to search struc-
tured documents in digital libraries. In: Pre-Proceedings of the 1st DELOS Workshop on
Information Seeking, Searching and Querying in Digital Libraries. (2000)

17. Henrich, A., Robbert, G.: Poqlmm: A query language for structured multimedia documents.
In: Proceedings of the 1st International Workshop on Multimedia Data and Document Engi-
neering (MDDE01). (2001) 17–26

18. Antani, S., Long, L.R., Thoma, G.R.: A biomedical information system for combined
content-based retrieval of spine x-ray images and associated text information. In: Pro-
ceedings of the Indian Conference on Computer Vision, Graphics, and Image Processing
(ICVGIP 2002). (2002)

19. Papageorgiou, H., Protopapas, A.: Cimwos: A multimedia, multimodal and multilingual
indexing and retrieval system. In: Proceedings of the 4th European Workshop on Image
Analysis for Multimedia Interactive Services, World Scientific Publishing Co. (2003) 563–
568

20. Rabitti, F., Savino, P.: An information-retrieval approach for image databases. In: Proceed-
ings of the 18th International Conference on Very Large Data Bases, Morgan Kaufmann
Publishers Inc. (1992) 574–584

21. Bagdanov, A.D., Worring, M.: Granulometric analysis of document images. In: 16 th Inter-
national Conference on Pattern Recognition (ICPR’02) Volume 1. (2002)

22. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor search. In: SIGMOD 1998:
Proceedings ACM SIGMOD International Conference on Management of Data, ACM Press
(1998) 154–165

User-Adaptable Browsing and Relevance
Feedback in Image Databases

Dragana Damjanovic, Claudia Plant, Sören Balko, and Hans-Jörg Schek

University for Health Sciences, Medical Informatics and Technology
Eduard-Wallnöfer-Zentrum 1 A–6060 Hall in Tirol Austria

[dragana.damjanovic|claudia.plant|sören.balko|hans-joerg.schek@umit.at]

Abstract. In this paper, we present the outline of a new interaction
technique for searching and browsing in large image collections. The main
idea is to learn an adaptive similarity measure from user interaction that
helps to overcome the so-called semantic gap. We give an overview on
the contents of the database by clustering the images and displaying
representatives of these clusters. We use relevance feedback information
from the user to refine our clustering by adapting the similarity measure.

1 Introduction

Images represent a huge part of the information stored in digital libraries.
Content-based image retrieval (CBIR) has become a popular paradigm for simi-
larity search on images that lack textual annotations. The major challenge is the
so-called semantic gap between machine-computed similarity and human percep-
tion of alike images. Multimedia information retrieval employs numeric features
like histograms, wavelet coefficients, Fourier descriptors etc. that express plain
image characteristics like color, texture, and shape. Those features are assem-
bled to high-dimensional feature vectors, represented as points in vector space.
In this way, similarity search corresponds to nearest neighbor or range queries
on top of those low-level features and a given distance. Users, however, identify
similar images on a semantically higher level, like images portraying same per-
sons. Numerous approaches have come up with relevance feedback techniques to
bridge the semantic gap. Being an integral part of query processing, user interac-
tions, like result evaluations enhance effectiveness of similarity search. As image
databases grow rapidly, average users find it increasingly difficult to express their
information needs as complex predicates. This paper introduces an interactive
browsing and relevance feedback approach that rests upon interactive clustering.
In this way, we go beyond the traditional query-by-example paradigm in CBIR.
We start by delivering the rough content of the image database by visualizing its
cluster structure. Especially for large collections an initial k-nearest neighbors
query with a large number of k can also be a good starting point. Users can
narrow down the result by branching into clusters that contain relevant images
while discarding irrelevant ones. Additionally, users provide relevance feedback
in order to modify the cluster structure. This interactive process transforms fea-
ture space to a user’s information needs.

k
objects

distance
matrix

clustering
and k’

representatives

(k’ x k’)
distance
matrix

2D
visualization

new
coordinates

Determine
new
weights

ω

ω’

kNN query

Fig. 1. Relevance Feedback by Interactive Clustering - Steps.

The remainder of this paper is organized as follows. The next section provides a
formal problem specification. Section 3 introduces our user-adaptable browsing
approach and we report on first experimental results. Section 5 briefly discusses
related work on relevance feedback, browsing techniques in CBIR, and clustering.
Section 6 concludes this paper.

2 Problem Specification

Given a DB of N data objects and let be k ∈ N a subset of these objects, e.
g. obtained by an initial k-nearest neighbor search. We introduce the notions
feature distance and combined distance to formalize the similarity among them.
Different types of features can be used to represent an image, e. g. color or
texture. Let F = {F1, ...Fm} be the set of feature types. For each feature type
Fi we have N feature vectors of dimensionality di. The feature distance DistFi

of the objects P and Q is their distance regarding the feature type Fi. Let π(P)
be the projection on the i-th feature type of P . As distance function, denoted
by DistFi

(P,Q) we use a weighted metric distance function, e. g. Euclidean
Distance.

DistFi(P,Q) =

√√√√ di∑
j=1

ωi,j · |πi(P)− πi(Q)|2. (1)

To express the similarity of objects P and Q taking all feature types into account,
we compute the combined distance Distc, which is a weighted sum of the feature
distances.

Distc(P,Q) =
m∑

k=1

ωi ·DistFk
(P,Q). (2)

From the information obtained by relevance feedback, we want to adjust the
weights ω = ωi ∪ ωi,j respecting the following condition.

λ ·
∑

(δω)2 + (1− λ)
∑

v2
x,y → min. (3)

Figure 1 depicts the steps in our method for relevance feedback by interactive
clustering. Starting from the distance matrix with the n objects computed using
initial weights ((1), (2)) we perform a clustering step and chose n′ representa-
tives. We display these objects in a 2-dimensional user-interface. To obtain ap-
proximate 2D-coordinates, we use a distance preserving projection like FastMap
[1]. The user now can interactively change the cluster structure by moving ob-
jects. We use this information as relevance feedback to determine new weights
by solving (3). (3) means that we minimize vx, vy, i. e. the deviation from the
coordinates a user generated by moving by suitable weights. If a user does not
move any point that means that no weight changes will result. We want to keep
the change of weights δω small. In the general case by solving the generalized
least square problem (3) there will be always a unique set of new weights that
minimizes (3). The factor λ can be the smaller the more movements has been
performed.

3 User-adaptable Browsing by Interactive Clustering

In contrast to other approaches we use a clustering algorithm to provide the
user a better overview on the displayed objects. The user then can interactively
change the cluster structure. In addition, clustering allows to change the distance
function locally, i. e. we use different similarity measures between the clusters. In
this section, we describe one possible solution to realize the single steps depicted
in figure 1.

3.1 Clustering

To discover the hidden data structure of the collection or the result set of an ini-
tial k-nearest neighbors query, we first apply a clustering algorithm. For higher
dimensional feature vectors, e. g. features derived from different regions of im-
ages, there probably has to be a dimensionality reduction step before clustering.
We compared different clustering algorithms, in particular k-Means [2] and DB-
SCAN [3]. The partitioning clustering algorithm k-Means starts by arbitrarily
partitioning the data set in k disjoint set of objects and computing their mean
vector, the so-called cluster center. In an iterative optimization process each
object is then assigned to its closest cluster center and the cluster centers are
updated. This step is repeated until no changes of the cluster centers occur from
one iteration to the next. K-Means has no determinate result and the number
of clusters has to be specified in advance. The algorithm always finds k clusters
that may not properly correspond to the used similarity measure.
Density-based clustering methods regard clusters as connected dense regions
in the feature space that are separated by regions of lower density. Therefore
density-based clusters give a good impression of the currently used similarity

representatives(cluster j, integer κ)
rep=randomly chosen object from cluster j;
while (there are unprocessed objects)

set rep as representative ;
the κ nearest neighbors of rep, if they are closer then t, set non-representatives;

if (exists object among the κ nearest neighbors of rep with distance greater then t)
the next rep is the closest one of them;

else the next rep is the κ + κ /2-nearest-neighbor of rep;
end while

end

(a) Selecting Representatives.

C1

C2
o1

C3

(b) Interactive Clustering.

Fig. 2.

measure. In the algorithm DBSCAN [3] this idea is formalized using two pa-
rameters, MinPts specifying a minimum number of objects, and ε, the radius
of a hyper-sphere. These two parameters determine a density threshold for clus-
tering. An object is called a core object of an (ε,MinPts)-cluster if there are
at least MinPts objects in the ε-neighborhood. If one object P is in the ε-
neighborhood of a core-object Q, then P is said to be directly density-reachable
from Q. The density-connectivity is the symmetric, transitive closure of the di-
rect density reachability, and a density-based (ε,MinPts)-cluster is defined as a
maximal set of density-connected objects. DBSCAN has a determinate result,
finds arbitrary shaped clusters and the number of clusters does not has to be
specified in advance.

3.2 Selecting Representatives and Visualization

In contrast to partitioning clustering algorithms like k-Means, there are no clus-
ter centers or central objects using DBSCAN. Since we usually cannot display
all the clustered objects in our interface, we have to select some representa-
tives of the clusters which are displayed. Pseudo-code of algorithm for choosing
representatives for each cluster is given in figure 2(a).

3.3 Interactive Clustering

Locally Determining Weights. In our approach clustering is done for two
reasons. Firstly, to give the user an impression of the currently used similarity
measure. Since clustering groups similar objects together, the user can evaluate
if the currently used weights correspond to his notion of similarity. A common
problem with displaying high dimensional data like images in a 2D-space is the
unavoidable information loss due to the radical dimensionality reduction. The
arrangement of objects in the display interface can only give an approximate
impression of the similarity in the full dimensional space. Since we display the
images in differently colored frames indicating their cluster assignment, the user
can better see the true underlying similarity measure.

But even more important, we apply clustering to be able to change the weights
used for the distance function locally. Assume we have 3 clusters of images dis-
played (cf. figure 2(b)). If the user only moves objects from cluster C1 to cluster
C2 and cluster C3 remains unchanged, we also should internally change only
the similarity measure between objects of cluster C1 and C2. We implement
this idea by locally differently weighting the similarity measure. We use the in-
put of the user to learn different similarity measures that are locally applied in
different areas of the feature space. We store the weights in a local similarity
matrix S. S is a |k| × |k| matrix, with S(i, j) = ω(i, j) for i, j ∈ [1..|k|]. This
means S(i, j) contains the currently used weight ω(i, j) for the similarity mea-
sure between objects of cluster i and cluster j. Before having any user input, we
used un-weighted distances, i. e. we set ω(i, j) = 1 ∀i, j. In the next section, we
describe how to change the weights using relevance-feedback.

Changing the Clustering by Relevance-Feedback. The user can change
the cluster structure of the displayed objects according to his notion of similarity.
A simple example is depicted in figure 2(b). The user moves the object o1 from
cluster C1 to cluster C2, since in his opinion the object rather belongs to this
cluster. In this case, we have to find out

1. why o1 is similar to the objects in cluster C2,
2. if there are any objects besides o1 in C1 which should be moved, too.

While the first aspect is obvious, the second aspect may not be that clear. Af-
ter changing the local similarity matrix due to user interaction, we may move
more objects than the ones the user explicitly has moved. Some objects or all of
the objects of the affected clusters may have to be moved according to the new
similarity measure. We partially implemented this idea by internally transform-
ing the feature space using Linear Discriminant Analysis [4]. We use LDA for
both (1.) assigning objects to other clusters and (2.) splitting up clusters. LDA
is a well-known feature extraction and dimensionality reduction technique that
has been successfully used in many pattern recognition problems. Given data
objects oi and a set of groups or classes ci (in our case the objects belonging
to the clusters C1 and C2) LDA finds the linear transformation t in which the
c1 and c2 are separable in the best way. t is the transformation that maximizes
between-class separability while minimizing within-class variability, formally:

argmax S̃B :=
c∑

i=1

(µ̃i − µ̃)(µ̃i − µ̃)T

min S̃W :=
c∑

i=1

(x− µ̃i)(x− µ̃i)T

where µ̃i is the mean of the projected data objects of class ci, µ̃ is the mean
of all projected data and objects and c is the number of classes. S̃B is called

(a) FastMap. (b) IsoMap.

Fig. 3. Cluster Representatives.

the between-scatter matrix, S̃W the within scatter matrix, respectively. That
corresponds to finding the matrix of column feature vectors V that maximizes
V T SBV and minimizes V T SW V where SW and SB are the untransformed within
and between scatter matrixes. Thus, the following objective function has to be
maximized.

J(V) =
|V T SBV |
|V T SW V |

.

It can be shown [4] that finding V such that J(V) is maximized corresponds
to solving the eigenvector problem SBV = λSV V . Since the rank of SB is at
most c − 1, at most c − 1 features can be extracted. For a two-class-problem,
this means we get the most discriminant direction −→u . We directly use −→u as new
weights when splitting two clusters. Let us note that −→v ⊥ −→u is the direction
in which two groups of objects are the most similar. We exploit this fact when
assigning objects to other clusters.

LDA and the Least Squares Method. In section 2 we gave a formal problem
specification. We want to determine new weights using relevance feedback while
minimizing equation (3). W.l.o.g. we restrict ourselves to the case of 2 displayed
clusters (this means globally changing weights). We can not prove property (3)
since we use non-linear or heuristic mappings to 2D space such as IsoMap [5]
and FastMap [1], and found no way to reverse them till now. We also tried to
use PCA, but the visualization result is not satisfactory. But nevertheless there
is a strong connection between LDA and the least square method. When we use
LDA to split or merge clusters, our goal is to find the projection of the feature
space w. r. t. which the objects of the clusters affected by user interaction are the
most different or the most similar, respectively. This can be done with a linear
least squares method, too. One is looking for a discriminant function between
two groups of objects including a bias term b, i. e.

f(x) = vtx + b

such that the sum of squared errors between f(x) and the known true class
assignment of each object oi, (denoted by c(oi)) is minimized. Often, c(oi) cor-
responds to the cluster assignment of oi, but i. g. when splitting clusters, we

q
C1

C2

C3

C4

C5

(a) Starting.

q
C1

C2

C5.1

C5.2

C4
C3

(b) After movement.

Fig. 4. Query-by-Example.

consider various subgroups of clusters, therefore we a using the notion class
here. It can be shown [6], that minimizing the sum of squared errors

E(w, b) =
∑
oi

(f(x)− c(oi))2 =
∑
oi

(vT x + b− c(oi))2

leads to the same projection t as found by LDA. We are also considering al-
ternative ways to implement splitting and merging of clusters and computing
the weights, e. g. non-linear least square methods or the use of kernel-functions.
In the next section, we explain in more detail how the weights are determined
showing example screenshots.

4 First Experiments

For our first experiments we use an example collection of images from different
sources, as used in [7]. In particular we have 9-dimensional feature vectors con-
sisting of color moments in the Lab-color space [8]. In this case F = {F1}, d1 = 9
and we want to adjust the weights ωj of the feature distance DistF1 . We have
implemented a simple 2-dimensional user-interface. In order to compare differ-
ent mapping algorithms, we implemented FastMap [1] and IsoMap [5]. We also
implemented IsoMap with underlying FastMap instead of MDS, since this makes
computation faster. In our prototype the user can choose between these differ-
ent mappings. In figure 3 screenshots are depicted showing the representatives
of different clusters as thumbnails. Currently we are performing first tests on
interactive clustering. Besides our example collection we use synthetic data to
have more control on the results.

4.1 Query-by-Example

Starting with a query image, we perform a k-nearest neighbors query with Eu-
clidian distance and initial weights ωj = 1. Initially we extract a large number
of k-nearest neighbors (around 500). Our Interface gives the user opportunity
to browse trough this collection of nearest neighbors of the query image giving
an overview of them. This is internally implemented by clustering query results

q

m1

(a) Starting.

q

m1

m2

(b) First movement.

q m1

m2

(c) Second movement.

Fig. 5. Query-by-Example.

using DBSCAN and Euclidian distance with initial weights and showing repre-
sentatives of the clusters (cf. algorithm in figure 2(a)).In figure 4(a) an example
is depicted showing the query image (denoted by q) and 5 clusters. Assume the
user found in cluster C5 an image that are similar to the query image and moves
it close to it. We than split the cluster. To implement that, we want to firstly
find out the difference between the moved image and other images in the cluster
and secondly, why the moved image is similar to the query image.
We apply two times LDA to get this information. We threat the query image q
and its k-nearest neighbors like an additional cluster Cq to be able to properly
determine weights between the region surrounding q and the other clusters. The
local similarity matrix S is a |(k +1)|× |(k +1)| matrix in the case of Query-by-
Example. In the first step, we find the most discriminant projection t between
the moved image m and its k-nearest neighbors (they form one subgroup c1)
and the object o in the same cluster which is the furthest away from m . o and
its k-nearest neighbors form the subgroup c2. We weight the distance function
between c1 and c2 using t. We now assign each object of the cluster either to c1 or

c2, by computing the distance to m and o and assigning it to the closer object. In
our example, the cluster C5 is split up in two parts: the objects of group c1 form
the cluster C5.1 and the objects of group c2 C5.2, respectively. In a second step,
we use LDA to find out why C.5.1 and Cq are similar. Analogously we compute
an orthogonal hyperplane to the most discriminant projection t between the Cq

and the group c1. As result C5.1 is closely displayed to the query image after
applying FastMap again (cf. figure 4(b)). Now the user could select one cluster,
e. g. the most relevant one to the query, and re-run the query using the weights
between Cq and that cluster.

Our second example depicted in figure 5 shows a later stage of the interac-
tion process. The user has already focussed on one cluster. Results of one query
with initial weights and query image q are shown on picture 5(a). For example
user finds image m1 similar to query image q and moves it closer. As described
above, we determine new weights between different subgroups of the cluster, cor-
responding to the region around q and m1. In case of approaching an image to
the query image, we use an orthogonal direction to the discriminant projection
t to weight the disstance function. The results after a new k-nearest neighbors
query with k = 30 are are shown in 5(b). Note that we have a different result set
now. In the next step user move image m2 away from the query image (user find
it irrelevant for his query). Here, we analogously use the most discriminant pro-
jection t between the two subgroups of the cluster. The final results are shown
in figure 5(c).

5 Related Work

In this section, we discuss related work on CBIR, relevance feedback and brows-
ing. Besides that, we give a short introduction on feature extraction and dimen-
sionality reduction techniques.

5.1 Feature Extraction and Dimensionality Reduction

The complex meaning of image is represented as a feature vector. Feature vectors
are extracted from the color, shape, texture and regions of the image content. For
extracting the feature vectors of images there are different techniques, among
them the most popular are color histograms, like RGB histograms, HSV color
histograms, HMMD color histograms and other techniques.
Representing complex content of images as feature vectors is just one problem
that arise in area of image retrieval. This problem is called semantic gap. The
next problem following is the problem of presenting high dimensional feature
space in low dimensional space, like 3 dimensional space, the maximal number
of dimensions human vision is able to capture. A mapping algorithm from feature
space to the visualization space is needed. The classical techniques for dimen-
sionality reduction, PCA and MDS, are simple to implement and guarantee to
discover the true structure of data lying on or near a linear subspace of the

high dimensional feature space. Among them is also FastMap [9] which is more
efficiently computable. There are some recent methods like ISOMAP (ISOmet-
ric MAPping)[5], SNE (Stochastic Neighbor Embedding)[10], LLE (Local Linear
Embedding) [11]. These methods are nonlinear and they are trying to preserve
the inner geometrical structure of the data. However an exact match between
feature space and visualization space is impossible.

5.2 CBIR and browsing

Many CBIR(Content-based Image Retrieval) systems are based on the concept
Query-by-example[9] [12] In order to improve the retrieval, CBIR systems often
employ relevance feedback, in which the user can refine the search incrementally
by giving feedback to the result of the previous query. In many cases relevance
feedback is based on labeling a set of retrieved images according to their impor-
tance and it is usually perform in one of two ways: query point moving or weight
updating.
Query by Groups[13] is an extension to Query by Example mode described above.
The difference is that Query by Example handles image individually, in Query
by Group, a group of images are considered as a unit of the query. Relevance
feedback is establish in the same way by marking, in this case, group of images
as positive or negative examples. In the beginning the system displays randomly
selected images, which are not reflection of the real content of data set.
In [14] the authors focus on browsing the collection, more then on querying by
image or group of images. The key idea in NNk network is to store the oriented
graph of images that were retrieved as similar to that image under some feature
regime.In order to allow searches without any query, they provide the user with
a representative set of images from the collection by clustering nodes up to a
certain depth.The use browses trough collection by chousing image, and as the
results a network of its nearest neighbor is shown. In this paper no relevance
feedback is proposed.
There are also built some interfaces which are combining browsing and querying
with possibility for user to give relevance feedback, e. g. [15]. At the beginning
it is given information about the status of whole database and the user manip-
ulate the image space directly by moving images around. The manipulation of
images in the display cause the creation of a similarity measure that satisfies the
relations impose by user. In contrast to that approach, we use clustering and we
change similarity measure locally.
In broader sense, (semi-)supervised clustering is related to our approach, e. g.
[16]. been shown that classified examples can improve the results of partitioning
clustering algorithms. In [17] a semi-supersived version of the EM-Algorithm is
proposed for image retrieval. This approach suffers from the drawbacks that the
number of clusters has to be specified in advance and there is no transformation
of the feature space to better fit the users needs.

6 Conclusion

In this paper, we presented first ideas on browsing and visual relevance feedback
in image collections by interactive clustering. Since image collections are rapidly
growing, our approach is focussing particularly on k-nearest-neighbor queries
with a large number of k. Our interface offers a clearly arranged presentation of
the huge result set of such queries using clustering and properly selecting cluster
representatives which are displayed in 2D-space. The user then browses through
the collection and interactively changes the cluster structure by moving objects.
Using this information as relevance feedback we gradually adjust the similarity
measure according to the users needs. We find subspaces of the feature space in
which the objects are similar or dissimilar, respectively. We locally change the
similarity measure, i. e. we only take objects in the areas affected of the users
movements into account. Due to this local changes the user has a better control
on the effects of relevance feedback, especially in large collections. There are still
many open issues, e. g. in order to capture the input given by moving the im-
ages more accurately, we need an inverse of the mapping from the 2-dimensional
visualization space back to the high dimensional feature space.
Other directions we want to elaborate are e. g. creating and managing differ-
ent user profiles or to displaying different feature types to 2D spaces. Another
interesting option would be to display the objects in different 2D-spaces using
different similarity measures.

References

1. Faloutsos, C., Lin, K.I.: ”FastMap: A Fast Algorithm for Indexing, Data-Mining
and Visualization of Traditional and Multimedia Datasets”. In: SIGMOD Confer-
ence. (1995) 163–174

2. MacQueen, J.: ”Some Methods for Classification and Analysis of Multivariate
Observations”. In: 5th Berkeley Symp. Math. Statist. Prob. (1967)

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: ”A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining (KDD’96). (1996)

4. Fisher, R.A.: ”The Use of Multiple Measurements in Taxonomic Problems”. In:
Annals of Eugenics. (1936)

5. Tenenbaum, J.B., de Silva, V., Langford, J.C.: ”A Global Geometric Framework
for Nonlinear Dimensionality Reduction”. In: Science 290(5500). (2000) 2319–2323

6. Park, C.H., Park, H.: ”A Relationship between LDA and the Generalized Minimum
Squared Error Solution”. In: SIAM Journal on Matrix Analysis and Applications.
(2004)

7. Böhm, K., Mlivoncic, M., Schek, H.J., Weber, R.: ”Fast Evaluation Techniques for
Complex Similarity Queries”. In: VLDB. (2001) 211–220

8. Stricker, A., Dimai, M.: ”Spectral Covariance and Fuzzy Regions for Image Index-
ing”. In: Machine Vision and Application. (1997) 10:66–73

9. Ishikawa, Y., Subramanya, R., Faloutsos, C.: Mindreader: Querying databases
through multiple examples. In: VLDB. (1998) 218–227

10. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS. (2002)
833–840

11. S.Roweis, Saul, L.: Nonlinear dimensionality reduction by locally linear embedding.
In: Science 290(5500). (2000) 2323–2326

12. Rui, Y., Huang, T.S.: Optimizing learning in image retrieval. In: CVPR. (2000)
1236–

13. Nakazato, M., Manola, L., Huang, T.S.: Imagegrouper: a group-oriented user in-
terface for content-based image retrieval and digital image arrangement. J. Vis.
Lang. Comput. 14 (2003) 363–386

14. Heesch, D., Rüger, S.M.: ”NNk Networks for Content-Based Image Retrieval”. In:
ECIR. (2004) 253–266

15. Santini, S., Gupta, A., Jain, R.: ”Emergent Semantics through Interaction in Image
Databases”. IEEE Trans. Knowl. Data Eng. 13 (2001) 337–351

16. Eick, C., Zeidat, N., Zhao, Z.: ” Supervised Clustering - Algorithms and Benefits”.
In: Proc. of the International Conference on Tools with AI ICTAI. (2004)

17. Dong, A., Bhanu, B.: ”A New Semi-Supervised EM Algorithm for Image Re-
trieval”. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2003). (2003) 662–667

Indexing the Distance Using Chord:
A Distributed Similarity Search Structure

David Novák and Pavel Zezula

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xnovak8,zezula}@fi.muni.cz

Abstract. The need of search mechanisms based on data content rather
then attributes values has recently lead to formation of the metric-based
similarity retrieval. The computational complexity of such retrieval and
the large volume of processed data call for distributed processing. In this
paper, we propose chiDistance, a distributed data structure for similarity
search in metric spaces. The structure is based on the idea of a vector-
based index method iDistance which enables to transform the issue of
similarity search into the one-dimensional range search problem. A Peer-
to-Peer system based on the Chord protocol is created to distribute the
storage space and to parallelize the execution of similarity queries. In
the experiments conducted on our prototype implementation we study
the system performance concentrating on several aspects of parallelism
of the range search algorithm.

1 Introduction

In traditional data retrieval, the query specifies a pattern to exactly match at-
tributes of the required data. The present-day systems that manage complex data
types (such as images, videos, text documents or DNA sequences) require search
mechanisms based on the data content rather then data attributes. Therefore, the
field of content-based or similarity retrieval has made a rapid progress recently.
In principle, a similarity query works as follows: given a query data object q,
the search process extracts all indexed data objects that are “similar” to q. The
similarity of data can be generally defined by a dissimilarity function (distance
function) d that is measurable for every pair of objects. The data set together
with the distance function can be seen as a metric space.

Many metric index structures have been proposed – see recent surveys [1, 2].
In real-life applications, the distance function d is typically expensive to compute.
This fact, together with the volume of the data being managed nowadays,
lead to the need of distributed processing. Most of the recent effort in the
field of distributed indexes for similarity search has concentrated on the vector
(attribute) data (see, e.g., [3–5], or SWAM [6]). As far as we know, GHT∗ index,
proposed in [7], is the only published metric-based distributed data structure.

Recently, network architecture paradigms referred to as Peer-to-Peer (P2P)
and Grid systems [8] have been gaining in popularity. In short, P2P structures
are distributed systems without any hierarchical organization where each node

is running software with equivalent functionality. This concept is attractive for
our work because of its scalability and self-organizing nature.

In this paper, we introduce a new distributed data structure called chiDis-
tance. It is based on the idea of Indexing the Distance (iDistance) [9] and
generalizes this attribute-based index method to become a metric-based method.
Through this concept, the issue of similarity search is transformed into the one-
dimensional range search problem. Then, the P2P protocol Chord [10] is used to
form the distributed structure for chiDistance. The iDistance search algorithms
are generalized to the proposed architecture.

The paper is organized as follows. Section 2 provides background for the
metric-based similarity search and describes two techniques that are essential
for this paper – iDistance and Chord . In Section 3, we describe the proposed
chiDistance data structure in details. Section 4 presents results of the perfor-
mance experiments and the paper concludes in Section 5 with directions for our
future work.

2 Preliminaries

In the scope of our work there are general similarity search structures that are
not limited to any specific data set or application. Metric space is a suitable
structure to model data set and relationships between data objects.

2.1 Metric Space Searching

Mathematically, metric space M is a pair M = (U, d), where U is the domain
of objects and d is the total distance function d : U × U −→ R satisfying the
following conditions for all objects x, y, z ∈ U:

d(x, y) ≥ 0 and d(x, y) = 0 iff x = y (non-negativity),
d(x, y) = d(y, x) (symmetry),
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Let us define two essential types of similarity queries: the range query and
the k nearest neighbors query [2]. Let I ⊆ U be a finite set of indexed objects.

Definition 1. Given an object q ∈ U and a maximum search distance r, the
range query Range(q, r) selects all objects x ∈ I such that d(q, x) ≤ r.

Definition 2. Given an object q ∈ U and an integer k ≥ 1, the k nearest
neighbor query kNN(q, k) selects the k objects x ∈ I which have the shortest
distances from q.

The presented data structures focus on these types of similarity queries.

2.2 Indexing the Distance

The iDistance [9] is an indexing method for similarity search in vector spaces. It
partitions the data space into clusters and selects a reference object (pivot) pi

for each cluster Ci, 0 ≤ i ≤ k. Every data object is assigned a one-dimensional
iDistance key according to the distance to its cluster pivot. Having a cluster
separation constant c, the iDistance value for an object x ∈ Ci is

iDist(x) = d(pi, x) + i · c.

If c is large enough then all objects in cluster Ci are mapped to the interval
[i · c, (i + 1) · c). The data is stored in a B+-tree according to the iDistance
values.

Range Query The Range(q, r) search algorithm runs separate search proce-
dures for some of the clusters. The cluster Ci is selected for searching if the
following condition is satisfied:

d(q, pi)− r ≤ max-disti

where max-disti is the maximal distance between pi and objects in cluster Ci.
Fig. 1 illustrates this condition in two-dimensional space. The cluster searching
algorithm examines all objects from Ci which have the iDistance value within
the interval

[d(pi, q) + i · c− r, d(pi, q) + i · c + r].

The grey areas within the clusters in Fig. 1 represent the space specified by this
condition. To examine an object x means to calculate the distance d(q, x) and
to add x to the query answer set S if d(q, x) ≤ r.

k-Nearest Neighbor Query The kNN(q, k) algorithm executes a sequence
of Range(q, r) queries with growing radius r. The condition for adding accessed
objects into the answer set differs from the Range(q, r) condition. An accessed
object x is added into the kNN(q, k) answer set S if

either |S| < k or d(q, x) < d(q, farthest(S, q))

where farthest(S, q) is the object from S with the greatest distance from q.
The sequence of Range(q, r) queries terminates and the kNN(q, k) execution
is completed when

d(farthest(S, q), q) < r and |S| = k.

For each range iteration, the kNN(q, k) algorithm stores information about the
searched space (taking advantage of the B+-tree properties) in order not to
search any space redundantly.

p2

p
3

p
1

q
r

C

C

C1

3

2

Fig. 1. The iDistance search mechanism

N1
node1

0

N

N

N

2

3

4

2

node

node4

node

3

Fig. 2. The Chord structure

2.3 Chord

Chord is a purely decentralized structured P2P protocol [10] that provides
mechanisms for efficient localization of the node that stores a particular data
item (specified by a given search key). It is a message driven dynamic structure
that is able to adapt as nodes (cooperating computers) join or leave the system.

The protocol uses consistent hashing [11] which uniformly maps the domain
of search keys into Chord key domain of size 2m. The parameter m should be
large enough to make probability of the hash collisions negligible. Every Chord
node is assigned a key Ni from the interval [0, 2m) as well. The node with key Ni

is “responsible” for all keys from the interval (Ni−1, Ni] (mod 2m) – see Fig. 2
for visualization. A node stores objects with the keys the node is responsible for.

Every node maintains a routing table called finger table which stores physical
addresses of up to m other nodes [10]. The node knows physical addresses of its
predecessor and successor as well.

Due to the uniformity of the Chord key domain distribution, Chord structure
has the following properties:

– in an n-node system, the node responsible for a given key is located via
O(log n) number of messages to other nodes (number of hops);

– the load of particular nodes (number of objects stored in the node) is ap-
proximately equal for all nodes.

These properties are very important for performance of the data structure pro-
posed in this paper and are referenced below.

3 ChiDistance

In this section, we introduce chiDistance – a new distributed data structure and
algorithms for similarity search in metric spaces. The system is based on the
idea of iDistance (see Section 2.2) and extends it as follows:

– chiDistance employs metric pivot selecting techniques to generalize the iDis-
tance applicability to metric spaces. Having a finite sample data set S ⊆ U,

a set of k pivots is selected and then Voronoi -like partitioning [2] is used to
identify the clusters (see Section 3.1 for details).

– It uses the Chord protocol and the chiDistance key assignment mechanism
to distribute the storage space among arbitrary number of cooperating nodes
(Section 3.3).

– It provides distributed search algorithms for the Range and kNN queries
that parallelize the time-consuming queries execution (Section 3.4).

As mentioned in Section 2.3, the Chord protocol assumes the uniform distri-
bution of the key domain to keep its efficiency. Because iDistance distribution
is strongly non-uniform, the iDistance values must be transformed by a hash
function with a uniform distribution. Then the Chord protocol can be used to
divide the storage space among the cooperating nodes. Section 3.2 describes the
mechanism of finding the uniform key transformation.

Both, the pivot selection and the phase of determining the uniform hash
function, must proceed during the initialization phase of the algorithm. When
pivots {p1, . . . , pk} are selected, data set is divided into clusters {C1, . . . , Ck},
and the uniform transformation h is found, the chiDistance value of an object
x ∈ Ci is computed as follows:

chi(x) = h(d(pi, x) + i · c). (1)

Fig. 3 illustrates the process of the algorithm initialization and chiDistance
computation.

Sample set

Object Count
iDistance

chiDistance computation:

Use

Transform
Uniform

Find
Uniform

Transform
Select
Pivots

initialization phase:

chiDistance value

Fig. 3. Algorithm initialization and chiDistance computation process

3.1 Pivots Choosing Procedure

As mentioned in Section 2.2, the iDistance algorithm uses vector space properties
to partition the data space and then to select the reference points (pivots) of
identified partitions. In order to generalize the applicability of the method to
metric spaces, we use a metric-based technique to efficiently select a set of pivots.

Then, having a set of k pivots {p1, . . . , pk}, we divide objects from I (the set of
indexed objects) into clusters C1, . . . , Ck as follows:

Ci = {x|x ∈ U, d(pi, x) < d(pj , x), 1 ≤ j ≤ k, j 6= i}.

This partitioning technique is referred to as Voronoi-like partitioning [2].
Generally, the similarity search algorithms eliminate some data objects from

the search process without computing their distances to the query object. For
pivot-based data structures, the main objective of finding a suitable set of pivots
is to increase the effectiveness of such pruning of the search space.

Let us summarize the Range(q, r) search algorithm described in Section 2.2.
An object x from cluster Ci (with pivot pi) is accessed if its iDistance value
(iDist(x) = d(pi, x) + i · c) is within the interval

[d(pi, q) + i · c− r, d(pi, q) + i · c + r].

This condition can be reformulated as follows: An object x ∈ Ci can be elimi-
nated without accessing if

|d(pi, x)− d(pi, q)| > r.

Thus, the higher the value |d(pi, x)− d(pi, q)| for objects x ∈ Ci, ∀i ∈ {1, . . . , k}
the more effective the search algorithm.

The chiDistance pivot selection technique is based on the general technique
described in [12] which is tuned to fit our search algorithm. Having a sample
set of data objects S ⊆ U, we try to choose a set of k pivots {p1, . . . , pk} from
S in order to “maximize” the function |d(px, x) − d(px, y)| for every x, y ∈ S
where px ∈ {p1, . . . , pk} is the pivot closest to object x. One way to do this is
to maximize the mean of distribution of |d(px, x)− d(px, y)| on S. Let us denote
this mean value as µ{p1,...,pk} for set of pivots {p1, . . . , pk}. Now, we can say that
{p1, . . . , pk} is a better set of pivots than {p′1, . . . , p′k} when

µ{p1,...,pk} > µ{p′
1,...,p′

k}.

The µ{p1,...,pk} value is estimated in the following way: a set of n pairs
{(x1, y1), (x2, y2), . . . , (xn, yn)} is chosen randomly from the sample set S. For
each pair (xi, yi) the closest pivot pxi is found and value vi = |d(pxi , xi) −
d(pxi , yi)| is computed. The value µ{p1,...,pk} is estimated as

µ{p1,...,pk} =
1
n

n∑
i=1

vi.

We need k +1 distance computations to obtain value vi for each pair of objects.
Therefore, n · (k + 1) distance computations are needed to estimate µ{p1,...,pk}.

Now, knowing how to compare two sets of pivots, we can define the selection
technique itself. We use the incremental algorithm described in [12]. First, pivot
p1 is chosen from a set of s candidates (selected from the sample set S) such

that p1 has the maximum µ{p1} value. Then, a second pivot p2 is selected from
another set of s objects such that µ{p1,p2} is maximal considering p1 fixed. This
process is repeated k-times to get a set of k pivots.

In every iteration of the described algorithm, we can store the closest pivot
pxi to xi and their distance d(pxi , xi) (for every 1 ≤ i ≤ n). Thus, only d(pj , x)
and (maybe) d(pj , y) values need to be computed when the jth pivot is added.
Therefore, maximally 2ns distance computations are needed while adding a new
pivot. Repeating this step k times, the total cost of the pivot selection process
is 2kns distance computations.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

cluster number

Fig. 4. Number of data objects in clusters

Fig. 4 shows an example of how the data is partitioned to clusters identified
by the described method (number of objects in each cluster). The data set is
composed of 100,000 three-dimensional vectors (see Section 4 for details about
the data set). The sample set consists of 1,000 object pairs (n = 1000); number
of pivot candidates in every algorithm step is 100 (s = 100) and the number of
selected pivots is twenty (k = 20).

3.2 Uniform Order-Preserving Transformation

The Chord routing protocol assumes a uniform layout of the nodes (peers) on
the key space circle to keep the property of logarithmic navigation through the
structure (Section 2.3). The objective our structure would like to reach is the
balanced storage load of the nodes (volume of data stored in the nodes). In order
to meet these two criteria, the key domain should have uniform distribution.

The distribution of the iDistance domain is strongly non-uniform. Fig. 5
visualizes a typical iDistance distribution using 20 pivots. This domain can be

 0

 2

 4

 6

 8

 10

 12

 14

 0 200000 400000 600000 800000 1e+06 1.2e+06

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

iDistance

Fig. 5. Distribution of the iDistance
domain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200000 400000 600000 800000 1e+06 1.2e+06

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

chiDistance

Fig. 6. Distribution of the chiDistance
domain – h function used

transformed by a hash function with a uniform distribution. Of course, such
transformation must be order-preserving to keep iDistance properties.

We use a technique described in [13] designed for finding order-preserving
uniform transformations between arbitrary domains. Let us denote the desired
transformation h : [0, A] −→ [0, B] (in our case the [0, A] interval is the iDistance
domain and the [0, B] interval is the chiDistance domain of optional size).

First, this method divides target space [0, B] into p intervals of the same
length where p is parameter of the algorithm (its precision). This partition-
ing gives a sequence of values b0, b1, . . . , bp from [0, B]. Then, having an non-
decreasing sample sequence a1, a2, . . . , an of keys from [0, A], we select the fol-
lowing p + 1 values from this sequence:

a0, adn
p e, . . . , adi·n

p e, . . . , an.

Let us denote a(i) element adi·n
p e for every 0 ≤ i ≤ p. The desired transformation

h maps h(a(i)) = bi for every 0 ≤ i ≤ p. These values are fixed and the h values
for all other keys from [0, A] are computed as the linear interpolation of them:

h(x) = (x− a(i−1)) ·
bi − bi−1

a(i) − a(i−1)
, for x ∈ (a(i−1), a(i)).

Thus, h is the piecewise-linear transformation. The “quality” of the uniformity of
the image domain distribution depends on the precision factor p. Fig. 6 shows the
distribution of the domain from Fig. 5 after applying function h. The precision
factor p = 200; the sample set {a0, a1, . . . , an} of size n = 5000 has been selected
randomly from the whole data set of size 100,000. Size of both domains is 220.

3.3 chiDistance Data Structure

The proposed data structure is a message driven structured P2P system based on
the Chord routing mechanism. Each node of the structure is logically composed
of two layers – Chord layer and chiDistance layer. The topology of the network

is given by the Chord protocol (the Chord layers of the nodes communicate with
each other to form and maintain the structure).

When a new node wants to join the structure, it contacts an already partic-
ipating node. It is assigned a key from the chiDistance domain and it receives
data objects with keys from the interval of its responsibility (Section 2.3). The
keys for nodes are chosen uniformly at random. The joining node receives the
“chiDistance configuration” as well – the selected pivots and the uniform trans-
formation h. To leave the system, a node notifies its successor node and sends
all stored data to it.

The chiDistance layer forms the interface of the system on every node. When
receiving an insert/delete/exact-match operation request, first, it calculates the
chiDistance value for the object passed by the operation (Equation 1). Then the
Chord layer locates the node that is responsible for the computed key and the
operation request is passed to that node to store/delete/get the object.

Due to usage of the constant c in the chiDistance key formula (1), the domain
consists of separated segments that correspond to particular clusters. It may
happen that one node is responsible for intervals of keys belonging to several
clusters. Vice versa, the interval corresponding to a cluster can be divided among
several adjacent chiDistance nodes.

Every node stores the data separately for every covered cluster. The data
objects are stored in a Red-Black tree based structure that provides guaranteed
log(n) time cost for get, put and remove operations and provides range(from, to)
operation as well. This storage policy is convinient for the search algorithm.

3.4 Range Search Algorithms

The chiDistance Range(q, r) search algorithm follows the basics of iDistance
algorithm and distributes it parallelizing the query execution. The query pro-
cessing starts on the initiating node and then spreads over the other nodes.

The algorithm searches the clusters C1, C2, . . . , Ck separately. The segment
of data to be searched within each cluster Ci is dependent on the chiDistance
key that would be assigned to object q if object q was in cluster Ci:

chii(q) = h(d(pi, q) + i · c).

This value is computed for every cluster Ci and the requests for clusters search
are sent to the nodes that are responsible for these chii keys – let us denote
these nodes Ni.

Within cluster Ci, all objects with chiDistance keys from the following inter-
val must be examined:

[h(d(pi, q) + i · c− r), h(d(pi, q) + i · c + r)].

Thus, the Ni node explores all data objects from this interval that are stored
in Ni. But objects from cluster Ci can be stored in several adjacent nodes so
– if Ni is not responsible for the terminal points of this interval – the search
request is forwarded to the predecessor and/or successor node(s) of Ni. In order

to parallelize the execution, node Ni first forwards the requests and then searches
its own data space.

For every accessed data object x, the distance d(q, x) is computed and if
d(q, x) ≤ r then x is added to the Range(q, r) query answer set S. The partial
answer sets from all visited nodes are returned to the query originating node
and are joined together to form the final anwer set of the range query.

4 Performance Evaluation

In this section, we present results of experiments we conducted on our prototype
implementation of chiDistance data structure. The system forms a logical overlay
network independent of the physical location of the participating nodes. The
communication among the nodes is realized via messages using the UDP and
TCP communication protocols.

4.1 The Data Sets and Parameter Settings

We executed our experiments on two data sets. The first is a set of artificially
generated three-dimensional vectors of real numbers with the L2 (Euclidian)
metric distance function (VEC). This data set has a uniform distribution of
distances between objects and all objects have the same size.

The second data set is a real-life set of sentences from the Czech national
corpus with the edit distance function as the metric (TXT). The length of
the sentences varies significantly and the distribution of the distances is rather
skewed – most of the distances are within a small range of values.

Both data sets consist of 100,000 objects. All experiments are performed on
a structure formed by up to 100 cooperating nodes running on PCs connected by
a high-speed local network. The first executed process is given a sample data set
of 5,000 objects randomly selected from the whole data set. This sample set is
used during the pivot selection (Section 3.1) and then to determine the uniform
hash function h (Section 3.2). The number of pivots/clusters is fixed to k = 20 –
exploring the influence of this parameter to the performance is part of our future
work. The precision parameter p of the hash function h is set to 200 which seems
to be sufficient for the size of the used chiDistance domain [0, 220).

4.2 Domain Coverage and Load Factor

Every node joining the system is assigned a key from the chiDistance domain
and covers a domain segment (predecessor ,node] (Section 3.3). Fig. 7 shows the
size of intervals covered by each of 100 nodes (the domain size is 220 = 1048576).

One of the characteristics influencing the system performance is how the data
set is distributed among the nodes. Fig. 8 shows number of data objects stored
in each of the nodes (load factor). As discussed in Section 3.2, the distribution of
the chiDistance domain is broadly uniform and therefore the load factor rather
copies the domain coverage from Fig. 7.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100

d
o
m
a
i
n

r
a
n
g
e

c
o
v
e
r
e
d

chiDistance node #

Fig. 7. Segments of chiDistance domain
covered by individual nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

chiDistance node #

Fig. 8. Number of data objects stored by
individual nodes

4.3 Key Locating – Insert, Delete, Exact-match

The Chord routing mechanism used by our system is able to locate the node
responsible for given chiDistance key in O(log n) number of hops (where n is the
number of nodes in the system). The key locating mechanism is used by most
of the operations on the structure and its complexity is very important. Fig. 9
shows the experimental results – the hop count with respect to the number
of nodes in the system (n). The values were obtained as an average over 100
operations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

n
u
m
b
e
r

o
f

h
o
p
s

number of nodes

hop count for key location operation

Fig. 9. Number of hops to locate the node responsible for given chiDistance key.

The complexity of the key localization is the complexity of the insert, delete,
and exact-match operations as well.

4.4 Range Search Performance

In this section, we present results of experiments analyzing the performance of
the Range(q, r) search algorithm. To measure the computational cost of the
operation, we use the number of distance computations on the participating
nodes. This performance metric is common for similarity search algorithms
because the actual cost of the distance computation may differ signifiantly for
various distance functions. In the experiments, we have neglected the inter-
nodes communication time because the distance computations are more time
consuming than sending a message between nodes.

Thus, most of the analyses in this section are based on observing how the
distance computations are distributed on the set of nodes (under various circum-
stances). The first observation is that the total number of distance computations
(total cost) remains the same for any number of nodes as well as for the cen-
tralized iDistance method. This quantity predicates generally about this search
method efficiency with respect to our pivot choosing technique.

One of the very important contributions of distributed structures is the
parallelism of a query execution. In our experiments, we observe several aspects
of the intraquery and interquery parallelism [14]. We quantify the intraquery
parallelism as the parallel computational cost of one query execution – maximal
number of distance computations performed in sequence (the parallel cost).

Fig. 10 presents results of the experiment which measured the parallel cost
with respect to the growing search radius. The second curve in the graph shows
the total number of distance computations (divided by 10 to see both shapes
properly). All values presented in this section are taken as an average over 100
queries with different query objects randomly chosen from the data set.

TXT data set VEC data set

parallel cost
total cost/10

parallel cost
total cost/10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

range query radius

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30
range query radius

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

Fig. 10. The total and parallel cost for range queries increasing the radius.

This experiment results show that, for larger query radii, the parallel cost
corresponds to the nodes load factor – some nodes access all the data objects
they store. Let us denote Cq the cluster which the query object belongs to. The

search algorithm principles imply that (for larger radii) most of the objects in
cluster Cq must be accessed. Very likely, some node(s) store(s) only objects from
cluster Cq because, in our setting, the number of nodes is higher than the number
of pivots/clusters. This causes the rapid increase of the parallel cost. Obviously,
most of the nodes are computationally loaded significantly less than the parallel
cost is, because the average cost per server (total cost/100) is lower. This fact is
analyzed by the interquery parallelism experiments.

The interquery parallelism refers to the ability of the system to accept multi-
ple queries at the same time. Let us denote the set of active nodes {n1, . . . , nm}
and the numbers of distance computations on node ni as cost1

i , cost
2
i , . . . , cost

k
i

for the sequence of k queries. We measure the interquery parallelism through
summation of the number of distance computations over a sequence of range
queries (on each node separately):

inter-cost i =
k∑

j=0

costj
i .

Maximizing this value over the set of nodes {n1, . . . , nm} we get a total parallel
cost of the sequence of k queries:

inter-cost = max{inter-cost1, . . . , inter-costm}.

Fig. 11 shows the inter-cost value for growing number of parallel queries (k) and
for selected radii. The query objects were chosen at random and the graph values
are taken as an average over 10 executions of different sets of k queries. As dis-
cussed above, mainly the nodes storing objects from cluster Cq are significantly
computationally loaded during the Range(q, r) execution. Thus, the inter-cost
is significantly smaller than k-multiple of the parallel cost of one range query
(with corresponding radius).

VEC data setTXT data set

radius = 5
radius = 2

radius = 10
radius = 5
radius = 2

radius = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

number of parallel queries

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

number of parallel queries

Fig. 11. The interquery parallelism for growing number of parallel queries

5 Conclusions and Future Work

So far, the field of distributed index structures for metric data has not been much
investigated. We consider this topic very relevant for needs of the preset-day
applications processing large volumes of digital data. We propose chiDistance, a
distributed data structure for similarity search in metric spaces. The structure
is based on the idea of iDistance index method. The applicability of iDistance
is generalized from vector spaces to metric spaces by a pivot selection technique
tuned in order to fit the chiDistance search algorithm. A Peer-to-Peer structure
based on the Chord protocol is created to distribute the storage space and to
parallelize the execution of similarity queries.

We present results of performance experiments conducted on our prototype
implementation and on two data sets. Among other things, we have studied
several aspects of parallelism of the range search algorithm. The results show
that the computational cost on participating nodes varies but the cost on a
single node is always upper bounded by the number of data objects stored by
the node. Recall that the data is quite uniformly distributed among the nodes.
At the same time, very good interquery parallelism is achieved when processing
a set of range queries in parallel.

Our future work will concern the kNN(q, k) search algorithm. As well, we
want to study the influence of number of pivots to the search algorithms perfor-
mance. In this paper, we have considered the presented structure rather static by
using fixed quantity of sources (nodes) regardless of the volume of stored data.
In future, we want to study the scalability of the system by adding nodes as the
volume of stored data increases. Finally, we plan to conduct tests that would
compare the performance of GHT∗ [7] and chiDistance – both implemented over
the same network infrastructure. We see this as a unique opportunity to compare
structures and algorithms under the very same conditions.

References

1. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM
Trans. Database Syst. 28 (2003) 517–580

2. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33 (2001) 273–321

3. Koudas, N., Faloutsos, C., Kamel, I.: Declustering spatial databases on a multi-
computer architecture. In: EDBT. (1996) 592–614

4. Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries
in peer-to-peer systems. In: Proceedings of the First Biennial Conference on
Innovative Data Systems Research, Asilomar, California, United States (2003)

5. Tanin, E., Harwood, A., Samet, H.: A distributed quadtree index for peer-to-peer
settings. In: ICDE. (2005)

6. Banaei-Kashani, F., Shahabi, C.: Swam: a family of access methods for similarity-
search in peer-to-peer data networks. In: CIKM ’04: Proceedings of the Thirteenth
ACM conference on Information and knowledge management, ACM Press (2004)
304–313

7. Batko, M., Gennaro, C., Zezula, P.: Scalable similarity search in metric spaces.
In: Proceedings of the DELOS Workshop on Digital Library Architectures: Peer-
to-Peer, Grid, and Service-Orientation, Edizioni Libreria Progetto, Padova (2004)
213–224

8. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer file sharing
technologies (2002)

9. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.: Indexing the distance: An efficient
method to KNN processing. In: VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Morgan
Kaufmann (2001) 421–430

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
ACM SIGCOMM, ACM Press (2001) 149–160

11. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.:
Consistent hashing and random trees: distributed caching protocols for relieving
hot spots on the world wide web. In: STOC ’97: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, ACM Press (1997) 654–663

12. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. In: SCCC 2001, Proceedings of the XXI Conference of
the ChileanComputer Science Society, IEEE CS Press (2001) 33–40

13. Garg, A.K., Gotlieb, C.C.: Order-preserving key transformations. ACM Trans.
Database Syst. 11 (1986) 213–234

14. Özsu, M.T., Valduriez, P.: Distributed and parallel database systems. ACM
Comput. Surv. 28 (1996) 125–128

Query Tuning through Refinement/Enlargement in a Formal

Context

Carlo Meghini
CNR – ISTI, Pisa, Italy
meghini@isti.cnr.it

Nicolas Spyratos
Universitè de Paris Sud – LRI

spyratos@lri.fr

1 Introduction

The work reported in this paper originates in the following basic observation: the user of an infor-
mation system rarely knows exactly what he is looking for, but once shown a piece of information
he can quickly tell whether it is what he needs.

Query tuning is the process of searching for the query that best approximates the information
need of the user. We note that, finding the query that best expresses a given information need is
important not only for retrieving the information satisfying the current need, but also in order to
name and store the query for use at some later time (without having to re-invent it over and over).

In advanced information systems, query tuning proceeds in two steps: (a) the user navigates
the information space until he finds a subspace of interest and (b) in that subspace, the user issues
a query. If the answer to the query is satisfactory then the session terminates, otherwise a new
navigation step begins. However, navigation and querying are two completely separate processes,
and the user usually has to switch often from one to the other -a painstaking process usually
producing a frustrating experience.

In this paper, we propose an approach to query tuning that interleaves, or integrates navigation
and querying into a single process, thus leading to a more flexible and more user friendly method
of query tuning.

The proposed approach is based on formal concept analysis [2, 1], and models the directory of
a digital library as a formal context in which the objects represent documents and the attributes
represent indexing terms [3]. As a result, the concepts of the underlying concept lattice represent
meaningful classes of documents, in the sense that all documents in a class share the same set of
indexing terms. Therefore, we propose to use the concept lattice as the basic navigation tool.

We assume the user queries to be Boolean combinations of indexing terms, and more specifically
conjunctions of indexing terms. Indeed, the objective of this paper is not to propose a new, more
powerful query language but, rather, use an existing (simple) language in order to illustrate our
approach to query tuning.

Our approach is user-controlled, and proceeds as a sequence of refine/enlarge commands until
a user-approved query is obtained. More precisely, query tuning in our approach proceeds roughly
as follows:

• Query mode The user formulates a query to the library and receives an answer; if the answer
is satisfactory then the session terminates and the issued query is considered tuned, otherwise
the user can issue a Refine or an Enlarge command.

• Refine A refine command returns all maximal concepts (from the concept lattice) that refine
the user query (in the sense that their extent is included in the answer received by the user);

1

then the user can decide to either return to query mode and query one or more of those
concepts, or terminate.

• Enlarge An enlarge command returns all minimal concepts (from the concept lattice) that
subsume the user query (in the sense that their extent includes the answer received by the
user); then the user can decide to either return to query mode and query one or more of those
concepts, or terminate.

In what follows, we first introduce briefly the digital library model that we use, in section 2,
and then we recall the basic notions needed from formal concept analysis, in section 3. Our query
tuning approach is presented in section 4, illustrated through a running example. Finally, we offer
some concluding remarks and outline a research agenda, in section 5.

2 Digital Libraries

A digital library serves a network of providers willing to share their documents with other providers
and/or consumers (hereafter, collectively called “users”). Each document resides at the local reposi-
tory of its provider, so all providers’ repositories, collectively, can be seen as a distributed repository
of documents spread over the network. The digital library acts as a mediator, supporting trans-
parent access to all sharable documents by the library users. Two of the basic services supported
by the library are registration and querying.

Registration When a provider wishes to make a document sharable over the network of users he
must register it at the library. To do so he must provide two items to the library:

• the document identifier

• the document description

We assume that the document identifier is a global identifier, such as a URI, or just the URL
where the document can be accessed, (however, for convenience of notation, we use integers
in our examples). As for the document description, we consider only content description
and we assume that such a description is given by selecting a set of terms from a controlled
vocabulary. For example, the document description {QuickSort, Java} would indicate that the
document in question is about the quick sort algorithm written in Java.

Therefore, to register a document, its provider submits to the library an identifier i and a set
of terms D. We assume that registration of the document by the library is done by storing a
pair (i, t) in the library repository, for each term t in D. In our previous example, if i is the
document identifier, the library will store two pairs: (i,QuickSort) and (i, Java). The set of all
such pairs (i, t) is what we call the library directory, or simply directory (the well known Open
Directory (http://dmoz.org/about.html) is an example of such a directory). Clearly the
directory is a binary relation between document identifiers and terms, i.e.a formal context
(in the sense defined in the next section).

Querying Library users access the library in search of documents of interest, either to use them
directly (e.g., as learning objects) or to reuse them as components in new documents that they
intend to compose. Search for documents of interest is done by issuing queries to the library,
and the library uses its directory to return the identifiers (i.e., the URIs) of all documents
satisfying the query.

2

The query language that we use is a simple language in which a query is just a Boolean
combination of terms:

q ::= t | q1 ∧ q2 | q1 ∨ q2 | q1 ∧ ¬q2 | (q)

where t is any term.

The answer to a query q is defined recursively as follows:

if q is a term then ans(q) = {i | (i, q) is in the directory}
else begin

if q is q1 ∧ q2 then ans(q) = ans(q1) ∩ ans(q2)
if q is q1 ∨ q2 then ans(q) = ans(q1) ∪ ans(q2)
if q is q1 ∧ ¬q2 then ans(q) = ans(q1) \ ans(q2)
end

In other words, to answer a query, the underlying digital library management system simply
replaces each term appearing in the query by its extension from the directory, and performs
the set theoretic operations corresponding to the Boolean connectives.

3 Formal Concept Analysis

Let O be a set of objects and A a set of attributes. A formal context, or simply context over O
and A is a triple (O,A, C) where C ⊆ O×A is a binary relation between O and A. Figure 1 shows
a formal context in tabular form, in which objects correspond to rows and attributes correspond
to columns. The pair (o, a) is in C (that is, object o has attribute a) if and only if there is a x in
the row corresponding to object o, in the column corresponding to attribute a.

A B C D E F

1 x x x x
2 x x
3 x x x x
4 x x x x x
5 x x x x

Figure 1: A Formal Context

Let i and e be respectively the functions intension and extension as they are normally used in
information systems, that is:

i(o) = {a ∈ A | (o, a) ∈ C} for all o ∈ O
e(a) = {o ∈ O | (o, a) ∈ C} for all a ∈ A.

In Figure 1, the intension of an object are the attributes marked with a x in the row corresponding
to the object; the extension of an attribute are the objects marked with a x in the attribute column.
Now define:

ϕ(O) =
⋂
{i(o) | o ∈ O} for all O ⊆ O

ψ(A) =
⋂
{e(a) | a ∈ A} for all A ⊆ A

3

A pair (O, A), O ⊆ O and A ⊆ A, is a formal concept of (O,A, C) if and only if O = ψ(A) and
A = ϕ(O). O is called the extent and A the intent of concept (O, A). In the formal context shown
in Figure 1, ({1, 3, 4}, {C, D}) is a concept, while ({1, 3}, {A,D}) is not.

The concepts of a given context are naturally ordered by the subconcept-superconcept relation
defined by:

(O1, A1) ≤ (O2, A2) iff O1 ⊆ O2(iff A2 ⊆ A1)

This relation induces a lattice on the set of the concepts of a context. For instance, the concept lat-
tice corresponding to the context shown in Figure 1 is presented in Figure 2, where for convenience
some concepts are explicitly indicated (in red).

There is an easy way to “read” the extent and intent of every concept from the lattice. To this
end, we define two functions γ and µ, mapping respectively objects and attributes into concepts,
as follows:

γ(o) = (ψ(ϕ({o})), ϕ({o})) for all o ∈ O
µ(a) = (ψ({a}), ϕ(ψ({a}))) for all a ∈ A.

It is easy to see that γ(o) and µ(a) are indeed concepts. In addition, (o, a) ∈ C is equivalent to
γ(o) ≤ µ(a). The functions γ and µ are represented in Figure 2 by labeling the concept γ(o) with
o as a subscript, and µ(a) with a as a superscript. Thus, concept 14 is indeed µ(A), while concept
13 is γ(2). Finally, it can be proved that for any concept c = (Oc, Ac), we have:

Oc = {o ∈ O | γ(o) ≤ c}
Ac = {a ∈ A | c ≤ µ(a)}.

Thus, the extent of concept 12 is given by {1, 3, 4} since γ(1), γ(3) and γ(4) are all and the only
concepts smaller than concept 12; the intent of this concept is {C, D} since it is smaller than both
µ(C) (concept 12 itself) and µ(D).

It is interesting to note that the conjunction of all terms in the intent of a concept is actually a
minimal conjunctive query whose answer is the extent of the concept (“minimal” here means that
if we omit any of the terms in the intent we no longer obtain the extent as the answer). Conversely,
any answer to a conjunctive query is the extent of some concept.

It follows that, by navigating the concept lattice, the user can be guided to the best result he
can obtain with a conjunctive query. These facts and observations lie at the heart of our query
tuning approach that we present in the next section.

4 Query Tuning

During user interaction with the digital library, query tuning is obtained by using four commands:
Query, Terminate, Refine and Enlarge. In this section we define each of these commands separately
and illustrate them using a running example. We recall that we restrict our attention to conjunctive
queries only.

Query

The user issues a query to the system. The system returns the answer, obtained by evaluating
ψ(A) where A is the set of terms in the query. In fact:

ans(
∧

A) =
⋂
{ans(a) | a ∈ A} (by definition of ans on conjunctions)

4

19

7 10986 11

1

18
F

15
C

16
B

17
E

4
1

3
5

2
3

5
4

{1,3,5}

{A}

{1,2,3,4}

{C}

{1,3,4}

{C,D}

{1,3}

{A,C,D}

{1,4}

{C,D,E}

{3}

{A,C,D,F}

{3,4}

{C,D,F}

12
D

14
A

13
2

Figure 2: A concept lattice

=
⋂
{{o ∈ O | (o, a) ∈ C} | a ∈ A} (by definition of ans on terms)

=
⋂
{e(a) | a ∈ A} (by definition of e)

= ψ(A) (by definition of ψ).

The system also shows to the user the most precise, i.e.most specific query that can be used to
obtain the same result, given by the conjunction of the terms in ϕ(ψ(A)). In other words, upon
evaluating a query

∧
A the system “places” itself on the concept (ψ(A), ϕ(ψ(A))), which becomes

the current concept. Notice that this concept can be computed from the query in polynomial time
in the size of the context.

In our example, let us assume the user poses the query D. In response, the system returns the
answer ψ(D) = {1, 3, 4} and shows the query C ∧D, since ϕ(ψ(D)) = {C, D}. The current concept
is therefore concept 12 in Figure 2.

Terminate

The user is satisfied by the answer and issues a Terminate command. The system switches to
next-query mode. Otherwise, the user performs one of the actions described next.

Refine

The user judges the answer to be too rich, e.g.the cardinality of the answer set is too big or, upon
inspection, there are too many irrelevant answers in the answer set; and issues a Refine command.
The system then returns two pieces of information to the user:

5

1. The intent Amax of each maximal concept max whose extent Omax is strictly contained in the
current answer; and

2. The objects in the extent of the current concept lying outside Omax .

Let us explain further these two items that are returned to the user:

1. Any concept like max above is a maximal sub-concept of the current concept, whose intent is
by definition a superset of the current concept intent. The system computes these concepts
and shows their intents to the user, by simply presenting him the additional terms of each
intent with respect to the current concept. This computation can be done in polynomial time
with respect to the size of the context . Let us see how in our example. Let us assume that
the current answer {1, 3, 4} is too large for the user, who executes a Refine. To compute the
terms to be shown to the user, we look at a smaller context, consisting of the objects in the
extent of the current concept, and of the attributes outside the intent of the current concept.
The context we are looking at is:

A B E F

1 x x
3 x x
4 x x x

In order to achieve maximality, from this context we select the terms with maximal extension,
that is A, E and F. Each of these terms t must be shown to the user, since it leads to a maximal
sub-concept of the current concept, given by:

(ψ(Ac ∪ {t}), ϕ(ψ(Ac ∪ {t})))

where Ac is the intent of the current concept. In our example, term A leads to concept 7
({1, 3}, {A,C,D}), term E leads to concept 10 ({1, 4}, {C, D, E}), term F leads to concept 8
({3, 4}, {C, D,F}), which are all maximal sub-concepts of the current concept, i.e.12. Notice
that the query associated to each such concepts is a refinement of the query originally posed
by the user.

2. The second item shown to the user is the set of objects which are “lost” by selecting the
corresponding refinement. For instance, along with the term F, the user is shown the object
set {1} containing the answers which are no longer such if the query is refined by adding the
term F to it.

The complete answer that the user gets in response to a Refine in our example is reported in
Table 1. We recall that the current concept is ({1, 3, 4}, {C, D}). For convenience, the table also
shows the query refinement and the concept corresponding to each solution. Upon deciding whether
to accept a proposed refinement, the user can figure out the attributes he gains by inspecting the
added terms, or the answers he looses by inspecting the lost objects. If the user does decide to
move, then the concept corresponding to the selected solution becomes the current concept, and a
new interaction cycle begins (by querying, refining and enlarging).

Notice that if no maximal sub-concept exists, i.e.the current concept is the least concept of the
lattice, then the system returns empty and, subsequently, the user may issue an Enlarge command
(see below) or try a new query.

6

Added Lost Query
Solution Terms Objects Refinement Concept

1 A 4 A ∧ C ∧D ({1, 3}, {A, C,D})
2 E 3 C ∧D ∧ E ({1, 4}, {C, D, E})
3 F 1 C ∧D ∧ F ({3, 4}, {C, D, F})

Table 1: Result of a Refine

Enlarge

The user judges the answer to be too poor (e.g., the cardinality of the answer set is too small,
possibly zero), and issues an Enlarge command. The system then returns two pieces of information
to the user (in a similar manner as in the case of Refine):

1. The intent Amin of each minimal concept min whose extent Omin strictly contains the current
answer. Each such concepts min is a minimal super-concept of the current concept, and the
set of such concepts can be computed in polynomial time in an analogous way to the maximal
sub-concepts. Let us again see how in our example. Let us assume that the user refines the
initial query by selecting solution 1 in Table 1, and that he then asks to enlarge this set. To
compute the objects leading to a minimal super-concept of the current concept, we look at a
smaller context, consisting of just the attributes in the intent of the current context and of
the objects outside the extent of the current context. That is:

A C D

2 x
4 x x
5 x

From this context we select the objects with maximal intention, that is 4 and 5. Each of
these objects o leads to a minimal super-concept of the current concept, given by:

(ψ(ϕ(Oc ∪ {o})), ϕ(Oc ∪ {o}))

where Oc is the extent of the current concept. In our example, object 4 leads back to concept
12 ({1, 3, 4}, {C, D}) while object 5 leads to concept 14 ({1, 3, 5}, {A}), which are all minimal
super-concepts of the current concept, i.e.7. Notice that the query associated to each such
concepts is a relaxation of the query associated to the current concept.

2. The objects in Omin which lay outside the extent of the current context.

The complete answer that the user gets in response to an Enlarge in our example is reported
in Table 2. We recall that the current concept is ({1, 3}, {A,C,D}). For each alternative solution,
the Table shows the terms that are lost in the query relaxation, the added objects, the relaxed
query and the corresponding concept. Upon deciding whether to accept a proposed enlargement,
the user can figure out the attributes he looses or the answers he gains. If the user does decide to
move, then the concept corresponding to the selected solution becomes the current concept, and a
new interaction cycle begins (by querying, refining and enlarging).

Notice that if no minimal super-concept exists, i.e.the current concept is the greatest concept of
the lattice, then the system returns empty and, subsequently, the user may issue a Refine command
or try a new query.

7

Lost Added Query
Solution Terms Objects Refinement Concept

1 A 4 C ∧D ({1, 3, 4}, {C, D})
2 C, D 5 A ({1, 3, 5}, {A})

Table 2: Result of an Enlarge

5 Concluding remarks

We have seen an approach to query tuning that combines navigation and querying into a single
process thus providing a more flexible and more user friendly interaction between the users and the
information system.

In the traditional approach, the interaction proceeds by repeating the following two steps (in
some order): (1) Query and Terminate, or (2) Navigate. In our approach, the interaction proceeds
by repeating the following three steps (in some order) before terminating: (1) Query, (2) Refine, or
(3) Enlarge. Here, Refine and Enlarge represent navigation steps that might be interleaved with
the Query step and might be repeated several times before termination, e.g., Query-Enlarge-Query-
Refine-Query-Enlarge- . . . -Terminate.

In order to keep the presentation as simple as possible, we have considered only conjunctive
queries. However, as our approach works with extents, what we have said holds not only for
conjunctive queries but also for queries with negation and/or disjunction.

References

[1] B.A. Davey and H.A. Priestley. Introduction to lattices and order, chapter 3. Cambridge, second
edition, 2002.

[2] B. Ganter and R. Wille. Applied lattice theory: Formal concept analysis.
http://www.math.tu.dresden.de/∼ganter/psfiles/concept.ps.

[3] P. Rigaux and N. Spyratos. Metadata inference for document retrieval in a distributed repos-
itory. In Proceedings of ASIAN’04, 9th Asian Computing Science Conference, number 3321 in
LNCS, Chiang-Mai, Thailand, 8-10 December 2004. Invited Paper.

8

I know I stored it somewhere -
Contextual Information and Ranking

on our Desktop

Wolfgang Nejdl and Raluca Paiu

L3S Research Center and University of Hannover
Deutscher Pavillon, Expo Plaza 1, 30539 Hannover, Germany

{nejdl,paiu }@l3s.de

1 Motivation

Future digital libraries will be distributed, and recent research has already explored
some promising approaches focusing on distributed and peer-to-peer search and re-
trieval architectures, connecting distributed repositories efficiently and transparently.
Another aspect, which has been less explored so far, is the role of the implicit personal
repositories we all have on our desktops, and the efficiency we expect to gain from stor-
ing important resources in these “personal digital libraries”. Ironically, in many cases,
moving important resources closer to our workspace results in less retrieval efficiency.

Sophisticated web search technology usually allows us to find appropriate docu-
ments in a few seconds. Finding these documents on our desktop is surprisingly more
difficult, at least if we have been storing documents for a few years or more. This is
improving somewhat with the recent crop of desktop search engines, but even with
these tools, searching through our (relatively small set of) personal documents with the
recent beta of Google Desktop Search is inferior to searching the (rather vast set of)
documents on the web with Google. The main reason for this is that one of the distin-
guishing features of Google - sophisticated ranking using PageRank and other features
- is unavailable on our desktop. This position paper explores some of the information
we have available on our desktop to extend search beyond simple full-text search, and
the algorithms we can build upon this information, implementing efficient ranking of
resources on our desktop.

Regarding the first aspect, we propose activity-based metadata and relationships as
sources of additional information in desktop search. This information in many cases
represents contextual information, which is very useful for re-finding resources we al-
ready worked with. We will describe corresponding metadata for two selected scenarios.
For the second aspect, we will focus on recent advances of PageRank-based ranking,
extending models such as the ones describing our contextual information, and show
how local and global ranking measures can be integrated in such a model.

These two techniques together show considerable promise for extending efficient
information access to our desktop, extending globally available information with user-
centered activity-based information, and exploiting the unique information background
we have available on our desktop. We are currently implementing first prototypes in the
context of the open source Beagle project which aims to provide sophisticated desktop
search in Linux.

2

2 Representing Context Information

Available desktop contexts.Current desktop search prototypes fall short of utilizing
desktop specific information, especially context information. Two of these missed op-
portunities include:

Email context.Documents sent as attachments lose all contextual information as
soon as they are stored on the PC, even though emails usually include additional in-
formation about their attachments, such as sender, subject or valuable comments. We
might discuss a paper with a colleague during a brainstorming session, and then after-
wards send her the electronic version via email, together with a few helpful comments.
After a while, our colleague might not remember details about the paper itself, but rather
recall with whom she discussed it or which question was raised in the discussion and in-
cluded as comment in the email or email thread. We would like to find the stored paper
not only based on its content, but also associatively based on that context information.

Browsing context.Browser caches include all information about user’s browsing be-
haviour, which are useful both for finding relevant results, and for providing additional
context for results. When searching for a document we downloaded from the CiteSeer
repository, we would like to retrieve not only the specific document, but also all the
referenced and referring papers which we downloaded on that occasion as well.

Documents stored from emails and from web sites form our personal digital library,
which holds the papers we are interested in. We should store contextual information
for these documents to retrieve them efficiently, and to restore the original context we
built up when storing these documents. Personalized ranking on the desktop should
take this contextual information into account as well as the preferences implicit in this
information. [4] discusses how people tend to associate things to certain contexts. So
far, however, search infrastructures neither collect nor use this contextual information.

Scenario specific annotation ontologies.Figure 1 presents our current prototype on-
tology, which specifies context metadata for emails, files, web pages and publications,
together with the relations among them, described in more detail in [2]. Conceptually,
the elements in the rectangles represent classes, circles represent class attributes. We use
classes whenever we want to attach importance/rank on entities, attributes otherwise.

Metadata for the email context refer to the date an email was sent or accessed, the
subject of the email and the email body. Emails are connected to their attachments
through the 1:nhasattachmentrelation. Thereply to relation represents thread infor-
mation.Personrepresents the sender of an email. Another important relationship rep-
resents the connection between emails / email attachments and the documents they are
saved as, as we want to use all attributes originally connected to the email a document
was attached to when we want to find it again.

For the browsing context, we annotate each page with additional information about
its basic properties (URL, access date, etc), as well as more complex ones such as in-
and out-going links browsed. An extended publication ontology makes use of additional
knowledge about how CiteSeer pages are connected and what they represent. Publica-
tions are referenced by other publications and can cite others, they can have a publica-
tion date / year associated with them, as well as a conference or journal. Publications
have authors and are stored as documents on the desktop.

3

Fig. 1.Context ontology for our prototype

Other ontologies describe contexts like conferences, including reviewers, papers,
meetings, authors, or private contexts like birthdays, including persons, locations, etc.

3 Authority Transfer and Ranking

Authority transfer annotations.Annotation ontologies should describe all aspects and
relationships among resources, which influence the ranking. The identity of the authors
for example influences our opinion of documents so “author” should be represented
explicitly as a class in our publication ontology. Second, we have to specify how these
aspects influence each others importance.

ObjectRank [1] has introduced the notion of authority transfer schema graphs, which
extend schemas similar to the ontologies previously described, by adding weights and
edges in order to express how importance propagates among the entities and resources
inside the ontology. These weights and edges represent the authority transfer annota-
tions, which extend our context ontologies with the information we need to compute
ranks for all instances of the classes defined in the context ontologies.1

Figure 2 depicts our context ontology plus its authority transfer annotations. For
example, authority of an email is split among the sender of the email, its attachment,
the number of times that email was accessed, the date when it was sent and the email
to which it was replied. So, if an email is important, the sender might be an important
person, the attachment an important one and/or the number of times the email was

1 In contrast to ObjectRank, we do not compute a keyword-specific ranking, but a global one.

4

Fig. 2.Authority transfer annotations, including external ranking sources

accessed is very high. Additionally, the date when the email was sent and the previous
email in the thread hierarchy also become important. As suggested in [1], every edge
from the schema graph is split into two edges, one for each direction. This is motivated
by the observation that authority potentially flows in both directions and not only in the
direction that appears in the schema (if we know that a particular person is important,
we also want to have all emails we receive from this person ranked higher). The final
ObjectRank value for each resource is calculated based on the PageRank formula.

The ontology representing our web browsing context says that a visited webpage is
important if we arrived at the current one from an important page, if the file under which
it is stored is important, or if the date when the page was visited is important. For the
CiteSeer context, publications transfer part of their authority to other papers they cite,
to their authors, to the files under which they are stored, and to the year when the paper
was published. As we can see, citing important papers doesn’t make a paper important.

Personalized Preferences and Ranking.Different authority transfer weights express
different preferences of the user, translating into personalized ranking. The important
requirement for doing this successfully is that we include in a users ontology all con-
cepts, which influence her ranking function. For example, if we view a publication
important because it was written by an author important to us, we have to represent

5

that in our context ontology. Another example are digital photos, whose importance is
usually heavily influenced by the event or the location where they were taken. In this
case both event and location have to be included as classes in our context ontology.

Personal vs. External Ranking.For the computation of authority transfer, we can also
include additional external ranking sources, connecting global ranking computation and
personalized ranking of resources on our desktop. These external ranking sources are
used to provide the seed values for the calculation of the personal ranking. Our pro-
totype ontology includes two global ranking services, one returning Google ranks, the
second one ranks computed from the CiteSeer database.

4 Conclusions and Related Work

This paper has explored two techniques - activity-based metadata and authority transfer
annotations - as important contributions towards enabling efficient retrieval and rank-
ing for the “personal digital repositories” building up on our computers. Activity-based
metadata describe context information relevant for finding and connecting the resources
we store on our desktop, authority transfer annotations help to rank retrieved resources
in a personalized way. Global ranking services like Google or Citeseer-derived rank-
ing services can initialize these personalized ranking measures. Our prototype uses the
open source project Beagle2 as underlying desktop search infrastructure and extends its
regular full-text indexing capabilities with contextual metadata and ranking.

Facilitating search for information the user has already seen before is also the main
goal of theStuff I’ve Seen (SIS)system, presented in [3]. Based on the fact that the
user has already seen the information, contextual cues such as time, author, thubnails
and previews can be used to search for and present information. [3] mainly focuses on
experiments investigating the general usefulness of this approach, though, without pre-
senting more technical details. Based on SIS, [5] proposes a timeline-based visualiza-
tion of search results over personal content. This basic timeline view is then augmented
with public (holidays, news headlines) and personal (calendar appointments and digital
photographs) landmark events. The main goal of this system is to facilitate browsing.

References

1. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based keyword
search in databases. InVLDB, Toronto, September 2004.

2. P. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based metadata for semantic
desktop search. Technical report, L3S, December 2004.

3. S. Dumais, E. Cutrell, JJ Cadiz, G. Jancke, R. Sarin, and Daniel C. Robbins. Stuff i’ve seen:
A system for personal information retrieval and re-use. InSIGIR, Toronto, July 2003.

4. Teevan J., Alvarado C., Ackerman M. S., and Karger D. R. The perfect search engine is not
enough: A study of orienteering behavior in directed search. InCHI, Vienna, April 2004.

5. M. Ringel, E. Cutrell, S. Dumais, and E. Horvitz. Milestones in time: The value of landmarks
in retrieving information from personal stores. InINTERACT, Zurich, September 2003.

2 http://www.gnome.org/projects/beagle/

	Abstract_17_SpringmannBalkoSchek.pdf
	Efficient and Effective Matching of Compound Patient Records
	Michael Springmann, Sören Balko, Hans--Jörg Schek

Integrating XML Data Sources using RDF/S
Schemas: The ICS-FORTH Semantic Web

Integration Middleware (SWIM)

Ioanna Koffina1, Giorgos Serfiotis1, Vassilis Christophides1, Val Tannen2, and
Alin Deutsch3

1 Institute of Computer Science, FORTH
Vassilika Vouton P.O 1385 GR 71110, Heraklion, Greece

and
Department of Computer Science, University of Crete

GR 71409, Heraklion, Greece
{koffina,serfioti,christop}@ics.forth.gr

2 Computer and Information Science Department, UPenn
200 South 33rd Street, Philadelphia, Pennsylvania, USA

val@cis.upenn.edu
3 Department of Computer Science & Engineering, UCSD

9500 Gilman Drive La Jolla, CA 92093, USA
deutsch@cs.ucsd.edu

1 Introduction

Digital libraries are collections of resource descriptions (also called metadata)
that actually describe the catalogue data (i.e., digitized information). In general,
these metadata are stored in diverse sources (e.g., relational or object databases,
XML data sources, text files) distributed on the Web. One of the main challenges
for the digital library community is the integration of such metadata sources in
order to provide users with a common vocabulary for searching and browsing
them.
The Semantic Web (SW) offers relevant approaches and standards that can

handle these problems. More precisely, RDF (or other SW ontology languages)
can be used as a common framework for expressing the information by providing
a semantically rich representation language for metadata. In this context, a SW
integration middleware (SWIM) should be employed for the integration of the
heterogeneous and distributed sources. In particular, we propose a SWIM that
provides a useful, comprehensive and high-level access to library metadata that
reside in relational databases (RDB) or XML sources, by offering a virtual,
mediated RDF/S schema.
There are many issues involved in the functionality of a SWIM. In particular,

a SWIM should facilitate users to formulate queries against the mediated RDF/S
schema using declarative languages (such as RQL [7]), as well as, support further
abstraction levels using declarative view definition languages (e.g., RVL [10]). In
a nutshell, SWIM should offer the following services: (a) establish mapping rules
between XML and RDF and between RDB and RDF, (b) verify the conformance

2 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

of these mappings w.r.t the semantics of the employed schemas, (c) reformulate
RDF/S queries against RDB or XML sources, and (d) combine these queries
with RVL views.

In order to address effectively and efficiently the above requirements, we
should choose a uniform and expressive logic framework to define SWIM integra-
tion services. This framework should exploit background theory on conjunctive
queries and query containment and minimization [1].

An architecture based on mediators is highly beneficial for deploying a SWIM.
There exist two main approaches for integrating data sources [2] using mediator-
based architectures: Global-as-View (GAV) [12] and Local-as-View (LAV) [9],
[8]. The former provides descriptions of the global schema in terms of the views
of local sources and relies on simple query reformulation techniques (i.e., query
unfolding). The latter considers local sources as materialized views specified
in terms of the global schema. LAV supports easily the evolution of the data
integration system by just adding or removing the descriptions of local sources.
In our work we advocate a hybrid approach called GLAV [6], which combines the
previous advantages and exceeds the expressive power of both GAV and LAV.

2 A Motivating Example

Let’s assume an XML source whose content is described by a DTD or an XML
Schema (see Figure 1). XML data from this source contain information about
Museums, exhibiting some artifacts for which we want to know their creator.
Data stored in such sources can be queried using an XML query language like
XPath [13], [14] or XQuery [15].

Now suppose that we add on top of this repository an RDF/S schema from
the cultural domain. This mediated RDF/S schema can be queried using RQL
and it can be used for defining personalized views with the help of RVL. However,
since there are no actual RDF data, we need to reformulate the RQL queries
expressed against this virtual RDF/S schema into queries appropriate for our
XML source. For example, the following RQL query:

SELECT X
FROM {X}exhibits{Y}, {Y}denom{Z}
WHERE Z = “Louvre”

will be reformulated to the following XQuery query:

The ICS-FORTH Semantic Web Integration Middleware (SWIM) 3

SWIM Mapping

XPath,

XQuery

XML DATA

Semantic

Web

RDF Schema (community ontology)

RQL RDF DataRQL RDF Data

XML DTD or Schema (community sources)Deep Web

ReformulationReformulation

Artist
exhibits

Museum

Sculptor

denom
Literal

school
Painter

Literal

Literal

name

Museum

name Collection

@kind Artifact

title Artist

@name @ref

String

String

String

String String

*

*

?
?

Fig. 1. Republishing XML as RDF

<RDF>

{
<Bag>
{
for $var0 in document(“art.xml”)//Museum
for $var1 in $var0/name
for $var2 in $var0//Artist/@name
where $var1/text()=“Louvre”
return {$var2/text()}

}
</Bag>

}
</RDF>

This reformulation involves several challenging issues. First of all, the schemas
employed by our XML sources and the RDF/S mediator are different. Their dis-
crepancies, usually called heterogeneity conflicts, can be classified under three
axes: syntactic, structural and semantic [11]. As we can see in our example
(Figure 1), we need to view the XML data through the RDF data model (syn-
tactic conflict), to resolve categorization conflicts, given that in RDF/S there is a
class hierarchy while in XML there isn’t (structural conflict), as well as address
naming mismatches; for instance the “name” of a Museum in XML is called
“denomination” in RDF/S (semantic conflict).

4 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

In order to reconciliate the heterogeneous representations of our data we
need to define appropriate mapping rules. Choosing an expressive but tractable
logical framework to map data from XML to RDF/S is crucial for the success of
a SWIM. These mappings are used for reformulating queries issued against the
virtual RDF/S schema into queries acceptable by our XML sources. However,
more complex mappings (in order to increase expressiveness) render query re-
formulation harder. Query reformulation becomes more complex if we take into
consideration the presence of constraints capturing the semantics of both the
RDF/S and XML data models, as well as, application-specific constraints com-
ing from the schema (if any) of XML sources (like keys, foreign keys etc.). So,
there is a need for a sound and complete reformulation algorithm.
Since reformulated queries are evaluated to remote sources and mediator

queries resulting from automated manipulation/generation may entail redundan-
cies, their optimization is crucial. In particular, optimization tries to eliminate
redundant queries and to simplify queries by removing redundant predicates.

3 Contributions

In this context, we propose a middleware called ICS-FORTH SWIM (Semantic
Web Integration Middleware) supporting the following functionalities:

3.1 A Formal Framework for Mapping Specification

As discussed previously, choosing a logical framework for defining the mappings
is of great importance. Our idea was to represent both RDF and XML data
models as first-order logic predicates and capture their semantics through ap-
propriate constraints. In this way we reduce RDF to XML query reformulation
problem to the relational equivalent one, and thus, we can reuse existing tech-
niques for relational query containment and minimization.
More precisely, we rely on Linear Datalog (non-recursive Datalog without

negation) for establishing the mappings and translating the RQL/RVL queries
and views issued against the virtual RDF/S schema. The head of the Datalog
rules consists of a conjunction of view clauses employed by the RDF/S view
definition language RVL, and the body consists of XPath atoms that facilitate
querying tree-structured XML sources. The former is used in order to point
out the instantiation of RDF/S schemas with appropriate resources residing
in our XML data sources. Employing some non interpreted built-in predicates
(e.g., concat, split) for handling more intricate cases (like complex keys or string
manipulation) enhances the expressiveness of the mappings.
As far as these mappings are concerned, they are interpreted in a constraint

- oriented way implementing the GLAV approach of our middleware. We can
map a view over the global RDF/S to a view over local XML sources, and each
of these mappings is captured with the help of constraints. Constraints describe
both the RDF/S schema in terms of the XML sources (GAV) and the XML
sources in terms of the global RDF/S schema (LAV).

The ICS-FORTH Semantic Web Integration Middleware (SWIM) 5

3.2 Query Reformulation and Optimization

Another powerful functionality of the SWIM is its ability to reformulate queries.
RQL queries, expressed in terms of the RDF/S virtual schema, result in mini-
mized queries expressed in terms of the XML sources by gradually applying a
number of chasing/backchasing [3], [4], [5] steps. The use of this algorithm is
proven to be sound and complete for disjunctions of conjunctive queries in the
presence of disjunctive embedded dependencies (DEDs). This is guaranteed by
the use of the Chase/Backchase algorithm given this type of input.
A query is chased with the help of the constraints that have been defined

to express the semantics of the XML and RDF data models and in addition,
with constraints (if any) coming from the XML data sources i.e., specification of
keys and foreign keys, as well as, of domain constraints (e.g., enumerated types).
The result of chasing is backchased for producing a minimal reformulation. These
minimized queries are simplified (retaining as few predicates as possible) and the
redundant ones are eliminated. In this way we guarantee that we query the XML
sources with the minimum possible queries. Finally, the minimized reformulated
queries are translated into XPath and/or XQuery.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison - Wesley,
1995.

2. Leopoldo Bertossi and Loreto Bravo. Inconsistency Tolerance in Knowledgebases,
Databases and Software Specifications, chapter Consistent Query Answers in Vir-
tual Data Integration Systems. Springer, 2004.

3. Alin Deutsch and Val Tannen. Querying XML with Mixed and Redundant Storage.
Technical report, University of Pennsylvania, 2002.

4. Alin Deutsch and Val Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. In Proceedings of the 29th VLDB Conference, Berlin,
Germany, 2003.

5. Alin Deutsch and Val Tannen. Reformulation of XML Queries and Constraints.
In Proceedings of the International Conference on Database Theory (ICDT), 2003.

6. Marc Friedman, Alon Levy, and Todd Millstein. Navigational Plans for Data Inte-
gration. In Proceedings of the sixteenth national conference on artificial intelligence
and eleventh innovation applications of AI conference on Artificial intelligence and
innovative applications of artificial intelligence, pages 67–73, 1999.

7. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proceedings of the 11th Inter-
national World Wide Web Conference (WWW), Honolulu, Hawaii, 2002.

8. A. Levy. Answering Queries Using Views: A Survey. The International Journal
on Very Large Data Bases, 2001.

9. Alon Y. Levy. Logic-Based Techniques in Data Integration. In Jack Minker, editor,
Workshop on Logic-Based Artificial Intelligence, Washington, DC, June 14-16,
1999, College Park, Maryland, 1999. Computer Science Department, University of
Maryland.

10. Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and Dimitris Plex-
ousakis. Viewing the Semantic Web Through RVL Lenses. In Proceedings of

6 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

the Second International Semantic Web Conference (ISWC’03), Sanibel Island,
Florida, USA, 20-23 October, 2003.

11. Amit Sheth and Vipul Kashyap. So Far (Schematically) yet So Near (Seman-
tically). In Proceedings of the IFIP WG 2.6 Database Semantics Conference on
Interoperable Database Systems (DS-5), 1992.

12. J. Ullman. Information Integration Using Logical Views. Theoretical Computer
Science, 239(2):189–210, 2000.

13. XML Path Language (XPath) 1.0. http://www.w3.org/tr/xpath/.
14. XML Path Language (XPath) 2.0. http://www.w3.org/tr/xpath20/.
15. XQuery 1.0: An XML Query Language. http://www.w3.org/tr/xquery/.

Integrating XML Data Sources using RDF/S
Schemas: The ICS-FORTH Semantic Web

Integration Middleware (SWIM)

Ioanna Koffina1, Giorgos Serfiotis1, Vassilis Christophides1, Val Tannen2, and
Alin Deutsch3

1 Institute of Computer Science, FORTH
Vassilika Vouton P.O 1385 GR 71110, Heraklion, Greece

and
Department of Computer Science, University of Crete

GR 71409, Heraklion, Greece
{koffina,serfioti,christop}@ics.forth.gr

2 Computer and Information Science Department, UPenn
200 South 33rd Street, Philadelphia, Pennsylvania, USA

val@cis.upenn.edu
3 Department of Computer Science & Engineering, UCSD

9500 Gilman Drive La Jolla, CA 92093, USA
deutsch@cs.ucsd.edu

1 Introduction

Digital libraries are collections of resource descriptions (also called metadata)
that actually describe the catalogue data (i.e., digitized information). In general,
these metadata are stored in diverse sources (e.g., relational or object databases,
XML data sources, text files) distributed on the Web. One of the main challenges
for the digital library community is the integration of such metadata sources in
order to provide users with a common vocabulary for searching and browsing
them.
The Semantic Web (SW) offers relevant approaches and standards that can

handle these problems. More precisely, RDF (or other SW ontology languages)
can be used as a common framework for expressing the information by providing
a semantically rich representation language for metadata. In this context, a SW
integration middleware (SWIM) should be employed for the integration of the
heterogeneous and distributed sources. In particular, we propose a SWIM that
provides a useful, comprehensive and high-level access to library metadata that
reside in relational databases (RDB) or XML sources, by offering a virtual,
mediated RDF/S schema.
There are many issues involved in the functionality of a SWIM. In particular,

a SWIM should facilitate users to formulate queries against the mediated RDF/S
schema using declarative languages (such as RQL [7]), as well as, support further
abstraction levels using declarative view definition languages (e.g., RVL [10]). In
a nutshell, SWIM should offer the following services: (a) establish mapping rules
between XML and RDF and between RDB and RDF, (b) verify the conformance

2 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

of these mappings w.r.t the semantics of the employed schemas, (c) reformulate
RDF/S queries against RDB or XML sources, and (d) combine these queries
with RVL views.

In order to address effectively and efficiently the above requirements, we
should choose a uniform and expressive logic framework to define SWIM integra-
tion services. This framework should exploit background theory on conjunctive
queries and query containment and minimization [1].

An architecture based on mediators is highly beneficial for deploying a SWIM.
There exist two main approaches for integrating data sources [2] using mediator-
based architectures: Global-as-View (GAV) [12] and Local-as-View (LAV) [9],
[8]. The former provides descriptions of the global schema in terms of the views
of local sources and relies on simple query reformulation techniques (i.e., query
unfolding). The latter considers local sources as materialized views specified
in terms of the global schema. LAV supports easily the evolution of the data
integration system by just adding or removing the descriptions of local sources.
In our work we advocate a hybrid approach called GLAV [6], which combines the
previous advantages and exceeds the expressive power of both GAV and LAV.

2 A Motivating Example

Let’s assume an XML source whose content is described by a DTD or an XML
Schema (see Figure 1). XML data from this source contain information about
Museums, exhibiting some artifacts for which we want to know their creator.
Data stored in such sources can be queried using an XML query language like
XPath [13], [14] or XQuery [15].

Now suppose that we add on top of this repository an RDF/S schema from
the cultural domain. This mediated RDF/S schema can be queried using RQL
and it can be used for defining personalized views with the help of RVL. However,
since there are no actual RDF data, we need to reformulate the RQL queries
expressed against this virtual RDF/S schema into queries appropriate for our
XML source. For example, the following RQL query:

SELECT X
FROM {X}exhibits{Y}, {Y}denom{Z}
WHERE Z = “Louvre”

will be reformulated to the following XQuery query:

The ICS-FORTH Semantic Web Integration Middleware (SWIM) 3

SWIM Mapping

XPath,

XQuery

XML DATA

Semantic

Web

RDF Schema (community ontology)

RQL RDF DataRQL RDF Data

XML DTD or Schema (community sources)Deep Web

ReformulationReformulation

Artist
exhibits

Museum

Sculptor

denom
Literal

school
Painter

Literal

Literal

name

Museum

name Collection

@kind Artifact

title Artist

@name @ref

String

String

String

String String

*

*

?
?

Fig. 1. Republishing XML as RDF

<RDF>

{
<Bag>
{
for $var0 in document(“art.xml”)//Museum
for $var1 in $var0/name
for $var2 in $var0//Artist/@name
where $var1/text()=“Louvre”
return {$var2/text()}

}
</Bag>

}
</RDF>

This reformulation involves several challenging issues. First of all, the schemas
employed by our XML sources and the RDF/S mediator are different. Their dis-
crepancies, usually called heterogeneity conflicts, can be classified under three
axes: syntactic, structural and semantic [11]. As we can see in our example
(Figure 1), we need to view the XML data through the RDF data model (syn-
tactic conflict), to resolve categorization conflicts, given that in RDF/S there is a
class hierarchy while in XML there isn’t (structural conflict), as well as address
naming mismatches; for instance the “name” of a Museum in XML is called
“denomination” in RDF/S (semantic conflict).

4 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

In order to reconciliate the heterogeneous representations of our data we
need to define appropriate mapping rules. Choosing an expressive but tractable
logical framework to map data from XML to RDF/S is crucial for the success of
a SWIM. These mappings are used for reformulating queries issued against the
virtual RDF/S schema into queries acceptable by our XML sources. However,
more complex mappings (in order to increase expressiveness) render query re-
formulation harder. Query reformulation becomes more complex if we take into
consideration the presence of constraints capturing the semantics of both the
RDF/S and XML data models, as well as, application-specific constraints com-
ing from the schema (if any) of XML sources (like keys, foreign keys etc.). So,
there is a need for a sound and complete reformulation algorithm.
Since reformulated queries are evaluated to remote sources and mediator

queries resulting from automated manipulation/generation may entail redundan-
cies, their optimization is crucial. In particular, optimization tries to eliminate
redundant queries and to simplify queries by removing redundant predicates.

3 Contributions

In this context, we propose a middleware called ICS-FORTH SWIM (Semantic
Web Integration Middleware) supporting the following functionalities:

3.1 A Formal Framework for Mapping Specification

As discussed previously, choosing a logical framework for defining the mappings
is of great importance. Our idea was to represent both RDF and XML data
models as first-order logic predicates and capture their semantics through ap-
propriate constraints. In this way we reduce RDF to XML query reformulation
problem to the relational equivalent one, and thus, we can reuse existing tech-
niques for relational query containment and minimization.
More precisely, we rely on Linear Datalog (non-recursive Datalog without

negation) for establishing the mappings and translating the RQL/RVL queries
and views issued against the virtual RDF/S schema. The head of the Datalog
rules consists of a conjunction of view clauses employed by the RDF/S view
definition language RVL, and the body consists of XPath atoms that facilitate
querying tree-structured XML sources. The former is used in order to point
out the instantiation of RDF/S schemas with appropriate resources residing
in our XML data sources. Employing some non interpreted built-in predicates
(e.g., concat, split) for handling more intricate cases (like complex keys or string
manipulation) enhances the expressiveness of the mappings.
As far as these mappings are concerned, they are interpreted in a constraint

- oriented way implementing the GLAV approach of our middleware. We can
map a view over the global RDF/S to a view over local XML sources, and each
of these mappings is captured with the help of constraints. Constraints describe
both the RDF/S schema in terms of the XML sources (GAV) and the XML
sources in terms of the global RDF/S schema (LAV).

The ICS-FORTH Semantic Web Integration Middleware (SWIM) 5

3.2 Query Reformulation and Optimization

Another powerful functionality of the SWIM is its ability to reformulate queries.
RQL queries, expressed in terms of the RDF/S virtual schema, result in mini-
mized queries expressed in terms of the XML sources by gradually applying a
number of chasing/backchasing [3], [4], [5] steps. The use of this algorithm is
proven to be sound and complete for disjunctions of conjunctive queries in the
presence of disjunctive embedded dependencies (DEDs). This is guaranteed by
the use of the Chase/Backchase algorithm given this type of input.
A query is chased with the help of the constraints that have been defined

to express the semantics of the XML and RDF data models and in addition,
with constraints (if any) coming from the XML data sources i.e., specification of
keys and foreign keys, as well as, of domain constraints (e.g., enumerated types).
The result of chasing is backchased for producing a minimal reformulation. These
minimized queries are simplified (retaining as few predicates as possible) and the
redundant ones are eliminated. In this way we guarantee that we query the XML
sources with the minimum possible queries. Finally, the minimized reformulated
queries are translated into XPath and/or XQuery.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison - Wesley,
1995.

2. Leopoldo Bertossi and Loreto Bravo. Inconsistency Tolerance in Knowledgebases,
Databases and Software Specifications, chapter Consistent Query Answers in Vir-
tual Data Integration Systems. Springer, 2004.

3. Alin Deutsch and Val Tannen. Querying XML with Mixed and Redundant Storage.
Technical report, University of Pennsylvania, 2002.

4. Alin Deutsch and Val Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. In Proceedings of the 29th VLDB Conference, Berlin,
Germany, 2003.

5. Alin Deutsch and Val Tannen. Reformulation of XML Queries and Constraints.
In Proceedings of the International Conference on Database Theory (ICDT), 2003.

6. Marc Friedman, Alon Levy, and Todd Millstein. Navigational Plans for Data Inte-
gration. In Proceedings of the sixteenth national conference on artificial intelligence
and eleventh innovation applications of AI conference on Artificial intelligence and
innovative applications of artificial intelligence, pages 67–73, 1999.

7. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proceedings of the 11th Inter-
national World Wide Web Conference (WWW), Honolulu, Hawaii, 2002.

8. A. Levy. Answering Queries Using Views: A Survey. The International Journal
on Very Large Data Bases, 2001.

9. Alon Y. Levy. Logic-Based Techniques in Data Integration. In Jack Minker, editor,
Workshop on Logic-Based Artificial Intelligence, Washington, DC, June 14-16,
1999, College Park, Maryland, 1999. Computer Science Department, University of
Maryland.

10. Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and Dimitris Plex-
ousakis. Viewing the Semantic Web Through RVL Lenses. In Proceedings of

6 I. Koffina, G. Serfiotis, V. Christophides, V. Tannen, A. Deutsch

the Second International Semantic Web Conference (ISWC’03), Sanibel Island,
Florida, USA, 20-23 October, 2003.

11. Amit Sheth and Vipul Kashyap. So Far (Schematically) yet So Near (Seman-
tically). In Proceedings of the IFIP WG 2.6 Database Semantics Conference on
Interoperable Database Systems (DS-5), 1992.

12. J. Ullman. Information Integration Using Logical Views. Theoretical Computer
Science, 239(2):189–210, 2000.

13. XML Path Language (XPath) 1.0. http://www.w3.org/tr/xpath/.
14. XML Path Language (XPath) 2.0. http://www.w3.org/tr/xpath20/.
15. XQuery 1.0: An XML Query Language. http://www.w3.org/tr/xquery/.

