

WP3 Task 3.9

Automatic, Context-of-capture based Categorization, Structure Detection and Segmentation of News Telecasts

Partners involved

- Center for Computing Technologies (TZI), University of Bremen, Germany Arne Jacobs, George Ioannidis
- Laboratory of Distributed Multimedia Information Systems and Applications, Technical University of Crete, Chania, Greece Nektarios Moumoutzis, Stavros Christodoulakis
- Fraunhofer Institute for Media Communication (IMK), Sankt Augustin, Germany Martha Larson

Overview

- Motivation
- . Goals
- System Architecture
 - Stochastic parser
 - Audio-/visual recognizers
 - Semantic recognizer
- Plans for JPA3

Motivation

- Domain: News telecasts
- News telecasts are structured
- All instances of one news format follow the same structure
- => News formats can be modeled
- News is composed of story units
- A story unit can be associated with a topic

Goals

- Main goal: Make news structure explicit for the user to be usable for search and retrieval
- Derived goals:
 - News format modeling
 - Structure detection
 - Segmentation
 - Context-of-Capture-based categorization

Overview

- Motivation
- . Goals
- System Architecture
 - Stochastic parser
 - Audio-/visual recognizers
 - Semantic recognizer
- Plans for JPA3

System architecture

System architecture

Stochastic parser

- News formats can be modeled using a context-free grammar
 - Terminals correspond to audio-/visual structuring elements (here "tokens")
- But: Token detection may be erroneous
- Some rules are more probable than others
- => Use of a stochastic context-free grammar
- Robust against misdetections

Stochastic parser (2)

- (Manually)
 created a
 grammar for
 "CNN Headline
 News"
- including identification of 21 structural tokens

```
Broadcast --> Intro Stories Weather Stories Misc
   Sports Stories PreviewPresentation
Intro --> MainTitle HeadlinesPresentation
Intro --> MainTitle
Intro --> HeadlinesPresentation
Stories --> Story
Stories --> Story Stories
Story -->Presentation
Weather --> USMap IslandMap ExtendedForecast
USMap --> TemperatureMap PressureMap
USMap --> PressureMap TemperatureMap
Misc --> PreviewPresentation ComingUpYourHealth
   Sponsored_Commercials TopStories
   DollarsAndSense Commercials
ComingUpYourHealth --> ComingUp YourHealth
ComingUpYourHealth --> YourHealth ComingUp
ComingUpYourHealth --> ComingUp
YourHealth --> YourHealthScreen YourHealthScreen
Sponsored_Commercials --> TechTrendsSponsor
Sponsored Commercials --> Commercials
Commercials --> CommercialsIntro BlackFrames
TopStories --> TopStoriesIntro Presentation
DollarsAndSense --> DollarsAndSenseIntro
    DollarPresentation Presentation
DollarsAndSense --> DollasAndSenseIntro
   Presentation Presentation
Sports --> SportsBlock PlayOfTheDayblock
   Commercials
SportsBlock --> SportsIntro SportsOutro
PlayOfTheDayblock --> PlayOfTheDayIntro
    PlayOfTheDayOutro
```


Stochastic parser (3)

The grammar is trained with manually created token sequences

```
Intro --> MainTitle HeadlinesPresentation[0.8]
Intro --> MainTitle [0.2]
```

 When presented a sequence of detected tokens, the parser finds the most probable generating tree

Stochastic parser (4)

- Implementation
 - Almost finished
 - Based on the *JavaChart* open source parser (http://nlpfarm.sourceforge.net/javachart/) that has been extended to handle probabilistic grammar rules

System architecture

Visual recognizer

- Two modules currently:
 - Unsupervised anchor shot detection
 - Anchor shots differ between instances of one series
 - . Anchor shots are very similar inside one instance
 - Only parameter: Nr. of expected anchor shot types
 - Supervised token classification
 - Visual tokens may be shown only once in an instance
 - Tokens are very similar between instances
 - Supervised training of token models

Anchor shot detection

Average total error: 1,09%

Average error regarding presentations: 8,42%

Token classification

- Three stage process:
 - Classify single frames, based on
 - Visual characteristics (color, texture)
 - Eigenface features
 - Do relaxation labeling on frames with temporal coherence constraint
 - Do relaxation labeling on contiguous segments using model-based constraints

Token classification (2)

- Relaxation labeling constraints based on the following rules:
 - After the "Intro" there is always a "Presentation".
 - After a "Presentation" there may follow a "Map", a "Report", or the "Credits", where "Presentation" followed by "Report" occurs less often.
 - A "Map" is always followed by a "Report".
 - After a "Report", there are always the "Credits".
 - The "Credits" are always followed by a "Presentation".

	"Intro"	"Presentation"	"Map"	"Report"	"Credits"
"Intro"	0.5	0.5	-1	-1	-1
"Presentation"	-1	0.5	0.5	0.25	0.5
"Map"	-1	-1	0.5	0.5	-1
"Report"	-1	-1	-1	0.5	0.5
"Credits"	-1	0.5	-1	-1	-1

Class	Precision	Recall
"Intro"	1	1
"Presentation"	0.958	0.953
"Map"	0.861	0.912
"Report"	0.993	1
"Credits"	1	1

Audio recognizer

- Speech-/Non-speech segmentation
- Speaker segmentation
- Speaker clustering
 - Will be used for token detection
- Keyword spotting
 - Keyword selection based on the Context-of-Capture model
 - Used for topic categorization

Audio recognizer (2)

• Work in progress:

- Combination of the robustness of word-based speech recognition with the flexibility of syllablebased speech recognition (syllable-based recognition is not constrained to a pre-defined vocabulary)
- Determination of the optimal balance between reliance on phonotactic information and reliance on acoustic information for keyword spotting in challenging audio conditions

Audio recognizer (3)

• Work in progress (2):

- Experimentation with compositions of keyword clusters to detect topics (appreciable advantages are to be gained from creating clusters that include longer keywords, which can be robustly recognized)
- Experimentation with different keyword lists, facilitated by a web interface to a server-based keyword spotter

System architecture

Semantic recognizer

- Receives the generating tree from the parser
- Semantically annotates news segments
 - News story categorization:
 Sports, Weather, Politics, Economics, Social
- Upper ontology based on News-ML
 - Using OWL and an OWL/MPEG-7 interoperability framework
- Specialized domain ontologies for different topic classes

Semantic recognizer (2)

- But: News story boundaries do not necessarily coincide with boundaries of parsed segments
 - Topic change can then only be detected by textual means
 - Need for topic segmentation based on lexical cohesion

Semantic recognizer (3)

- Current implementation
 - Topic modeling based on lexical chains
 - Exploitation of news ontologies and semantic relationships of WordNet.
 - News story segmentation based on lexical chaining of the news telecast text.

Overview

- Motivation
- . Goals
- System Architecture
 - Stochastic parser
 - Audio-/visual recognizers
 - Semantic recognizer
- Plans for JPA3

Plans for JPA3

- Provide browsing and access capabilities based on analysis results
- Detection of non-structuring tokens
 - Interview, debate, correspondent
- Account for more topic classes
- Automatically identify token classes
- Enhancement of keyword spotting
- Large-vocabulary speech recognition

NETWORK OF EXCELLENCE ON DIGITAL LIBRARIES

Questions?

