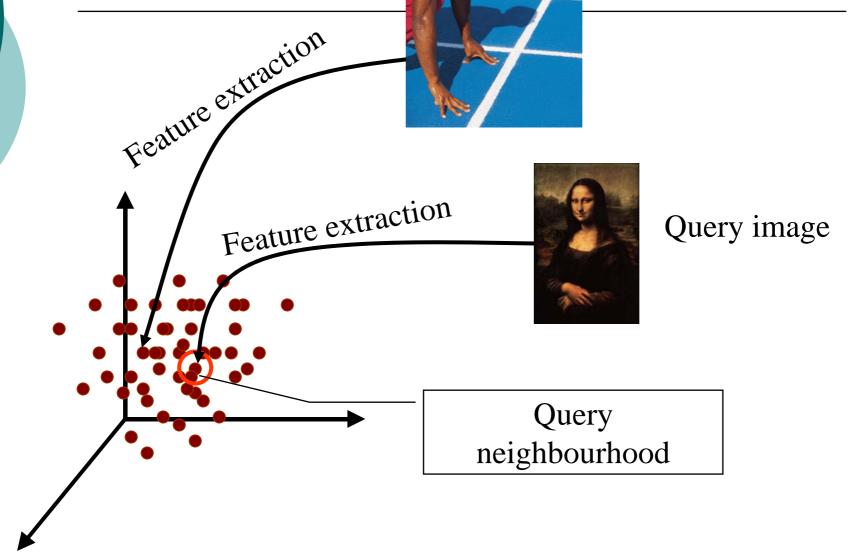
Task 2.6 Advanced Access Structures for Complex Similarity Measures

Participants: UMIT Sören Balko, Hans-J. Schek ISTI-CNR Giuseppe Amato MUNI Pavel Zezula

> Giuseppe Amato giuseppe.amato@isti.cnr.it


Task 2.6: Objectives (JPA2)

- o General Objective
 - Develop and enhance state of the art techniques for efficient similarity search
- Specific Objectives (JPA2)
 - develop index structures that
 - efficiently support nearest neighbour, range and ranking queries
 - o operate on any kind of multimedia data
 - o are generic in the metric distance measure to be employed
- Operational Objectives (JPA2)
 - Integrate existing metric indexing with VA-file like quantisation approaches
 - Design of distributed access methods for similarity search in metric spaces
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata
 - Survey of the state of the art on similarity search in metric spaces

- Similarity search and digital libraries: basics
- Work carried out in JPA2
 - Integrate existing metric indexing with VA-file like quantisation approaches
 - Design of distributed access methods for similarity search in metric spaces
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata
- Future work

- Similarity search and digital libraries: basics
- Work carried out in JPA2
 - Integrate existing metric indexing with VA-file like quantisation approaches
 - Design of distributed access methods for similarity search in metric spaces
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata
- Future work

Similarity search and Digital Libraries

- Similarity search offers a new search paradigms to multimedia intensive Digital Libraries
 - Sometimes the content of documents is not sufficiently described in manually generated metadata
 - Query by examples, using the similarity search (or content based search) paradigm is a good solution
- Examples:
 - Was this shot (a shot very similar to this) used in other movies?
 - Is there another picture similar to this?
 - Is there a picture containing something similar to this?
 - ...
- Similarity search is intended to be used with (no to substitute) other search paradigms
- Particularly useful to solve unplanned or unforeseen searches
 - Example: was a censored shot used in some documentary without permission?
 - Clearly if someone used a censored shot, no record was maintained of it
 - similarity search can help to easily discover such occurrences

Similarity search: metric space approach

• Metric spaces:

- No assumption on object representation
- Distance d between objects should satisfy the following:

(1)
$$d(O_x, O_y) = d(O_y, O_x)$$
 (symmetry)
(2) $0 < d(O_x, O_y) < \infty, O_x \neq O_y$ (positiviness)
(3) $d(O_x, O_x) = 0$ (reflexivity)
(4) $d(O_x, O_y) \le d(O_y, O_z) \le d(O_z, O_y)$ (triangle ineq.)

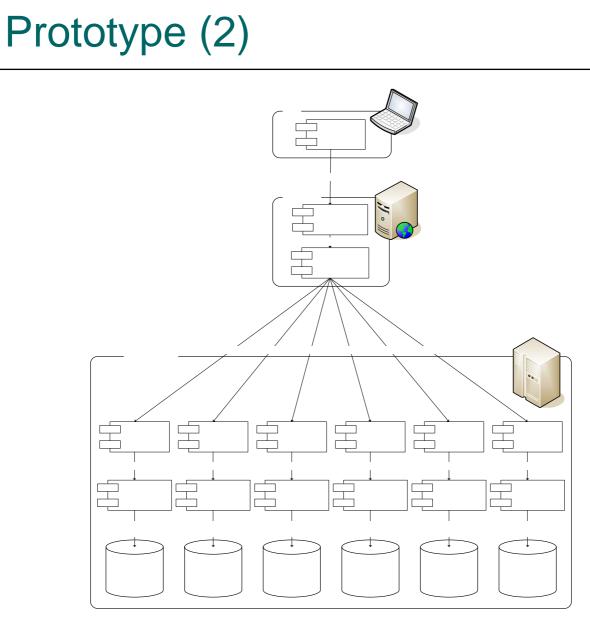
Vector spaces + Minkowsky distances are metric spaces

- Similarity search and digital libraries: basics
- Work carried out in JPA2
 - Integrate existing metric indexing with VA-file like quantisation approaches (UMIT)
 - Design of distributed access methods for similarity search in metric spaces
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata
- Future work

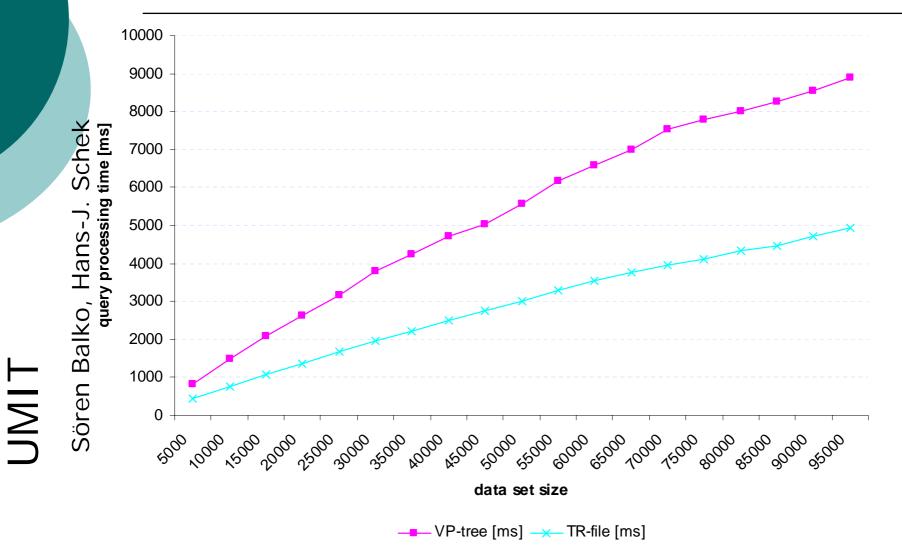
Integrate existing metric indexing with VA-file like quantisation approaches

- Generic metric access method (MAM) for arbitrary distance measures and data domains
 - Efficient kNN query processing including costbalanced ranking support
 - Straightforward, scalable intra-query parallelism
 - Constrained main memory consumption and modest overall resource consumption
- Prototype implementation (CBIR, sequence matching, others)
- Formal foundations (correctness proof, analytic cost models etc.)

JMIT


Prototype (1)

o Content-based image retrieval prototype


- Index-supported similarity search in roughly 100.000 images
- Earth Mover's Distance atop 5-region color signatures (of 9 or 12 most frequent colors)
- Intra-query-parallelism with 6 worker nodes processing disjoint index chunks

TIML

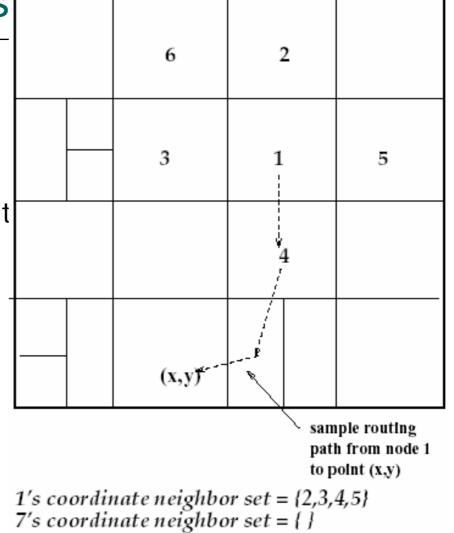
UMIT Sören Balko, Hans-J. Schek

Experimentation

- Similarity search and digital libraries: basics
- Work carried out in JPA2
 - Integrate existing metric indexing with VA-file like quantisation approaches
 - Design of distributed access methods for similarity search in metric spaces (MUNI+CNR)
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata
- Future work

Distributed index for similarity search in metric spaces: MCAN

- The basic idea is:
 - To extend CAN (Content Addressable Networks) to support storage and retrieval of metric space objects enabling CAN to perform similarity searching in the metric spaces -> MCAN
- CAN:
 - CAN is a distributed hash-based data structure
 - using an hash function, every object is mapped in a N-dimensional space
 - the space is divided in zones (chunks of the entire hash table)
 - each physical machine corresponds to one zone
 - each CAN node holds information about adjacent zones

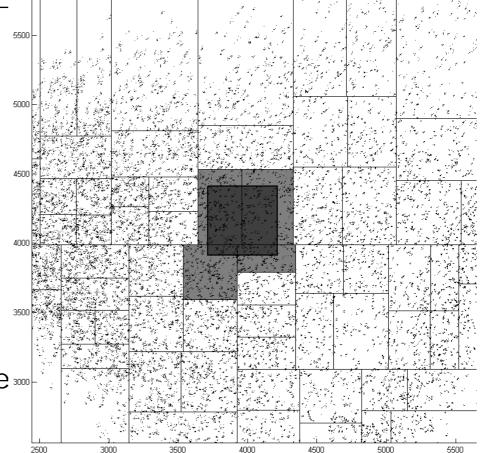

MUNI and ISTI-CNR Pavel Zezula, Giuseppe Amato

CAN: Data acces

 CAN uses greedy routing

 (i.e. jumps to the neighbor zone nearest to the target point)

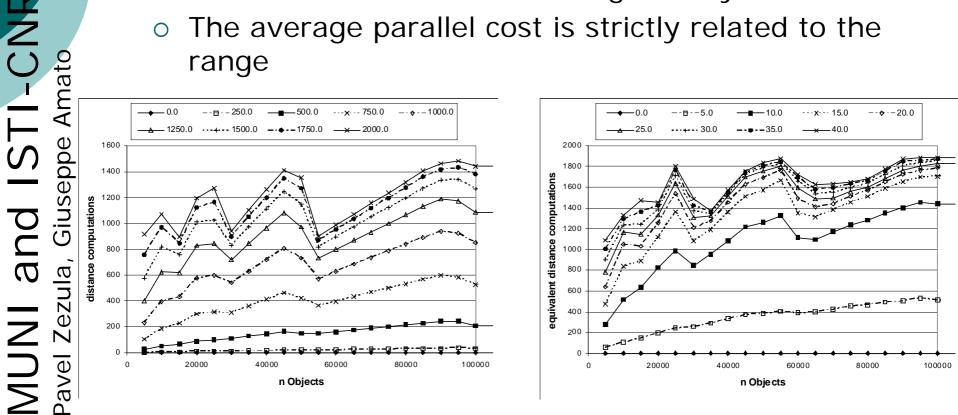
MCAN (ISTI-CNR and MUNI)


- Defining special hash function such that similar objects are placed close one to each other
 - Close means on the same node on in close nodes
 - Distances on MCAN representation are shorter than in the original metric space
- Similarity search is performed in the MCAN representation
 - Filtering-out remaining non qualifying objects

MCAN: Range Query

 The query has been mapped into the vector CAN space

 Because the map is contractive the candidate objects have distance from the query ≤ r


We access only the zones which own the candidate objects

MUNI and ISTI-CNR Pavel Zezula, Giuseppe Amato

MCA: RQ Experimental Results

- Keeping the number of objects per nodes limited we can limit the cost of a Range Query
- The average parallel cost is strictly related to the range

- Similarity search and digital libraries: basics
- Work carried out in JPA2
 - Integrate existing metric indexing with VA-file like quantisation approaches
 - Design of distributed access methods for similarity search in metric spaces
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata (ISTI-CNR)
- Future work

Similarity search in digital libraries with XML encoded metadata

- XML is a good option for encoding metadata
 - Easily readable by humans
 - Easily manageable by computers
- Native XML databases can be used to deal with XML encoded metadata
 - Special techniques have to be used to mix traditional database searches and full text searches
- Emerging trends:
 - Using XML to also to encode low level features extracted from multimedia documents
 - o E.g MPEG7/21

ISTI-CNR Giuseppe Amato

Complex similarity search on XML data

- The objective here is to develop techniques to
 - Allow complex queries that mix
 - Traditional search capabilities
 - o Full text search capabilities
 - Similarity based search capabilities

on XML encoded metadata

- Example:
 - Search for videos related to Iraqi war, taken on July 2005, containing a shot showing a scene similar to a given picture

The XMLSE (XML Search Engine)

- XMLSE is able to deal with any arbitrary XML file.
 - Special indexes are used to index
 - o Textual elements
 - Visual descriptor elements
 - XQuery syntax was extended to deal with similarity operators: XQuery+
 - Special techniques to obtain an efficient XQuery+ query processor able to deal with
 - o semi structured data
 - o path expressions containing wildcards
 - o approximate/similarity match

ISTI-CNR Giuseppe Amato

Query example

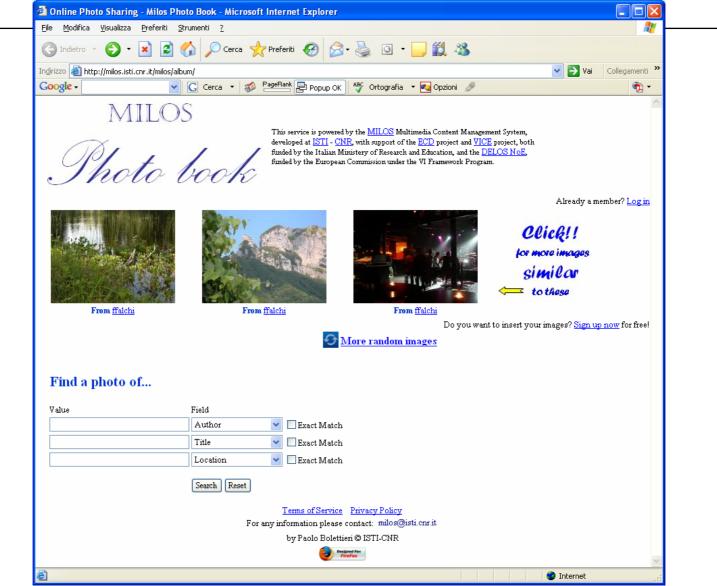
 Search for images taken by John Smith related to his holydays in Prague, similar to a given picture (e.g. showing Charles Bridge)

I STI-CNR Giuseppe Amato

for \$a in /Mpeg7, \$b in /Mpeg7

where

\$a//MediaUri='D:\ANSAnumb\104.jpg' and


\$b//Author="John Smith" and

\$b//FreeTextAnnotation ~ "holydays in Prague" and

\$ a//VisualDescriptor ~ \$b//VisualDescriptor

return \$b

An application example using XMLSE On-line demos at http://milos.isti.cnr.it

ISTI-CNR Giuseppe Amato

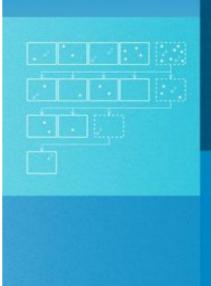
- Similarity search and digital libraries: basics
- Work carried out in JPA2
 - Integrate existing metric indexing with VA-file like quantisation approaches
 - Design of distributed access methods for similarity search in metric spaces
 - Adoption of similarity search techniques in digital libraries by way of XML encoded metadata

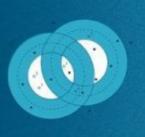
o Future work

Task 2.6: Objectives (JPA3)

- General Objective
 - Develop and enhance state of the art techniques for efficient similarity search
- Specific Objectives (JPA3=JPA2)
 - develop index structures that
 - efficiently support nearest neighbour, range and ranking queries
 - o operate on any kind of multimedia data
 - o are generic in the metric distance measure to be employed
- o Operational Objectives (JPA3)
 - Enhancement of techniques for distributed access methods
 - Investigation of new directions for building index structures specifically addressed to efficient/effective image searching
 - Investigate techniques that are also tuneable in addition to scalable
 - Dissemination of knowledge

Similarity search: The metric space approach


 For more information, see our book, written thanks to the DELOS support:


"Similarity search: the metric space approach", by Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, Michal Batko

published by Springer

Similarity Search

The Metric Space Approach

Pavel Zezula Giuseppe Amato Vlastislav Dohnal Michal Batko

