

 INEX 2004 Workshop Pre-Proceedings

Norbert Fuhr
Mounia Lalmas

Saadia Malik
Zoltán Szlávik

December 6-8, 2004
 Schloss Dagstuhl

International Conference and Research
Center for Computer Science

 http://inex.is.informatik.uni-duisburg.de:2004/

 http://www.delos.info/

Contents

Organisers 6

Preface 7

Acknowledgement 8

Schloss Dagstuhl 9

.Methodology 10

NEXI, Now and Next
Andrew Trotman, Börkur Sigurbjörnsson 10

If INEX is the Answer, what is the Question?
Richard A. O’Keefe 16

Building and Experimenting with a Heterogeneous Collection
Zoltán Szlávik, Thomas Rölleke 19

The Interactive Track at INEX 2004
Anastasios Tombros, Birger Larsen, Saadia Malik 24

Reliability Tests for the XCG and inex-2002 Metrics
Gabriella Kazai, Mounia Lalmas, Arjen de Vries 33

Ad hoc retrieval 41

MultiText Experiments for INEX 2004
Charles L. A. Clarke, Philip L. Tilker 41

Logic-Based XML Information Retrieval for Determining the
Best Element to Retrieve
Maryam Karimzadegan, Jafar Habibi, Farhad Oroumchian 43

Analyzing the Properties of XML Fragments decomposed from
the INEX Document Collection
Kenji Hatano, Hiroko Kinutani, Toshiyuki Amagasa, Yasuhiro Mori, Masatoshi
Yoshikawa, Shunsuke Uemura 50

1

An algebra for Structured Queries in Bayesian Networks
Jean-Noël Vittaut, Benjamin Piwowarski, Patrick Gallinari 58

IR of XML documents A collective Ranking Strategy
Maha Salem, Alan Woodley, Shlomo Geva 65

TRIX 2004 struggling with the overlap
Jaana Kekäläinen, Marko Junkkari, Paavo Arvola, Timo Aalto 72

Merging XML Indices
Giambattista Amati, Claudio Carpineto, Giovanni Romano 77

The Utrecht Blend: Basic Ingredients for an XML Retrieval
System
Roelof van Zwol, Frans Wiering, Virginia Dignum 82

Hybrid XML Retrieval Revisited
Jovan Pehcevski, James A. Thom, Anne-Marie Vercoustre 90

A Voting Method for XML retrieval
Gilles Hubert 98

The University of Amsterdam at INEX 2004
Börkur Sigurbjörnsson, Jaap Kamps, Maarten de Rijke 104

GPX - Gardens Point XML Information Retrieval at INEX 2004
Shlomo Geva 110

Hierarchical Language Models for XML Component Retrieval
Paul Ogilvie, Jamie Callan 118

Ranked Retrieval of Structured Documents with the STerm
Vector Space Model
Felix Weigel, Klaus U. Schulz, Holger Meuss 126

Component ranking and Automatic Query Refinement for XML
Retrieval
Yosi Mass, Matan Mandelbrod 134

.Ad hoc and Relevance Feedback Track 141

2

TIJAH at INEX 2004 Modeling Phrases and Relevance Feed-
back
Vojkan Mihajlović, Georgina Ramı́rez, Arjen P. de Vries, Djoerd Hiemstra,
Henk Ernst Blok 141

Flexible XML Retrieval Based on the Extended Vector Model
Carolyn J. Crouch, Aniruddha Mahajan, Archana Bellamkonda 149

.Relevance Feedback Track 154

Relevance Feedback for XML Retrieval
Yosi Mass, Matan Mandelbrod 154

.Ad hoc and Heterogeneous Track 158

A Universal Model for XML Information Retrieval
Maria Izabel M. Azevedo, Lucas Pantuza Amorim, Nivio Ziviani 158

Cheshire II at INEX 04: Fusion and Feedback for the Adhoc
and Heterogeneous Tracks
Ray R. Larson 163

Using a relevance propagation method for Adhoc and Hetero-
geneous tracks in INEX 2004
Karen Sauvagnat, Mohand Boughanem 171

.Heterogeneous Track 177

A Test Platform for the INEX Heterogeneous Track
Serge Abiteboul, Ioana Manolescu, Benjamin Nguyen, Nicoleta Preda 177

EXTIRP 2004: Towards heterogeneity
Miro Lehtonen 183

.Natural Language Processing Track 188

NLPX at INEX 2004
Alan Woodley, Shlomo Geva 188

3

Analysing Natural Language Queries at INEX 2004
Xavier Tannier, Jean-Jacques Girardot, Mihaela Mathieu 196

.Interactive Track 204

Kyungpook National University at INEX 2004: Interactive Track
Heesop Kim, Heejung Son 204

.APPENDIX 211

Workshop schedule 211

.Ad hoc track 212

INEX04 Guidelines for Topic Development
Börkur Sigurbjörnsson, Birger Larsen, Mounia Lalmas, Saadia Malik 212

Narrowed Extended XPath I (NEXI)
Andrew Trotman, Börkur Sigurbjörnsson 219

INEX 2004 Retrieval Task and Result Submission Specification
Mounia Lalmas, Saadia Malik 237

INEX 2004 Relevance Assessment Guide
Gabriella Kazai, Mounia Lalmas, Benjamin Piwowarski 241

Evaluation Metrics 2004
Arjen P. de Vries, Gabriella Kazai, Mounia Lalmas 249

.Heterogeneous track 251

Guidelines for Topic Development in Heterogeneous Collections
Virginia Dignum, Roelof van Zwol 251

Track Result Submission Specification
Zoltán Szlávik, Thomas Rölleke 257

.Interactive track 260

4

Track Guidelines
Tassos Tombros, Birger Larsen, Saadia Malik 260

HyREX for INEX iTrack
Saadia Malik, Tassos Tombros, Birger Larsen 264

Instructions for Searchers 270

5

Organisers

Project Leaders:
Norbert Fuhr, University of Duisburg-Essen
Mounia Lalmas, Queen Mary University of London

Contact person:
Saadia Malik, University of Duisburg-Essen

Topic format specification:
Börkur Sigurbjörnsson, University of Amsterdam
Andrew Trotman, University of Otago

Online relevance assessment tool:
Benjamin Piwowarski, University of Chile

Metrics:
Gabriella Kazai, Queen Mary University of London
Arjen P. de Vries, Centre for Mathematics and Computer Science

Interactive Track:
Birger Larsen, Royal School of Library and Information Science
Saadia Malik, University of Duisburg-Essen
Anastasios Tombros, Queen Mary University of London

Relevance feedback track:
Carolyn Crouch, University of Minnesota-Duluth
Mounia Lalmas, Queen Mary, University of London

Heterogeneous Collection Track:
Thomas Rölleke, Queen Mary University of London
Zoltán Szlávik, Queen Mary University of London

Natural Language Processing:
Shlomo Geva, Queensland University of Technology
Tony Sahama, Queensland University of Technology

6

Preface
The ultimate goal of many information access systems (e.g. digital libraries, web, intranet) is to
provide the right content to their end-users. This content is increasingly a mixture of text, multimedia,
metadata, and is formatted according to the adopted W3C standard for information repositories, the so-
called eXtensible Markup Language (XML). Whereas many of today’s information access systems
still treat documents as single large (text) blocks, XML offers the opportunity to exploit the internal
structure of documents in order to allow for more precise access thus providing more specific answers
to user requests. Providing effective access to XML-based content is therefore a key issue for the
success of these systems.

The aim of the INEX campaign (Initiative for the Evaluation of XML Retrieval) is to provide the
infrastructure and a framework to investigate the performance of information retrieval systems that
aim at providing effective access to XML content. More precisely, the aim of the INEX initiative is to
provide means, in the form of a large XML test collection and appropriate scoring methods, for the
evaluation of content-oriented XML retrieval systems.

The aim of the INEX 2004 workshop is to bring together researchers in the field of XML retrieval who
participated in the INEX 2004 evaluation campaign. During the past year participating organisations
contributed to the building of a large-scale XML test collection by creating topics, performing
retrieval runs and providing relevance assessments. The workshop concludes the results of this large-
scale effort, summarises and addresses encountered issues and devises a work plan for the evaluation
of XML retrieval systems.

INEX 2004 was composed of five tracks:

- Ad hoc retrieval track, which can be regarded as a simulation of how a digital library might be
used, where a static set of XML documents and their components is searched using a new set of
queries (topics) containing contain both content and structural conditions.

- Interactive track, which aims to investigate the behaviour of users when interacting with
components of XML documents.

- Heterogeneous collection track, where retrieval is on a collection comprising various XML sub-
collections from different digital libraries, as well as material from other computer science-related
resources.

- Relevance feedback track dealing with relevance feedback methods for XML.

- Natural language track where natural language formulations of structural conditions of queries
have to be answered.

The workshop is organised into presentation and workshop sessions. During the presentation sessions
participants will have the opportunity to present their approaches to XML indexing and retrieval taken
within INEX 2004, in any of the above tracks. Papers related to evaluation methodology in any of or
across the above five tracks will also be presented.

The workshop sessions will serve as discussion forums to review issues related to the creation of the
INEX topics, the definition of relevance, the use of the on-line assessment system, the development of
evaluation metrics, and the various tracks.

7

 Acknowledgement

INEX is funded by the DELOS Network of Excellence on Digital Libraries, to which we are very
thankful. We would also like to thank the IEEE Computer Society for providing us the XML
document collection. Special thanks go to Shlomo Geva for setting up the WIKI server and Gabriella
Kazai for helping with the various documentations.

We gratefully acknowledge the involvement of Börkur Sigurbjörnsson and Andrew Trotman (Topic
Format Specification), Benjamin Piwowarski (Online Assessment tool), and Gabriella Kazai and
Arjen de Vries (Metrics).

The organizers of the various tracks have done a great job and their work is greatly appreciated:
Anastasios Tombros, Birger Larsen, Thomas Rölleke, Carolyn Crouch, Shlomo Geva and Tony
Sahama.

Finally, we would like to thank the participating organisations and people for their participation to
INEX 2004 as well as their contributions to evaluation methodologies for XML retrieval.

We hope you have enjoyed the INEX 2004 campaign and have fruitful and stimulating discussions at
the workshop.

Norbert Fuhr, University of Duisburg-Essen
Mounia Lalmas, Queen Mary University of London

Saadia Malik, University of Duisburg-Essen
Zoltán Szlávik, Queen Mary University of London

December 2004

8

 Schloss Dagstuhl

Schloss Dagstuhl or Dagstuhl manor house was built in 1760 by the then reigning prince
Count Anton von Öttingen-Soetern-Hohenbaldern. After the French Revolution and
occupation by the French in 1794, Dagstuhl was temporarily in the possession of a Lorraine
ironworks. In 1806 the manor house along with the accompanying lands was purchased by the
French Baron Wilhelm de Lasalle von Louisenthal. In 1959 the House of Lasalle von
Louisenthal died out, at which time the manor house was then taken over by an order of
Franciscan nuns, who set up an old-age home there. In 1989 the Saarland government
purchased the manor house for the purpose of setting up the International Conference and
Research Center for Computer Science. The first seminar in Dagstuhl took place in August of
1990. Every year approximately 2,000 research scientists from all over the world attend the
30-35 Dagstuhl Seminars and an equal number of other events hosted at the center.

http://www.dagstuhl.de/

9

NEXI, Now and Next
Andrew Trotman

Department of Computer Science
University of Otago

Dunedin, New Zealand

andrew@cs.otago.ac.nz

Börkur Sigurbjörnsson
Informatics Institute

University of Amsterdam
Amsterdam, The Netherlands

borkur@science.uva.nl

ABSTRACT
NEXI was introduced in INEX 2004 as a query language for
specifying structured and unstructured queries on XML
documents. A language expressive enough for INEX yet simple
enough for users to get right. These goals have been achieved. In
particular, the error rate in CAS queries has dropped from 63% in
2003 to 12% in 2004. This drop is shown to be a consequence of
not only the language, but the tools introduced with it: the source
code for a parser was downloaded by 13 IP addresses, while a
web implementation was accessed 635 times from 71 addresses.

Although NEXI is suitable for the ad hoc track, it is not
sufficiently expressive enough for the heterogeneous track, or for
question answering. The syntax necessary to extend to these
purposes is proposed. This includes weighted terms and weighted
paths. The new syntax is strictly an extension so does not
invalidate any existing queries.

1. INTRODUCTION
Each of the first three INEX [4] workshops used a different query
language. At the first workshop queries were specified in XML
[6], at the second in XPath [7], and at the third in NEXI [14].
This succession of languages occurred because, as a consequence
of each workshop, new and different query types, and how to
specify them, have become clear.
The first INEX workshop was modeled on TREC, and
consequently a TREC-like topic format was chosen. Topics were
broken into four parts, title, description, narrative and keywords.
Of these, the title contained the IR query, and is consequently of
focus. For Content Only (CO) queries, the title was a two or three
word description of the topic. For Content And Structure (CAS)
queries, the title was further marked up in XML. The optional
<te> tag was used to specify target elements for the search, while
<cw> was used to identify content words that were optionally
associated with a container element, <ce>.

<Title>
 <te>tig</te>
 <cw>QBIC</cw><ce>bibl</ce>
 <cw>image retrieval</cw>
</Title>

Figure 1: An INEX 2002 query fragment (INEX topic 05).

An example query, the title element from INEX topic 05 is given
in Figure 1. In this example, the user is searching for documents
that contain the phrase “image retrieval”, contain the word QBIC
in a <bibl> element, and asking for <tig> elements to be retrieved.

It was quickly established that this query language was
insufficient for the need [11].
First, the XML format allowed the user to specify queries that
were simple mechanical processes. In the above example, once
relevant documents have been identified, the process of extracting
the <tig> (or title group) is mechanical. There is one, and only
one, <tig> element in each document. Identifying and extracting
it can be done with a simple text search.
Second, the language was not expressive enough. The target
element was specified irrespective of the context of the query. It
was not possible to specify a query of the nature “find sections
about sunny New Zealand”; the nearest such query was “find
sections from documents about sunny New Zealand” – two quite
different queries.
For the second workshop XPath [1] was adopted in the hope it
would alleviate these problems, and it did. With the addition of a
function for ranked information retrieval (about), and the
elimination of non-IR functions (e.g. contains) XPath proved
sufficiently expressive.
XPath introduced new problems! O’Keefe and Trotman [10]
provide an analysis of the failure of XPath as a query language for
INEX. Perhaps the most damming evidence is the error rate in
the official topics. Of the 30 CAS topics, 19 contained errors;
that is a 63% error rate in queries written by IR experts.
Subsequently, the INEX 2003 Queries Working Group identified
the requirements for a query language suitable for INEX [13]. In
brief, it had to look like XPath, be easier to use, and oriented to
IR.
Considerable effort was spent defining the query language NEXI
[14], used at the 2004 workshop. Designed with the sole purpose
of satisfying the requirements of INEX (and the Queries Working
Group), this language is a simplified XPath containing only the
descendant axis; while at the same time an extended XPath
containing the about function. NEXI is in use at the current
(2004) workshop.
The use of NEXI within and without INEX is examined. From
this, the conclusion is drawn that it has successfully proven to be
a suitable language for XML retrieval. Future requirements are
examined, and extensions are proposed. Adoption of these
extensions is recommended.

2. CURRENT STATE OF PLAY
The ad hoc track at INEX consists of two tasks, the Content Only
(CO) and Content and Structure (CAS) tasks.
In the CO task, it is the task of the search engine to identify
relevant document elements that satisfy a user query. By

10

definition, the query does not specify where to look, or what
elements to retrieve. A CO query is a sequence of terms, and
example of which is INEX Topic 37: “temporal database queries
and query processing”. For this query, the search engine is
expected to identify and return a relevance ranked list of
document elements about temporal database queries and query
processing.
There are two variants of the CAS task, the Strict CAS (SCAS)1
and the Vague CAS (VCAS). The queries for both are the same;
it is only the interpretation that differs – the reader is referred to
Fuhr, Malik, and Lalmas [3] for details. In a CAS query,
structural elements are included in the query. If a user wishes to
find document abstracts that discuss INEX, it is necessary to
specify <abstract> as the target element. If a user is searching for
smith, but knows they want Dr. Smith and not an ironmonger,
they may specify that Smith is an author.
The Queries Working Group at INEX 2003 [13] identified the
requirements of a query language necessary to satisfy CAS
queries within the context of INEX. In brief, that language must:

• Be a subset of XPath, so as to be familiar to the XML
community. Tag instancing was removed, axes were limited
to only the descendant axis, filters remained but the not-
equals operator was not permitted with string types.

• Support multiple data types. String and numeric types were
specified. XPath filters remained, but a restricted set of
operators was included.

• Be vaguely interpretable. It must be an IR language. To this
end, the AND operator and OR operator were specified as
ANDish and ORish.

• Specify one and only one target element (shown below to
have been violated).

Additionally, this language allowed the specification of CO
queries. It was also specified as extensible.
Trotman and Sigurbjörnsson [14] proposed NEXI, an IR query
language for XML that satisfied the requirements of the Working
Group and was subsequently adopted for the 2004 INEX. They
also provided the source code to a parser, and for INEX 2004 an
on-line parser.

2.1 Query Errors at INEX 2004
Examining the first release of the topics for 2004 (version 2004-
01), 4 of the 34 CAS queries contain errors (12%). In the CO
queries 6 of 39 contain errors (15%). The error rate in CAS is
now lower than that in CO.

2.1.1 Examining CAS errors:
Topics 137 and 158 were missing a close bracket at the end of the
query. There are corrected by appending ‘]’.

Topic 138 contained the incorrect expression
“about(.,//sec,thread implementation)” which is
incorrect in the first comma. This is corrected by removing the
erroneous comma.
Topic 161 contained the incorrect expression “about(./atl,
database access methods)” which is incorrect in so far
as it uses the child axis. This is corrected by replacing “/” with
“//”.

1 At INEX 2004, SCAS was deprecated

2.1.2 Examining CO errors:
Topics 176, 177, and 196 contained illegal punctuation. This is
corrected by removing the punctuation.
Topic 190 contained the quoted expression “"e-commerce"”
which, as the hyphen makes e-commerce a single word, is a single
word phrase. Phrases consist of strictly more than one word so
this is erroneous. This is corrected by removing the quotes.
Topics 178 and 179 contain phrases delimited with question mark
characters “?”. This is corrected by replacing those characters
with quotes.

2.2 Online Parser
In 2004 an online query syntax checker was introduced. Use was
logged, with accesses from the University of Otago stripped (to
avoid skewing by the developers). Logs were analyzed for the
period April 12th through to October 26th; between the date when
the parser went online, and when analysis began. Table 1 shows
the number of times the parser was accessed each month.
There was a total of 635 requests on 37 distinct dates from 71
internet addresses. Most of the requests occurred during April
and May. The topic submission date was May 7th. In Figure 1,
the cumulative number of requests on each day of activity is
shown. There is a clear burst of activity around the submission
date, and finishing on 11th May. Activity immediately after
submission date may be caused by late submissions.

Table 1: Parse requests to the online NEXI parser

Month Requests

April 167
May 447
June 4
July 3
August 5
September 9

Cumulative Use of Online NEXI Parser

0

100

200

300

400

500

600

700

12 Apr 26 Apr 10 May 24 May 07 Jun 21 Jun 05 Jul 19 Jul 02 Aug 16 Aug 30 Aug 13 Sep 27 Sep

R
eq

ue
st

s (
C

um
ul

at
iv

e)

Cumulative Requests
Figure 1: Cumulative use of the online NEXI parser shows

considerable use between April 27th and May 11th. The topic
submission date was May 7th. Vertical lines are shown for the

topic submission date, and each revision date.

11

After the submission date, but before the first release of the topic
set, there was a clear burst of activity (18th through 28th May), this
is likely to be the period in which topics were corrected. There
was very little activity during the period in which the topic set
was under revision, with only 3 requests between the first release
(version 2004-001) and the final release (version 2004-07).
It is hard to account for activity in August and September. The
requests were valid and the authors are using the parser for the
purpose in which it was designed (users are not hacking the
parser).
The parser was in the New Zealand time zone, whereas a time-
zone for the due and release dates was not given. Requests from
the University of Otago were removed from the logs before
analysis.

Requests by IP Address

0

10

20

30

40

50

60

70

80

90

100

R
eq

ue
st

s

Figure 2: Number of requests from each IP address in

decreasing order.

Figure 2 shows the number of requests for each accessing IP
address. The number of requests ranged from 94 to 1. The 94
accesses appears to be an outlying point; with the next highest
accesses being 36 and then 27 requests. The mean number of
requests per address was 8.9, the median being 5.
No effort has been spent trying to resolve IP addresses to
institutions; doing so is likely to decrease the number of addresses
and increase the mean and median.

2.3 Was NEXI Successful?
The initial error rate in queries has dropped from 63% in 2003 to
12% in 2004. The error rate for CAS topics is now about the
same as that in CO topics. The number of topic revisions has
halved. From this is would be reasonable to conclude changes
made between 2003 and 2004 had a marked effect on syntactic
correctness of queries. Those changes were not, however, limited
to query language changes.
First, the queries submitted to INEX were checked for syntax
errors as part of the selection process. This bias, although
present, is not a major contributing factor. Of the originally
submitted 84 CAS queries, 18 (21%) contained errors, whereas of
the 107 CO topics, 19 (18%) contained errors. These two error
rates are about equal. The error rate in the original submissions in
2003 is not known.
Second, having written XPath parsers for 2003, the participants
themselves should have been familiar with the language, and
therefore more able to write syntactically correct queries than
before.

Third, web access to an online parser was made available during
the topic development period. This has, no doubt, had an effect
on the correctness of the submitted queries.
Fourth, the source for a command line version of the parser was
attached to the language specification; and downloadable from the
web site. It was downloaded by 13 IP addresses; discussion with
some INEX participants suggests it was also used.
The decrease of errors in CAS topics is considered a sign of NEXI
success; however, there are still areas that need addressing.
During 2003, the topics underwent 12 revisions over a period of
38 days. In 2004, it took only 7 revisions, but 41 days. One can
but hope that in future years topics are submitted correctly and on
time.

3. THE FUTURE
NEXI was, by design, the simplest query language that could
possibly work. The subset of XPath was chosen in order to
ensure nothing unnecessary was included. To this end, NEXI has
proven a success for ad hoc searching, but only for ad hoc
searching – it has proven unsuitable for other types of search.
This shortfall is now addressed with additions for question
answering, heterogeneous searching, and a new wildcard.

3.1 Wildcards
The NEXI path wildcard operator, *, is defined as meaning “first
or subsequent descendant” [14]. A new “here or below” wildcard,
+, is introduced, but it is of limited use.
As //article//+ means “article or below”, //+ must mean “nothing
or below”. This nothingness is meaningless, as there must be at
least one element present. Specifying the existence of one or
more elements is done with //*. Use of //+ is therefore prohibited.
Use of two or more adjacent //+ operators is meaningless;
//article//+ and //article//+//+ are semantically equivalent. The
two forms //article//+//bm and //article//bm are also equivalent.
Use of the + inside a path is meaningless as it simply specifies
there might be a node, which is implicit in the descendant
operator.
There exists only one place this new operator can be used; the end
of a path specification. The form //*//+ is redundant, and
equivalent to //*, further restricting the use of +.
The new addition to the path syntax is:

zero_any_node: NODE_QUALIFIER '+'

which requires the following changes:

path: any_node

 | node_sequence

 | node_sequence any_node

 | node_sequence attribute_node

 | node_sequence any_node attribute_node

 | node_sequence zero_any_node

node_sequence: node

 | node_sequence node

 | node_sequence any_node node

12

 | node_sequence any_node any_node

node: named_node | tag_list_node

It is unfortunate that the late addition of the + wildcard operator
results in * meaning one or more and + meaning zero or more
because these two operators have each other’s definition in
regular expressions.
Strict interpretation: “//A//+” means at or below the “//A”
element.
Loose interpretation: “As paths are only hints, feel free to ignore
this”

3.2 Multiple Target Elements
The tag list syntax, “//(A|B)” means “either the A or the B
element”. As this syntax is not forbidden as the target element, it
might be exploited by a topic author to identify multiple target
elements. This use, although valid, is discouraged.

3.3 NEXI for Question Answering
There is currently no question answering track at INEX, however
the authors anticipate there being so. Ogilvie [9] has already
discussed the inadequacies of NEXI to fulfill this role. We
concede, it was not designed for this purpose and does not fulfill
the role. Ogilvie does, however, propose syntax for the purpose.
In place of an about function, Ogilvie suggests a weight function;
which he gives by example:

//sentence[.//event//VBD[weight(0.4 kill 0.3
assassinate 0.2 murder 0.1 shoot)] AND
.//patient//person[weight(0.4 ‘Abraham
Lincoln’ 0.4 ‘President Lincoln’ 0.1 ‘honest
Abe’ 0.1 Lincoln)]]//agent//person

weight differs from about in three ways. First, phrases are
specified using single quotes in place of double quotes. Second,
the path occurs outside the clause rather than inside it. Third,
weights for each term are given. Altering the weight to resemble
about results in:
Example:

//sentence[weight(.//event//VBD, 0.4 kill 0.3
assassinate 0.2 murder 0.1 shoot) AND
weight(.//patient//person, 0.4 "Abraham
Lincoln" 0.4 "President Lincoln" 0.1 "honest
Abe" 0.1 Lincoln)]//agent//person

the formal syntax of which is:

decimal: NUMBER | NUMBER '.' NUMBER

WEIGHT: "weight"

 weighted_co: decimal term

 | weighted_co decimal term

 weight_clause: WEIGHT '(' relative_path ','

 weighted_co ')'

additionally, the definition of filter is altered to:

filter: about_clause

 | weight_clause

 | arithmetic_clause

Strict interpretation: “In the example, only a
//sentence//agent//person element is correct, that said, it will most
likely tell me who killed honest Abe”.

Loose interpretation: “What I want is most likely a
//sentence//agent//person element that will tell me who
assassinated honest Abe. I know several ways of saying
assassinate, and honest Abe, here are some and how likely I think
you are to see them – but I might be wrong about this”.

3.3.1 QA Paths
Ogilvie notes that path semantics may require relaxation for
Question Answering. The paths may, instead, refer to a structural
annotation of the document content. In no way should NEXI be
interpreted as prohibiting any such interpretation of paths – this is
the loose interpretation embraced.

3.4 NEXI for Heterogeneous Searching
The heterogeneous track chose a subset of topics from the ad hoc
track, and added to them some special purpose topics. Of the
chosen topics, 161 and 196 contained errors (discussed above). In
version 2 of the heterogeneous topics there are 4 added topics,
one of which contains spurious punctuation (topic 4). Topics
should be checked for syntax errors before inclusion in any topic
list.
The heterogeneous track has four types of queries, Content Only
(CO), Basic CAS (BCAS), Complex CAS (CCAS) and Extended
CCAS (ECCAS).
This year CO topics from the ad hoc track were used for the
heterogeneous track. As the IEEE collection is part of the
heterogeneous collection, this decision avoids any additional
relevance assessing on that collection. Consequently, all CO
topics in the heterogeneous track are already in NEXI.
Basic CAS topics contain one structural constraint and one textual
constraint. They can all be specified in the form

 //constraint[about(., content)]

where constraint and content are single terms. This is a subset of
NEXI which was, consequently, chosen for specifying BCAS
topics.
Compex CAS topics are the heterogeneous equivalent of ad hoc
CAS topics. They are in the form //A[B] or //A[B]//C[D]. CCAS
topics are specified in NEXI.
Extended Complex Content and Structure (ECCAS) topics allow
the query author to specify a belief in the correctness of a
structural constraint. The example given in the track guidelines
[2] is:

13

//author(0.8)[about(title(0.5), ‘Information
Retrieval’)],

in which the user has an 80% certainty the answer is an author
element, thinks the article will be about information retrieval, but
has only a 50% certain that this will be discussed in the title.
There were no ECCAS topics submitted and NEXI did not
support syntax for them.
ECCAS topics are expected in future years. To this end, syntax
supporting user certainty in tag specification is needed.
Extending NEXI would require only small changes from the
syntax proposed in the heterogeneous track guidelines.
First, in NEXI phrases are specified using double quotes, phrases
in ECCAS should be specified in the same way. Second, paths in
a NEXI about function are relative to the context path (the path
being filtered) but in the example given in the heterogeneous
track guidelines [2], the path is an absolute path. The change to
absolute paths prevents the specification of queries that can be
resolved through a mechanical process, however it also restricts
the expressiveness of the query – these kinds of queries can’t be
written. This tradeoff is considered acceptable.
The syntax requires only small changes:

weight: '(' decimal ')'

tag: XMLTAG | XMLTAG weight

Strict interpretation “//A(0.5)” is a 0.5 certainty in the
correctness of “//A” for the purpose in which it is being used.
“//A(0.5)//B(0.3)” is a 0.3 certainty of “//A//B” for its purpose and
a 0.5 certainty in “//A” for its purpose. In the expression
“//(A(0.2) | B(0.5))”, the certainty of being “//A” is given along
with the certainty of “//B”. The certainty values are only hits, and
are open to interpretation.
Loose interpretation “I’m not sure where to look, these places
might be good”

3.5 Uncertain NEXI
The heterogeneous additions combined with the question
answering additions provide the syntax necessary for certainty of
path and certainty of search term combinations. A query of this
nature can be considered super-loose or utterly uncertain; the user
is uncertain of everything (a THISish search?).

Example:

//bb(0.3)[weight(., 0.2 "Information
Retrieval")]

Strict interpretation: There is no strict interpretation.
Loose interpretation: “The answer is probably a <bb> element,
and it probably says something about Information Retrieval, but
I’m not certain about this”

3.6 Relevance Feedback NEXI
In relevance feedback it is not uncommon to add additional search
terms or to weight search terms. The natural analogue for
structured searching is adding paths and weighting paths. Syntax
for both weighting terms and paths is suggested above. Here the
applicability to relevance feedback is identified.

4. OTHER NEXI RELATED WORK
Kamps et al. [5] suggest adding the ancestor axis to NEXI. They
call this superset Positive Temporal XPath. Although this syntax
is not more expressive (all queries specifiable in Positive
Temporal XPath can be expressed in NEXI), they suggest
specifying a path from child to parent is more natural to some
users than vice versa. They conjecture that paths specified using
both ancestor and descendant may be more succinct than using
just one or the other.
It is unfortunate that some users prefer parent to child, while
others prefer child to parent; using one or the other is simpler than
using either or both. In an effort to remain simple, the
introduction of an ancestor axis to NEXI is left as future work.
Mihajlović et al. [8] choose to store the INEX collection in a
relational database. Between the relational database and NEXI
they introduce an algebra. With this approach it is possible to
change (and experiment with) the underlying relational structure
independent of the algebraic optimization of query expressions. It
also allows the introduction and optimization of XML IR
operators such as about. They choose the range approach for
searching structured documents and consequently their introduced
algebra is an algebra of regions. Piwowarski and Gallinari [12]
prefer a probabilistic implementation and introduce a probabilistic
algebra for a subset of XPath which is a superset of NEXI.

5. CONCLUSIONS
NEXI has proven to be successful for INEX. This success is due
to a combination of the simple XPath like syntax, the online
parser, and the command-line parser. The online parser was used
a total of 635 times from 71 IP addresses, the command line
parser was downloaded from 13 IP addresses. As a consequence
of this use the error rate in CAS queries dropped from 63% in
2003 to 12% in 2004.
Although NEXI has proven suitable for ad hoc retrieval, it has
also proven inadequate for question answering and heterogeneous
searching. New syntax is added for these purposes. In essence,
this new syntax adds weighted paths and weighted search terms.
These extensions might also be used for relevance feedback.
Wildcards in paths are extended to include a zero or more
descendants wildcard, +. The new wildcard is meaningless except
at the end of a path.
The adoption of the extensions proposed herein will allow tracks
in addition to ad hoc to use NEXI. This use, and continued use in
the ad hoc track, is recommended.

6. REFERENCES
[1] Clark, J., & DeRose, S. (1999). XML path language (XPath)

1.0, W3C recommendation. The World Wide Web
Consortium. Available: http://www.w3.org/TR/xpath [2004.

[2] Dignum, V., & Zwol, R. v. (2004). Guidelines for topic
development in heterogeneous collections. Available:

14

http://inex.is.informatik.uni-
duisburg.de:2004/internal/hettrack/downloads/hettopics.pdf.

[3] Fuhr, N., Malik, S., & Lalmas, M. (2003). Overview of the
initiative for the evaluation of XML retrieval (INEX) 2003.
In Proceedings of the INEX 2003 Workshop, (pp. 1-11).

[4] Gövert, N., & Kazai, G. (2002). Overview of the initiative
for the evaluation of XML retrieval (INEX) 2002. In
Proceedings of the 1st Workshop of the INitiative for the
Evaluation of XML Retrieval (INEX), (pp. 1-17).

[5] Kamps, J., Marx, M., Rijke, M. d., & Sigurbjörnsson, B.
(2004). Best-match querying for document-centric XML. In
Proceedings of the 7th International Workshop on the Web
and Databases (WebDB 2004), (pp. 55-60).

[6] Kazai, G., Lalmas, M., & Malik, S. (2002). INEX
guidelines for topic development. In Proceedings of the 1st
workshop of the initiative for the evaluation of XML
retrieval (INEX), (pp. 178-181).

[7] Kazai, G., Lalmas, M., & Malik, S. (2003). INEX '03
guidelines for topic development. In Proceedings of the 2nd
workshop of the initiative for the evaluation of XML
retrieval (INEX).

[8] Mihajlovic, V., Hiemstra, D., Blok, H. E., & Apers, P. M.
G. (2004). An XML-IR-db-sandwich: Is it better with an
algebra in between? In Proceedings of the SIGIR workshop
on Information Retrieval and Databases (WIRD'04).

[9] Ogilvie, P. (2004). Retrieval using structure for question
answering. In Proceedings of the 1st Twente Data
Management Workshop - XML Databases and Information
Retrieval, (pp. 15-23).

[10] O'Keefe, R. A., & Trotman, A. (2003). The simplest query
language that could possibly work. In Proceedings of the
2nd workshop of the initiative for the evaluation of XML
retrieval (INEX).

[11] Pehcevski, J., Thom, J., & Vercoustre, A.-M. (2003). XML-
search query language: Needs and requirements. In
Proceedings of the AusWeb03: Changing the Way We Work.

[12] Piwowarski, B., & Gallinari, P. (2004). An algebra for
probabilistic XML retrieval. In Proceedings of the 1st
Twente Data Management Workshop - XML Databases and
Information Retrieval.

[13] Sigurbjörnsson, B., & Trotman, A. (2003). Queries: INEX
2003 working group report. In Proceedings of the 2nd
workshop of the initiative for the evaluation of XML
retrieval (INEX).

[14] Trotman, A., & Sigurbjörnsson, B. (2004). Narrowed
Extended XPath I (NEXI). In Proceedings of the 3rd
workshop of the initiative for the evaluation of XML
retrieval (INEX).

15

If INEX is the Answer, what is the Question?

Richard A. O’Keefe
Department of Computer Science

University of Otago
Dunedin, New Zealand

ok@cs.otago.ac.nz

ABSTRACT
The INEX query languages allow the extraction of fragments
from selected documents. This power is not much used in
INEX queries. The paper suggests reasons why, and consid-
ers which kind of document collection this feature might be
useful for.

1. WHAT IS THE INEX ANSWER?
We can distinguish four kinds of IR-like query for semi-
structured data:

CO Content Only—a classical information retrieval query
to select a document from a collection of documents
based on the occurrence of terms and phrases any-
where within it.

CC Content-in-Context—a combination of contexts (paths)
and CO queries to apply in those contexts, used to se-
lect documents from a collection of documents. Queries
like this have been around almost as there have been
SGML collections to search in.

EC Element-in-Context—a CC-like query is used to select
elements from documents in a collection, with each
element being treated as if it were a document and
reported separately. These are NEXI “Basic CAS”
queries. You can see CC queries as BCAS queries that
just happen to select article elements, but the dis-
tinction between CC and EC is useful.

2S Two-Stage—An EC query is used to select elements,
and then a further EC query is used to select portions
of those elements. This is not used for highlighting
within documents; the elements selected in the second
stage are reported separately.

The INEX Answer is “EC and 2S queries”.

2. WHAT IS PROBLEMATIC ABOUT THE
INEX ANSWER?

It turns out that INEX participants have found it very hard
to formulate non-trivial EC and 2S queries, and even harder
to evaluate them. The INEX’03 topics included thirty Con-
tent and Structure queries:

N type tag gloss
14 CC article whole articles
3 EC sec sections
1 EC abs abstracts
1 EC p paragraphs
1 EC vt curricula vitæ
6 2S sec sections
2 2S abs abstracts
1 2S bb bibliography items
2 2S * IR engine’s choice

That is, nearly half of the queries did not exploit the INEX
Answer.

One reason for this is simply that there is not a lot of struc-
ture that one can usefully exploit in the INEX collection.
Basically, there’s front matter, including authors, title, and
abstracts, body with a whole bunch of variously tagged sec-
tions and subsections, and back matter with bibliography
and author biographies.

Things changed in 2004, but not much. There were 35 CAS
topics.

N type tag gloss
8 CC article whole articles
2 EC sec sections
1 EC abs abstracts
1 EC p paragraphs
1 EC vt curricula vitæ
1 EC bib entire bibliographies
1 EC (p|fgc) paragraphs or figure captions
8 2S sec sections
1 2S abs abstracts
1 2S bb bibliography items
1 2S p paragraphs
1 2S fig figures
1 2S bdy whole bodies
2 2S * IR engine’s choice

A little over three quarters of the INEX’04 CAS queries did

16

exploit the INEX Answer, but how usefully?

Some of these queries are thought-provoking.

• In query 161, the containing article must be about
access methods for spatial data and text, while the
selected bb elements need not be about either. They
could be about access methods for time series, for ex-
ample.

• In query 158, the containing article must be about
the Turing test, while the selected bdy element must
be about the “turning” test. Nor is it clear why it’s
useful to see an article without its title, authors, or
abstract.

• Query 158 also makes one wonder how a query of the
form about(.//fm, x) or about(.//abs, x) differs
from a simple about(.//fm, x), since abs only occurs
inside fm.

• Query 127 with its (p|fgc) reminds us that while the
average p in the INEX collection has about 300 charac-
ters of text, the average fgc has about 150 characters.
So perhaps more (all?) queries that accept p elements
should also accept fgc elements.

• Query 136, selecting entire bibiographies on the basis
of “text” and “categorisation” appearing somewhere
and “Support Vector Machines” and “SVM” appearing
somewhere else reminds us that titles are not a reliable
guide to relevance. Who would dream from the title
alone that Bananas in Space was about “functional
programming” using the “Bird-Meertens” formalism?

• Query 142, of the form //abs[about(...)], makes one
wonder why it is useful to find an interesting abstract
if you can’t tell which article it’s an abstract of.

Queries must not only be formulated, they must be eval-
uated. And to evaluate the relevance of an element, you
may need a greater or lesser amount of context. As IR re-
searchers well know, words are ambiguous. If you see “Algol
is very old”, is that talking about the star or the program-
ming language (and if so, which)? If you see “The tables
were too crowded”, is this a complaint about a paper or a
dining hall?

This points out a serious methodological problem in the
INEX evaluation procedure. Judges rate elements within
the scope of complete articles (which they can and do look
at), while users would presumably just see the elements.
That is, for CO and CC queries, the judge and the user
have the same information available to them, while for EC
and 2S queries, the judge has far more information at his or
her disposal in making relevance judgements than someone
just receiving the paragraphs or sections in question would.
For abstracts and sections, this may not be too much of a
problem, but paragraph, title, and bibliography item it is
almost certainly a distortion. Even for sections, I know that
I found myself either able to dismiss an entire article quickly
(having looked at a portion that was not part of the selected
response) or else having to read the entire article with care
to decide what the flagged elements actually meant before

I could decide how relevant they were. Does it even make
sense to talk about a small element having any relevance
without its context?

3. WHAT MIGHT THE QUESTION BE?
3.1 Strong semantics for markup
Some markup in the INEX collection has strong semantics.
An ead element should be an e-mail address, nothing else.
The mo, day, and yr elements are parts of dates. A bb

element is always a bibliographic reference. The abs, bb,
and vt elements are clearly useful in queries.

Some markup in the INEX collection has presentation se-
mantics. The it and rm elements select italic and roman
faces, but say nothing about why. It is not accidental that
none of the queries mention these elements, and it is only
regrettable that the evaluation system requires people to
judge these elements.

Some markup is structural, without having much seman-
tics. There is nothing to mark the rhetorical structure of
a document or the rhetorical force of any element. There
is, for example, no distinction between “quoted in support”
and “quoted for rebuttal”. Structural elements are surpris-
ingly popular in queries, principally sec with some p. One
feels that this may be an artefact of the INEX setup: peo-
ple are under pressure to select something to show that the
INEX Answer is useful, and sec is the smallest nearly-self-
contained element. It is difficult to imagine any queries
where ss1 or ss2 would be meaningful choices.

An INEX Question really needs a wider range of elements
with strong semantics: exercise, example, poetry (in the
INEX DTD, but apparently not used anywhere), warning,
listing, scene, design.pattern, that kind of thing.

3.2 Low coupling
What really matters is not how big the fragments are but
how tightly they are coupled to their context. The Wall
Street Journal documents from TREC are smaller than most
of the IEEE sec elements, but they were written to be free-
standing. The bb and vt elements make good sense as frag-
ments in the existing INEX collection because they depend
hardly at all on their context. Abstracts are crafted to be
fairly self-contained. In contrast, p elements are so tightly
linked to their context as to be difficult to judge, even though
they are bigger than most bb elements. The very smallest
body extracts that work are sec, and even they depend too
much on context for comfort.

We need a collection of documents which have pieces whose
relevance can be judged on their own.

3.3 Some coupling
If the fragments we want are not coupled to their contain-
ing document at all, why aren’t they stored as free-standing
documents in the first place? There has to be enough cou-
pling so that the first EC filter usefully limits the scope of
the second EC filter.

3.4 Sizeable fragments

17

If you find a relevant sec, don’t you want to know what
article it came from in case there’s more good stuff there, or
to find the author’s address to write for more information?
One reason you might not want to do this is if the “docu-
ments” are too big to examine or or too unlikely to contain
other relevant material.

3.5 Examples
• From the Otago Daily Times, issues in 2003, find sto-

ries about Don Brash.

Newspapers contain many stories with low or no cou-
pling. This is almost a WSJ query. The trick is to find
queries with more constraints on the container (issue).

• From the Otago Daily Times, issues since 2000 having
editorials about the foreshore or race relations, find
stories about Don Brash and the foreshore or race re-
lations.

This is almost the same as the previous query, but
basically uses the newpaper editor as a relevance filter.
It feels contrived; basically these two examples fail the
“some coupling” requirement.

• From movies in the detective story genre set in San
Francisco, select scenes where Nicole Kidman speaks.

This satisfies the “sizeable fragment” requirement.

• From CDs that contain Irish music, select planxties.

This satisfies “low coupling”, “sizeable fragment”, and
“some coupling”.

• From books about anatomy, select sections about the
articulation of the jaw.

This is a real query I had while I was writing the pa-
per. The answers I found satisfied “low coupling” and
“sizeable fragment”.

• From books about Bioinformatics published after 1994,
select portions about Dynamic Time Warps.

Publication date is a property of the books as wholes,
not of sections. Dynamic Time Warps have many ap-
plications other than Bioinformatics. So this satisfies
“some coupling” as well as “sizeable fragments”.

• From books by Terry Pratchett, select chapters that
mention a ”Soul Cake” day.

• From R packages that are about trees, select function
descriptions that are about pruning trees.

There are over 1200 pages of function documentation
for core R; the contributed packages add about as
much more. The function descriptions are similar to
UNIX manual pages, only bigger. This satisfies “some
coupling” and “sizeable fragments”.

18

Building and Experimenting with a Heterogeneous
Collection

Zoltán Szlávik
Queen Mary University of London

London, United Kingdom

zolley@dcs.qmul.ac.uk

Thomas Rölleke
Queen Mary University of London

London, United Kingdom

thor@dcs.qmul.ac.uk

ABSTRACT
Today’s integrated retrieval applications retrieve documents
from disparate data sources. Therefore, as part of INEX
2004, we ran a heterogeneous track to explore the exper-
imentation with a heterogeneous collection of documents.
We built a collection comprising various sub-collections, re-
used topics (queries) from the sub-collections and created
new topics, and participants submitted the results of re-
trieval runs. The assessment proved difficult, since pooling
the results and browsing the collection posed new challenges
and requested more resources than available. This reports
summarises the motivation, activities, results and findings
of the track.

1. INTRODUCTION
A heterogeneous track has been part of INEX 2004. The
task of the track was to explore how to build and maintain
a testbed, how to create topics, and how to perform retrieval
runs, assessment and evaluation.

1.1 Motivation
Before 2004, the INEX collection has been a collection of
XML documents with a single DTD. However, in practi-
cal environments, XML retrieval requires to deal with XML
documents with different DTDs, because a collection com-
prises documents of different purpose, authors and sources.
Further, information in practical environments is spread over
XML documents, relational databases, and other data source
formats. Therefore, we included in INEX 2004 a heteroge-
neous track (het-track) that addressed the heterogeneity of
a collection.

A heterogeneous collection poses a number of challenges:

• For content-only (CO) queries, approaches for homoge-
neous and well-typed collections can make direct use of
the DTD. The DTD can be used, for example, for iden-
tifying what element type is reasonable to present in

the retrieval result. In a heterogeneous collection, we
might have several or no DTD’s, and retrieval methods
independent of DTD are essential, and DTD mappings
might be useful.

• For content-and-structure (CAS) queries, there is the
problem of mapping structural conditions to different
sub-collections. If we consider structural conditions as
useful, then a DTD-based mapping of structural con-
ditions is essential for CAS queries. Methods known
for federated databases could be applied here. We can
distinguish between manual, semi-automatic or fully
automatic methods for creating the schema mappings.

• When performing retrieval runs, the retrieval algo-
rithms need to merge the results retrieved from differ-
ent sub-collections. For an experimental point of view,
we can compare global strategies that know the whole
collection with local strategies which make only use of
the knowledge that can be derived per sub-collection.
The latter strategies are probably closer to what we
meet in reality.

• The content of a relational database can be represented
in an XML document (collection, respectively). The
question is whether the retrieval of relational databases
via XML is beneficial.

The goal of the INEX het-track was to set up a test collec-
tion, and investigate the new challenges.

This track aims to answer, among others, the following re-
search questions:

• For CO queries, what methods are feasible for deter-
mining elements that would be reasonable answers?
Are pure statistical methods appropriate and suffi-
cient, or are ontology-based approaches also helpful?

• What methods can be used to map structural criteria
such that they can be applied (make sense) for a col-
lection for which the DTD might be different or even
not known!?

• Should mappings focus on element names (types) only,
or also deal with element content?

• Should the data be organized (and indexed) as a single
collection of heterogeneous documents, or is it better

19

to treat het-coll as a set of homogeneous subcollec-
tions?

• Are evaluation criteria developed for homogeneous col-
lections also suitable for heterogeneous collections, or
should other criteria and metrics be applied?

Since this was the first year of the heterogeneity track, the
focus of the activities was on making a test collection avail-
able to participants, create some topics and perform retrieval
runs and assessment, and apply evaluation measures.

The emphasis was on investigating the How to do it, with
a detailed look at individual topics and runs, and the tech-
nicalities involved. A statistical measure has been not the
aim of the first year of het-track.

1.2 Activities
The participants of this track carried out the following ac-
tivities:

• Construction of a heterogeneous test collection: We
used the current INEX corpus, and added various sub-
collections including DBLP, HCIBIB, Berkeley lib, Duis-
burg bibdb, and QMUL bibdb (the latter an XML rep-
resentation of a relational database). The collection is
maintained at
http://inex.is.informatik.uni-duisburg.de:2004
/internal/hettrack/.

• Selection of 20 CO and CAS queries from the existing
INEX body and creation of four new topics. The top-
ics were selected and created with the aim to retrieve
documents from several sub-collections.

• INRIA has developed and experimented with a tool,
XSum, for graphically representing XML documents;
one of the main purposes of the tool was to enable the
user to grasp the structure and aspect of various XML
datasets, with or without a DTD.
Currently, XSum represents the XML elements and at-
tributes structure within an XML document, statistics
such as numbers of elements on a given path. The tool
is developed in Java, and freely available.

• Retrieval runs on the heterogeneous collection for this
set of queries (see appendix).

• The assessment has been not carried out yet, due to
technical problems and restricted resources. The aim
is to join the het-coll with the relevance assessment
tool used for the INEX IEEE collection.

• For the evaluation, we aim at a qualitative (query-
and-run-oriented) analysis rather than a quantitative
average-oriented analysis of results.

Based on the results and experience gained in 2004, a larger
and quantitative het-track can be carried out in following
years.

2. COLLECTION CREATION
The following table shows the subcollections that may have
been used this year.

Collection MB(unpacked) No of elements
IEEE Computer Society 494 8.2M
Berkeley 33.1 1194863
CompuScience 313 7055003
bibdb Duisburg 2.08 40118
DBLP 207 5114033
hcibib 30.5 308554
qmul-dcs-pubdb 1.05 23436

From creating the subcollections, we have learned the fol-
lowing:

1. For a larger scale het-track, methods and tools are
needed for managing a set of sub-collections. With re-
stricted resources, the management of 5-10 sub-collections
is achievable, more sub-collections will require tools
and resources.

2. Sub-collections come with syntax errors (non-tidy XML).
It is best to correct those errors centrally and “by
hand”, but keep a carefully maintained log of the changes
made.

3. TOPIC CREATION
Given the objectives of the het track, four types of topics
have been proposed in the topic creation guideline:

1. CO (Content Only Topics): Since CO queries do not
take structural information into account, this type had
not been found challenging , however, any CO query
used in the ad-hoc track could be used in the het track
and gave similar results (because the test collection
used for the ad-hoc track is part of the het track).

2. BCAS (Basic Content and Structure Topics): This
type of topics focuses on the combination of singular
structural constraints with a content-based constraint.
The aim is synonym matches for structural constraints.

3. CCAS (Complex Content and Structure Topics): are
the het track equivalent of the CAS topics of the ad-
hoc track, specified used the NEXI language. The aim
is to enable transformations and partial mappings of
the topic path upon the different collections in het
track, without loosing the IR component of the topic.

4. ECCAS (Extended Content and Structure Topics): ex-
tended CCAS to enable the specification of the correct-
ness path transformation and mapping probabilities.

3.1 Re-used Topics
Twenty topics were selected from the ad-hoc topics to re-
use in het-track. After examining the ad-hoc topics, 10 CO
topics were selected that probably contain results not only
in the IEEE (also referred to and used as inex-1.3 and inex-
1.4) subcollection. 10 CAS topics were also selected. The
main criterion was that topics should possibly have relevant
results in more subcollections. Selected CAS topics were
identified as CCAS het track topics.

20

3.2 New Topics
Four new topics (see B) were created by participants of
which three topics are CCAS and one is BCAS.

4. RETRIEVAL RUNS
The main difference between a mono- and a heterogeneous
track is that sub-collections are specified in the run submis-
sions. In order to be able to examine results with respect
to the considered subcollections, a slightly modified version
of the ad-hoc track’s submission format has been proposed
(see C).

Actually, the consideration of sub-collections poses some
major research question, since we cannot assume that each
run considers all subcollections:

1. How do we pool results from runs if some runs con-
sidered a sub-collection X and other runs considered a
sub-collection Y?

2. How does an evaluation measure deal with the incom-
pleteness of runs?

Another issue is the assignment of topics to participants. Is
it useful to assign topics under strict rules and supervision,
trying to make sure that sub-collections are covered equally,
and the same number of runs is performed per topic, etc?
Or is it the nature of heterogeneous track that this effort
is not justified and is rather to be replaced by a random
assignment?

5. ASSESSMENT AND EVALUATION
During the preparation for assessment and evaluation, we
identified the following two main challenges:

1. Browsing the results and the collection. The browsing
tool X-Rai was initially developed for the IEEE col-
lection only, and currently cannot handle larger sub-
collection files, even the QMUL subcollection with its
1.05MB, efficiently. Therefore, the two smallest sub-
collections (bibdbpub and qmuldcsdbpub) were con-
verted into many small files, and made available for
browsing.

2. Pooling. The aforementioned problem also affected the
pooling procedure, the format of submission runs could
not be exactly used for pooling. The other challenge
in pooling was that, unlike the ad hoc track runs, het-
track runs could consider various sets of subcollections,
and there has not been a straightforward method to
create pools from this kind of source, e.g. ”use the
first 150 results in each run” method may create larger
pools for subcollections having more elements in the
top-ranked results and small for those having less.

6. SUMMARY AND CONCLUSIONS
The first year of het-track established a heterogeneous col-
lection, reused and created topics, and performed retrieval
runs. The assessment and evaluation is currently outstand-
ing; we intend to complete some of these at the December
workshop.

The discussion among the participants and the work carried
out raised the following questions:

1. What makes the heterogeneity of a collection? The
current het-coll is viewed as little heterogeneous since
it consists “only” of XML documents, and all docu-
ments are about computer science literature. Can we
measure heterogeneity?

2. How can we manage many and large sub-collections?
In particular creating the browsing facilities for the
sub-collections and the assessment proved difficult. Can
we easily split (and evtl. merge files)?

3. Topics and retrieval runs relate only to some sub-collections.
Topics might have been created and runs might have
been performed without considering the whole collec-
tion. How is this incompleteness captured in an eval-
uation?

Het-track has established a collection and experience about
how to do it and where the difficulties are. INEX is now
ready for the next phase of het-track, and it can re-use and
extend the existing collection and pay particular attention to
the efficient inclusion of new sub-collections into the whole
process.

21

APPENDIX
A. TOPIC FORMAT
<!ELEMENT inex_topic (title,

content_description,
structure_description,
narrative,keywords)>

<!ATTLIST inex_topic
topic_id CDATA #REQUIRED
query_type CDATA #REQUIRED

>

<!ELEMENT title (#PCDATA)>
<!ELEMENT content_description (#PCDATA)>
<!ELEMENT structure_description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT keywords (#PCDATA)>

B. HET TRACK TOPICS
Topic created by IRIT:

<?xml version="1.0" encoding="ISO-8859-1"?>
<inex_topic topic_id="1" query_type="CCAS">

<title>
//bb[about(.,"PhD thesis amsterdam")]

</title>
<content_description>

I’m looking for bibliography entries concerning
PhD thesis obtained at the university of Amsterdam

</content_description>
<structure_description>

I’m looking for full references of PhD thesis: it
means that results elements should contain the author,
the title,the year and the school/city where the PhD
thesis was obtained.

</structure_description>
<narrative>

I’m maybe interested in working in Amsterdam next year
and I would like to know what are the research subjects
in the city. I think that a way to obtained this information
(in the collections we have) is to see what are the subjects
of the PhD thesis obtained in Amsterdam.

</narrative>
<keywords>

phD thesis, university, amsterdam
</keywords>

</inex_topic>

Topic created by UMONTES:

<?xml version="1.0" encoding="ISO-8859-1"?>
<inex_topic topic_id="2" query_type="CCAS">

<title>
//article[about(.//author, nivio ziviani)]

</title>
<content_description>

We are seeking for works with Nivio Ziviani as one of its authors
</content_description>
<structure_description>

Title is a tag identifying works title and author is a
tag identifying who wrote those works. They are usually part of
front matter of a document, or part of bottom matter in a
bibliography reference or can be an item in a volume index.

</structure_description>
<narrative>

We are seeking for works with Nivio Ziviani as one of its
authors. We want to catalogue all Nvio Ziviani works, so any
reference, index entry , abstract or complete article will be
relevant, but biography works will not.

</narrative>
<keywords>

Nivio Ziviani
</keywords>

</inex_topic>

Topic created by RMIT:

<?xml version="1.0" encoding="ISO-8859-1"?>
<inex_topic topic_id="3" query_type="CCAS">

<title>

//article[about(.//abs, Web usage mining) or
about(.//sec, "Web mining" traversal navigation patterns)]

</title>
<content_description>

We are looking for documents that describe capturing and mining
Web usage, in particular the traversal and navigation patterns;
motivations include Web site redesign and maintenance.

</content_description>
<structure_description>

Article is a tag identifying a document, which can also be
represented as a book tag, an inproceedings (or incollection)
tag, an entry tag, etc. Abs is a tag identifying abstract of
a document, which can be represented as an abstract tag, an abs
tag, etc. Sec is a tag identifying an informative document
component, such as section or paragraph. It can also be represented
as sec, ss1, ss2, p, ip1 or other similar tags.

</structure_description>
<narrative>

To be relevant, a document must describe methods for capturing
and analysing web usage, in particular traversal and navigation
patterns. The motivation is using Web usage mining for site
reconfiguration and maintenance, as well as providing recommendations
to the user. Methods that are not explicitly applied to the Web
but could apply are still relevant.
Capturing browsing actions for pre-fetching is not relevant.

</narrative>
<keywords>

Web usage mining, Web log analysis, browsing pattern,
navigation pattern, traversal pattern, Web statistics, Web design,
Web maintenance, user recommendations.

</keywords>
</inex_topic>

Topic created by LIP6:

<?xml version="1.0" encoding="ISO-8859-1"?>
<inex_topic topic_id="4" query_type="CCAS">

<title>
//article[about(.,"text categorization") and
(about(.//fm//au, "David D. Lewis")
or about(.//bib//au, "David D. Lewis"))]

</title>
<content_description>

I am looking for documents about text categorization which
have been written by David D. Lewis, or related work from other authors.

</content_description>
<structure_description>

The tags which are used in this topic come from the DTD of the
ad hoc task collection. Article is a tag identifying a document,
which can also be represented as a book tag, an inproceedings
(or incollection) tag, an entry tag, etc. Fm is a tag identifying
the header of a document which usually contains title, authors...
Bib is a tag identifying the bibliography of a document.
Au is a tag identyfying an author name.

</structure_description>
<narrative>

To be relevant, a document must describe text categorization methods.
It must have been written by David D. Lewis or must contain
a bibliography entry with David D. Lewis.

</narrative>
<keywords>

Text categorization, Text classifier
</keywords>

</inex_topic>

C. RUN FORMAT
<!ELEMENT inex_het_track_submission (description, topic+)>
<!ATTLIST inex_het_track_submission
participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
query (automatic | manual) #REQUIRED
topic-part (T|D|K|TD|TK|DK|TDK) #IMPLIED
task CDATA #IMPLIED
>

<!ELEMENT description (#PCDATA)>

<!ELEMENT topic (subcollections, result*)>
<!ATTLIST topic
topic-id CDATA #REQUIRED

22

>
<!ELEMENT subcollections (subcollection+)>
<!ELEMENT result (subcollection, file, path, rank?, rsv?)>
<!ELEMENT subcollection EMPTY>
<!ATTLIST subcollection name CDATA #REQUIRED>

<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

D. SUBMITTED RUNS
• IRIT submitted 3 runs. One run is for CCAS, one for

CO and one for BCAS topics. Files contain results for
all the 24 het track topics. Various groups of subcol-
lections were considered for topics.

• RMIT submitted results of three different approaches,
all approaches were applied to all topic types and top-
ics (9 files - file groups of 3 - one file is for a specific ap-
proach, specific topic type (CCAS,CO,BCAS)). Vari-
ous groups of subcollections were considered for topics,
often all subcollections were used.

• UBERKELEY submitted 2 runs, used all CO topics,
12 (i.e. all but one) CCAS topics. All subcollections
were considered.

• UMONTES submitted 6 runs, 3 runs for all CO topics,
3 for all ’VCAS’ (CCAS and BCAS together) topics,
considered 5 subcollections.

• UNIDU submitted 3 runs, considered only topic no. 1
(as CO) and used 3 subcollections.

23

The Interactive Track at INEX 2004

Anastasios Tombros
Dept. of Computer Science

Queen Mary, University of London,
United Kingdom

tassos@dcs.qmul.ac.uk

Birger Larsen
Dept. of Information Studies

Royal School of LIS,
Copenhagen, Denmark

blar@db.dk

Saadia Malik
Fak. 5/IIS, Information Systems
University of Duisburg-Essen

Duisburg, Germany

malik@is.informatik.uni-duisburg.de

ABSTRACT
An interactive track was included in INEX for the
first time this year, at INEX 2004. The main aim of
the track was to study the behaviour of searchers
when interacting with components of XML
documents. In this paper, we describe the motivation
and aims of the track in detail, we outline the
methodology and we present some initial findings
from the analysis of the results.

1. INTERACTIVE TRACK
MOTIVATION
In recent years there has been a growing realisation in
the IR community that the interaction of searchers
with information is an indispensable component of
the IR process. As a result, issues relating to
interactive IR have been extensively investigated in
the last decade. A major advance in research has been
made by co-ordinated efforts in the interactive track
at TREC. These efforts have been in the context of
unstructured documents (e.g. news articles) or in the
context of the loosely-defined structure encountered
in web pages. XML documents, on the other hand,
define a different context, by offering the possibility
of navigating within the structure of a single
document, or of following links to another document.

Relatively little research has been carried out to study
user interaction with IR systems that take advantage
of the additional features offered by XML documents,
and so little is known about how users behave in the
context of such IR systems. One exception is the work
done by Finesliver and Reid [4], who studied end user
interaction with a small test collection of
Shakespeare’s plays formatted in XML.
The investigation of the different context that is
defined in the case of user interaction with XML
documents has provided the main motivation for the
establishment of an interactive track at INEX. The
main aims for the interactive track are twofold. First,
to investigate the behaviour of users when interacting
with components of XML documents, and secondly
to investigate and develop approaches for XML
retrieval which are effective in user-based
environments.

In the first year, we focused on investigating the
behaviour of searchers when presented with
components of XML documents that have a high

probability of being relevant (as estimated by an
XML-based IR system). Presently, metrics that are
used for the evaluation of system effectiveness in the
INEX ad-hoc track are based on certain assumptions
of user behaviour [7]. These metrics attempt to
quantify the effectiveness of IR systems at pointing
searchers to relevant elements of documents. Some of
the assumptions behind the metrics include that users
would browse through retrieved elements in a linear
order, that they would “jump” with a given
probability p from one element to another within the
same document’s structure, that they would not make
use of links to another document, etc. These
assumptions have not been formally investigated in
the context of XML retrieval; their investigation
formed the primary aim for the first year of the
interactive track.

Since the investigation of user behaviour forms our
primary focus, the format of the track for the first year
differs to that typically followed by, for example, the
interactive track at TREC. The main difference was
that a comparison between different interactive
approaches was not our main focus. Instead, a more
collaborative effort was planned, with the outcome of
the studies expected to feed back to the INEX
initiative. Participating sites still had the option to
develop and evaluate their own interactive
approaches, but this was not a requirement for
participation. It should be noted that none of the
participating sites opted to develop their own system.

We first describe the experimental setup and
methodology in section 2, then we present an initial
analysis of the data in section 3, and we conclude in
section 4.

2. EXPERIMENTAL SETUP
In this section we outline the experimental set up for
the first interactive track at INEX.

2.1 Topics
We used content only (CO) topics from the INEX
2004 collection. We added an additional dimension to
the investigation of this year's interactive track by
selecting topics that corresponded to different types
of tasks. The effect that the context determined by
task type has on the behaviour of online searchers has
been demonstrated in a number of studies [e.g. 8].

One way to categorise tasks is according to the “type”
of information need they correspond to. In [8] the

24

categorisation included background (find as much
general information on a topic as possible), decision
(make a decision based on the information found) and
many-items task (compile a list of items related to the
information need) types. It was shown that different
task types promote the use of different criteria when
assessing the relevance of web pages. It is likely that
a similar effect, in terms of user behaviour within
structured documents, may exist in the context of
XML documents. Searchers may exhibit different
browsing patterns and different navigational strategies
for different task types.

Four of the 2004 CO topics were used in the study,
and they were divided into two task categories:

• Background category (B): Most of the INEX
topics fall in this category. The topics express an
information need in the form of “I’d like to find
out about X”. The two tasks in this category were
based on topics 180 and 192.

• Comparison category (C): There are a number of
topics whose subject is along the lines of: “Find
differences between X and Y”. The tasks given in
this category were based on topics 188 and 198.

In order to make the tasks comprehensible by other
than the topic author, it was required that all INEX
2004 topics not only detail what is being sought for,
but also why this is wanted, and in what context the
information need has arisen. Thereby the INEX topics
are in effect simulated work task situations as
developed by Borlund [5, 6]. Compared to the regular
topics, more context on the motives and background
of the topic is provided in the simulated work tasks.
In this way, the test persons can better place
themselves in a situation where they would be
motivated to search for information related to the
work tasks. The aim is to enable the test persons to
formulate and reformulate their own queries as
realistically as possible in the interaction with the IR
system. The task descriptions used in the study were
derived from part of the Narrative field. We include
the task descriptions as given to searchers in the
Appendix.

2.2 System
A system for the interactive track study was provided
by the track organisers. The system was based on the
HyRex1 retrieval engine, and included a web-based
interface with a basic functionality.

Searchers were able to input queries to the system. In
response to the query, HyRex returns a ranked list of
components as shown in Figure 1. The information
presented for each retrieved component included the
title of the component and the authors, its retrieval
value and the XPath of the component. Searchers can
explore the ranked list of components, and can visit
components by clicking on the component title in the
ranked list.

1 http://www.is.informatik.uni-duisburg.de/projects/hyrex/

In Figure 2 we show the detailed component view.
This view is divided into two parts: the right hand of
the view includes the actual textual contents of the
selected component; the left side contains the table of
contents for the document containing the component.
Searchers can access other components within the
same document either by using the table of contents
on the left, or by using the next and previous buttons
at the top of the right part of the view. A relevance
assessment for each viewed component could be
given, as shown in Figure 2. The assessment was
based on two dimensions of relevance: how useful
and how specific the component was in relation to the
search task. The definition of usefulness was
formulated very much like the one for Exhaustivity in
the Ad hoc track, but was labelled usefulness, which
might be easier for users to comprehend. Each
dimension had three grades of relevance as this is
shown in Figure 2. Ten possible combinations of
these dimensions could be made.

A Very useful & Very specific
B Very useful & Fairly specific
C Very useful & Marginally specific
D Fairly useful & Very specific
E Fairly useful & Fairly specific
F Fairly useful & Marginally specific
G Marginally useful & Very specific
H Marginally useful & Fairly specific
I Marginally useful & Marginally specific
J Contains no relevant information
U Unspecified

Table 1. The applied relevance scale

To return to the ranked list, searchers would need to
close the currently open document.

A different version of the system with graphical
features was also developed. This system (Graphical
system) differed to the Baseline system both in the
way of presenting the ranked list (Figure 3) and in the
way of presenting the detailed view of components
(Figure 4). The graphical system retrieves documents
rather than components, and presents the title and
authors of each retrieved document. In addition, it
also presents a shaded rectangle (the darker the colour
the more relevant the document to the query) and a
red bar (the longer the bar the more query hits are
contained in the document).

The detailed view for each selected document
component is similar to that for the Baseline system,
with the addition of a graphical representation at the
top of the view (Figure 4). A document is represented
in a rectangular area and is split horizontally and
vertically to represent the different document levels.
Tooltips (on mouse-over) provide additional
information about the retrieved components, such as
the first 150 characters of the contents and the
component's name, the selected section, subsection,
etc. On the top part of the this view, all the retrieved

25

documents are shown as small rectangles in gray
shades along with the Next and Previous links to
allow navigation between the retrieved results.

2.3 Participating sites
The minimum requirement for sites to participate in
this year's interactive track was to provide runs using
8 searchers on the Baseline version of the XML
retrieval system that the track organisers provided. In
addition to the minimum requirement, sites could
choose to employ more users, to expand the
experimental design by comparing both versions of
the system (baseline and graphical), or to test their
own experimental system against the baseline system
provided.

Ten sites participated in the Interactive track. In the
following table we give the sites' name, number of
searchers used and types of comparisons performed.

Site Baseline
system Additional studies

Oslo University College,
Norway

8 users -

RMIT, Australia 16 users -
U. Twente/CWI, The
Netherlands

8 users 8 users (baseline vs.
graphical)

Norwegian University of
Science and Technology,
Norway

8 users -

U. Tampere, Finland 8 users -
Kyungpook National
University, Korea

8 users -

Robert Gordon University,
Scotland

8 users -

University Duisburg-
Essen, Germany

8 users -

Royal School of Library
and Information Science,
Denmark

8 users -

Queen Mary, University of
London, England

8 users -

Table 2. Participating sites in the Interactive Track

2.4 Experimental protocol
A minimum of 8 searchers from each participating
site were used. Each searcher searched on one task
from each task category. The task was chosen by the
searcher. The order in which task categories are
performed by searchers was permuted. This means
that one complete round of the experiment requires
only 2 searchers. The minimum experimental matrix
consisted of the following 2x2 block:

Searcher 1st Task category 2nd Task category

1 Background (B) Comparison (C)

2 Comparison (C) Background (B)

Table 3. Basic experimental matrix

This block was repeated 4 times for the minimum
requirements for participation. This matrix could be
augmented by adding blocks of 4 users (a total of 12,
16, 20, etc. users).
For the comparison of the baseline and the graphical
systems, searchers would be involved in the study in
addition to the ones used only for the baseline system.

The experimental matrix in this case consisted of the
following blocks of system-task conditions:

Searcher 1st Condition 2nd Condition

1 Graphical-B Baseline-C

2 Graphical-C Baseline-B

3 Baseline-B Graphical-C

4 Baseline-C Graphical-B

Table 4. Augmented experimental matrix

The order of an experimental session was as follows:

1. Introduction: Briefing about the experiment and
procedures

2. Before-experiment questionnaire

3. Hand out Instructions for Searchers

4. System tutorial

5. Task selection from the appropriate category

6. Before-task questionnaire

7. Search session

8. After-task questionnaire

9. Repeat steps 5-8 for the other task category

10. After-experiment questionnaire

11. Informal discussion/interview: any additional
views on the experiment, system, etc. the searcher
wishes to share.

Each searcher was given a maximum of 30 minutes to
complete each task. The goal for each searcher was to
locate sufficient information towards completing a
task.

2.5 Data collection
The collected data comprised questionnaires
completed by the test persons, the logs of searcher
interaction with the system, the notes experimenters
kept during the sessions and the informal feedback
provided by searchers at the end of the sessions.

The logged data consisted of the queries issued, the
components returned by the system, the components
actually viewed and the order in which they were
viewed, relevance assessments of these, any browsing
behaviour, as well as time stamps for each interaction
between searchers and the system.

3.INITIAL RESULTS ANALYSIS
In this section we present an initial analysis of the
collected data. In section 3.1 we analyse data
collected from the questionnaires, then in section 3.2
we present some general statistics collected from the
system logs, and in section 3.3 we outline the detailed
analysis of browsing behaviour which is currently in
progress.

3.1 Questionnaire data
A total of 88 searchers were employed by
participating sites. The average age of the searchers
was 29 years. Their average experience in

26

bibliographic searching in online digital libraries,
computerised library catalogs, WWW search engines
etc. was 4, on a scale from 1 to 5 with 5 signifying
highest experience level. The education level of the
participants spanned undergraduate (39%), MSc
(49%), and PhD (12%) levels.
In terms of task selection, from the Background task
category 66% of participants selected task B1
(cybersickness, topic 192) and 34 % selected B2
(ebooks, topic 180). From the Comparison task
category, 76% selected task C2 (Java-Python, topic
198) and 24% selected task C1 (Fortran90-Fortran,
topic 188).
In Table 5 we present data for task familiarity, task
difficulty and perceived task satisfaction. With
respect to task familiarity, we asked searchers before
the start of each search session to rate how familiar
they were with the task they selected on a scale from
1 to 5, with 5 signifying the greatest familiarity. With
respect to task difficulty, we asked searchers to rate
the difficulty of the task once before the start of the
search session, and once the session was completed
(pre- and post- task difficulty, columns 3 and 4
respectively). Searchers also indicated their
satisfaction with the results of the task. All data in
Table 5 correspond to the same 5-point scale.

Task
familiarity

Pre-task
difficulty

Post-task
difficulty

Task
satisfaction

 B1 (no.192) 2.1 2.03 1.47 3.39
 B2 (no.180) 2.73 2.1 1.97 1.97
 C1 (no.188) 2.67 1.95 1.74 2.62
C2 (no.198) 2.91 2.1 1.52 2.9

Table 5. Searchers' perceptions of tasks

The data in Table 5 suggest that there are some
significant differences in the searchers' perceptions of
the tasks. The most notable of these differences are in
task familiarity and task satisfaction. It should be
noted that at this time a thorough statistical analysis
of the results has not been performed. An initial
analysis of the correlation between task familiarity
and satisfaction did not show a strong relationship
between these two variables across the tasks.
The overall opinion of the participants about the
Baseline system was recorded in the final
questionnaire they filled in after the completion of
both tasks. Participants generally felt at ease with the
system, finding it easy to learn how to use (average
rating 4.17), easy to use (3.95) and easy to understand
(3.94). There were also many informal comments by
the participants about specific aspects of the system.
These comments were recorded by the experimenters
and will be analysed at a later stage.

3.2 General statistics
This analysis concerns approximately 50 % of the log
data for the baseline system. The remainder could not
be analysed reliably at present because of problems
with the logging software.

Ranks
A maximum of 100 hits were presented to searchers
on the ranked list, and they were free to choose
between these in any order they liked (See Figure 1).
For the Background (B) tasks 86 % of the viewed
components were from top10 of the ranked list (80 %
for the Comparison (C) tasks). The ranks viewed
furthest down the list were 71 for B and 96 for C.
Queries
The possible query operators were ‘+’ for emphasis,
‘-’ for negative emphasis, and “ ” for phrases. The
phrase operator was 24 used times in B, and 16 in C.
No one used plus or minus. 217 unique queries were
given for B, and 225 for C across all searchers. On
average, the queries for B consisted of 3.0 search
keys (counting a phrase as one search key), and 3.4
for C including stop words. 81 % of the queries for B
consisted of 2, 3 or 4 search keys for B, 80 % for C.
Viewed components
In total, searchers viewed 804 different components
for B, and 820 for C. On average this was 10.9 unique
components viewed for B, and 10.8 for C.
Three possibilities existed for accessing a component:
to click a hit from the ranked list, to click a part of the
document structure (via the table of contents), and to
use the next/previous buttons. From Table 6 below it
can be seen that very few chose to use the
next/previous buttons: only 2 % of component
viewing arose from this (both B and C). For B 63 %
of viewings came from the ranked list, for C this was
62 %. For B 35 % came from the table of contents,
and 37 % for C.

Access B C Total B C
nextprev 17 17 34 2% 2%
rankedlist 588 550 1138 63% 62%
structure 327 327 654 35% 37%
Total 932 894 1826 100% 100%

Table 6. Access modes to viewed components

Assessed components
503 components were assessed for B, 489 for C, or
6.8 per searcher per task for B, and 6.4 for C. This
corresponds to 63 % of the viewed components for B
and 60 % for C.
The distribution of relevance assessments on tasks
can be seen in Table 7 below. It may be observed that
12-13 % of the assessed documents were ‘Very useful
& Very specific” [A] for both B and C, and that 15-
16 % of the assessed documents were ‘Marginally
useful & Marginally specific” [I] for both B and C.
The most noteworthy difference is that B had 38 %
non-relevant assessments [J], and C only 17 %.

27

Relevance B C Total B C
A 65 61 126 13% 12%
B 28 36 64 6% 7%
C 8 13 21 2% 3%
D 19 45 64 4% 9%
E 36 61 97 7% 12%
F 28 38 66 6% 8%
G 12 20 32 2% 4%
H 33 47 80 7% 10%
I 79 80 159 16% 16%
J 191 84 275 38% 17%
U 4 4 8 1% 1%

Total 503 489 992 100% 100%

Table 7. Relevance assessments distributed on task type
(see Table 1 above for relevance scale)

The next two tables show the distribution of relevance
assessments on the access possibilities, one for B and
one for C (i.e. how did the searchers reach the
components which they assessed). The total number
of component viewings with relevance assessments is
lower (992) than the total number of components
viewed (1826, Table 6) because not all viewed
components were assessed.

Relevance nextprev rankedlist structure Total
A 1 38 26 65
B - 16 12 28
C - 4 4 8
D - 11 8 19
E - 21 15 36
F - 21 7 28
G - 10 2 12
H 2 23 8 33
I 1 45 33 79
J 1 142 48 191
U - 4 4

Total 5 335 163 503

Table 8. Relevance assessments distributed on access
modes for the B tasks

Relevance nextprev rankedlist structure Total
A - 43 18 61
B - 25 11 36
C - 11 2 13
D - 30 15 45
E - 34 27 61
F - 26 12 38
G - 13 7 20
H - 35 12 47
I - 60 20 80
J - 64 20 84
U - 4 4

Total 0 345 144 489

Table 9. Relevance assessments distributed on access
modes for the C tasks

For both B and C very few viewings with
next/previous section buttons resulted in assessments:
0 for C, and 5 for B. The latter 5 were given low
assessments. In both cases the majority of
assessments resulted as a direct consequence of
clicking a hit from the ranked list: 67% for B and
71% for C. Apart from 1 % next/previous navigation
in B the remainder the rest is taken up by navigation
from the table of contents. Large variations are,
however, obvious in the data, and can be uncovered
by an in-depth analysis of the browsing behaviour.
Overall browsing behaviour
Table 10 shows this variation on an overall level by
counting the number of requests for components
within the same document. The raw figures included
double counting, because whenever an assessment
was made the component was reloaded from the
server. In this table, the number of assessments has
therefore been subtracted from the number of requests
for components. It can be seen that for the most part
(70% of cases) searchers viewed 1 component and
assessed it (or viewed two and didn’t assess any), and
then moved on to a new document rather than
continuing the navigation within the same document.

B C Total B C
1 406 394 800 69.0% 71.6%
2 93 84 177 15.8% 15.3%
3 47 39 86 8.0% 7.1%
4 23 9 32 3.9% 1.6%
5 13 8 21 2.2% 1.5%
6 2 4 6 0.3% 0.7%
7 2 5 7 0.3% 0.9%
8 1 1 2 0.2% 0.2%
9 1 1 0.2% 0.0%
10 1 1 0.0% 0.2%
11 2 2 0.0% 0.4%
12 1 1 0.0% 0.2%
13 1 1 0.0% 0.2%
14 1 1 0.0% 0.2%

Total 588 550 1138 100% 100%

Table 10. Overall browsing behaviour within the same
document: number of components viewed

A more in-depth analysis of the data will be
performed with the aim to further break down user
browsing behaviour within an accessed document.
From informal comments made by searchers, and
from an initial observation of the log data, one
possible reason for the low degree of interaction with
documents and their components was overlap.
Searchers generally recognised overlapping
components, and found them an undesirable “feature”
of the system. Through more detailed analysis of the
logs we can determine how searchers behaved when
the system returned overlapping components.

28

3.3 Detailed browsing behaviour
A detailed analysis on the browsing behaviour of
searchers is currently underway. The main aim of this
analysis is to determine how users browsed within
each document they visited, and how their browsing
actions correlated with their relevance assessments.
More specifically, we aim to look into the
relationship of the relevance assessments' dimensions
to whether searchers browse to more specific or more
general components in the document tree, whether
they browse to components of the same depth or
whether they return to the ranked list of components.
For example, we could see where users would browse
to after they have assessed a component as “Very
useful and fairly specific”, and also how they would
assess further documents along the browsing path.
This detailed analysis, together with the analysis on
the overlapping components, can yield results that can
be useful for the development of metrics that may
take into account actual indications of user behaviour.

4. CONCLUSIONS

In this paper we described the motivation and aims,
and the methodology of the INEX 2004 interactive
track. We also presented some initial results gathered
from user questionnaires and system logs.

We are currently performing a more detailed analysis
of the gathered data, with the aim to establish patterns
of browsing behaviours and to correlate them to the
assessments of the visited document components.
This analysis can also provide insight as to whether
there are different browsing behaviours for the two
different task categories included in the study. We
expect that the results of this analysis will lead to the
development of effectiveness metrics based on
observed user behaviour.

5. REFERENCES
[1] Chiaramella, Y. (2001): Information retrieval and

structured documents. In: Lectures on
information retrieval : third European summer-
school, ESSIR 2000, Varenna, Italy: Revised
Lectures. Berlin: Springer, pp 286-309.

[2] Fuhr, N., Gövert, N., Kazai, G. and Lalmas, M.
(2002): INEX : initiative for the evaluation of
XML retrieval. In: ACM SIGIR'2002 workshop
on XML and information retrieval, pp 62-70.

[3] Gövert, N. and Kazai, G. (2003): Overview of
the initiative for the evaluation of XML retrieval
(INEX) 2002. In: Proceedings of the 1st

workshop of the initiative for the evaluation of
XML retrieval (INEX), pp 1-17.

[4] Finesilver, K. and Reid, J. (2003): User
Behaviour in the Context of Structured
Documents. In: Advances in Information
Retrieval: 25th European Conference on IR
Research, ECIR 2003, pp 104-119.

[5] Borlund, P. (2000): Evaluation of interactive
information retrieval systems. Åbo: Åbo
Akademi University Press. vi, 276 p. (PhD
dissertation).

[6] Borlund, P. (2003): The IIR evaluation model: a
framework for evaluation of interactive
information retrieval. In: Information Research,
vol. 8, no. 3, paper no. 152. [Available at:
http://informationr,net/ir/8-3/paper152.html]

[7] Kazai, G. (2003): Report of the INEX 2003
metrics working group. In: Proceedings of the
2nd workshop of the initiative for the evaluation
of XML retrieval (INEX), pp 184-190.

[8] Tombros, A., Ruthven, I. and Jose, J (2004):
Searchers criteria for assessing web pages. In:
Journal of the American Society for Information
Science and Technology. In press.

29

APPENDIX

A. HyRex Retrieval System Screenshots

Figure 2. Detailed view of document components in the Baseline system

Figure 1. The ranked list of documents in the Baseline system

30

Figure 3. The ranked list of documents in the Graphical system

Figure 4. Detailed view of document components in the Graphical system

31

B. Task Descriptions

Task category: Background (B)
Task ID: B1
You are writing a large article discussing virtual reality (VR) applications and you need to discuss their negative
side effects. What you want to know is the symptoms associated with cybersickness, the amount of users who get
them, and the VR situations where they occur. You are not interested in the use of VR in therapeutic treatments
unless they discuss VR side effects.

Task ID: B2

You have tried to buy & download electronic books (ebooks) just to discover that problems arise when you use
the ebooks on different PC's, or when you want to copy the ebooks to Personal Digital Assistants. The worst
disturbance factor is that the content is not accessible after a few tries, because an invisible counter reaches a
maximum number of attempts. As ebooks exist in various formats and with different copy protection schemes,
you would like to find articles, or parts of articles, which discuss various proprietary and covert methods of
protection. You would also be interested in articles, or parts of articles, with a special focus on various
disturbance factors surrounding ebook copyrights.

Task category: Comparison (C)
Task ID: C1
You have been asked to make your Fortran compiler compatible with Fortran 90, and so you are interested in the
features Fortran 90 added to the Fortran standard before it. You would like to know about compilers, especially
compilers whose source code might be available. Discussion of people's experience with these features when they
were new to them is also of interest.

Task ID: C2

You are working on a project to develop a next generation version of a software system. You are trying to decide
on the benefits and problems of implementation in a number of programming languages, but particularly Java and
Python. You would like a good comparison of these for application development. You would like to see
comparisons of Python and Java for developing large applications. You want to see articles, or parts of articles,
that discuss the positive and negative aspects of the languages. Things that discuss either language with respect to
application development may be also partially useful to you. Ideally, you would be looking for items that are
discussing both efficiency of development and efficiency of execution time for applications. You would like a
good comparison of these for application development. You would like to see comparisons of Python and Java
for developing large applications. You want to see articles, or parts of articles, that discuss the positive and
negative aspects of the languages. Things that discuss either language with respect to application development
may be also partially useful to you. Ideally, you would be looking for items that are discussing both efficiency of
development and efficiency of execution time for applications.

32

Reliability Tests for the XCG and inex-2002 Metrics

Gabriella Kazai
Queen Mary University of London

gabs@dcs.qmul.ac.uk

Mounia Lalmas
Queen Mary University of London

mounia@dcs.qmul.ac.uk

Arjen de Vries
CWI

arjen@acm.org

Abstract

In this paper we compare the effectiveness scores and
system rankings obtained with the inex-2002 and the
XCG metrics. For the comparisons, we use simu-
lated runs as we can then easily derive the desired sys-
tem rankings based on a predefined set of user prefer-
ences. The results indicate that the XCG metric is bet-
ter suited for comparing systems for the INEX content-
only (CO) task, where systems aim to return the high-
est scoring elements according to the user preferences
reflected in a quantisation function, while also aiming
to avoid returning overlapping components.

1 INTRODUCTION

The official metric of INEX 2004 is the inexeval or,
as referred here, the inex-2002 metric. This metric has
been chosen by INEX as the official measure partly
because at the time it was still not clear how much
its known weaknesses would effect the overall system
rankings and partly because alternative measures were
not yet ready to take this role. Some of the known
weaknesses were reported in [4, 5]. One such issue
is that the metric does not take into account the over-
lap between result elements and hence produces bet-
ter effectiveness scores for systems that return multiple
nested components, e.g. a paragraph and its container
section and article. At the INEX 2003 workshop, it
was agreed that such a system behaviour should not be
rewarded, but in fact should be penalised [4]. Another
issue with the inex-2002 metric is that it calculates re-
call based on the full recall-base, which also contains
large amounts of overlapping components. This means
that 100% recall can only be reached by systems that
return all elements, including all overlapping compo-
nents, in the full recall-base. For systems that aim to
avoid returning overlapping, and hence redundant, ele-
ments to the user, the affect of the latter issue is that the
precision scores get plotted against lower recall values
than merited [5].

An argument for the inex-2002 metric could be that
it can produce reliable rankings of systems provided
none of the systems retrieve overlapping result ele-
ments. Although the effectiveness scores would still
reflect a pessimistic estimate of performance (due to
the overlap amongst the reference elements in the full
recall-base), the relative ranking of systems could pro-
vide a true reflection with respect to the evaluation cri-
terion.

However, most of the current systems at INEX out-
put result lists, where high overlap ratios in the region
of 70-80% are not uncommon. This then raises the
question whether we can trust the scores obtained by
the inex-2002 metric.

In this paper, we investigate this question by means
of a basic reliability test. We refer to the reliability
test of this study as “basic”, as we do not provide here
a comprehensive survey of acceptable error rates and
significant differences in effectiveness scores, etc., but
concentrate only on evaluating “a metric’s ability to
rank a better system ahead of a worse system” [8]. We
test two metrics, the inex-2002 metric and the XCG
metric proposed in [5] and further developed in this
paper. For the comparisons, we use simulated runs
instead of the actual INEX runs submitted by partic-
ipants. The reason for this is that by controlling which
elements and in what order should form a run, we can
get clearer conclusions regarding the two metrics’ be-
haviours.

In the following, we first give a quick overview of
the two metrics (Section 2) and then describe the setup
and results of our metric reliability test (Section 3). We
close with conclusions in Section 4.

2 THE METRICS

This section gives a brief summary of the inex-2002
(aka. inexeval) [2] and XCG [5] metrics.

33

2.1 The inex-2002 metric

The inex-2002 metric applies the measure ofprecall
[7] to document components and computes the proba-
bility P (rel|retr) that a component viewed by the user
is relevant:

P (rel|retr)(x) :=
x · n

x · n + eslx·n
(1)

whereeslx·n denotes theexpected search length[1],
i.e. the expected number of non-relevant elements re-
trieved until an arbitrary recall pointx is reached, and
n is the total number of relevant components with re-
spect to a given topic.

To apply the above metric, the two relevance
dimensions are first mapped to a single rele-
vance scale by employing a quantisation function,
fquant(e, s) : ES → [0, 1], whereES denotes the set
of possible assessment pairs(e, s):

ES = {(0, 0), (1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

There are a number of quantisation functions currently
in use in INEX, e.g. strict or generalised (see Equa-
tions 2 and 3 in [4]), each representing a different set
of user preferences. In this paper we concentrate on
the “specificity-oriented generalised” (sog) quantisa-
tion function proposed in [5]:

fsog(e, s) :=



1 if (e, s) = (3, 3)
0.9 if (e, s) = (2, 3)
0.75 if (e, s) ∈ {(1, 3), (3, 2)}
0.5 if (e, s) = (2, 2)
0.25 if (e, s) ∈ {(1, 2), (3, 1)}
0.1 if (e, s) ∈ {(2, 1), (1, 1)}
0 if (e, s) = (0, 0)

(2)

The argument in [5] is that the relative ranking of as-
sessment value pairs in the above formula better re-
flects the evaluation criterion for XML retrieval as de-
fined within the CO task. According to this, speci-
ficity plays a more dominant role than exhaustivity.
This is not the case for the generalised quantisation
function, which shows slight preference towards ex-
haustivity, assigning high scores to exhaustive, but not
necessarily specific components. Due to the propaga-
tion effect and the cumulative property of exhaustiv-
ity, such components are generally large, e.g.bdy or
article , elements. This means that relatively high
effectiveness scores could be achieved with simple ar-
ticle runs, which contradicts the goal of the retrieval
task. Thesogmapping overcomes this bias.

Like all quantisation functions, thesogquantisation
captures a relative ranking of exhaustivity-specificity
value pairs reflecting user preferences, such that, e.g.,
(e, s) = (3, 3) nodes are preferred to(e, s) =
(2, 3) nodes, which in turn are better than(e, s) ∈
{(1, 3), (3, 2)} nodes and so on.

2.2 The XCG metrics

The XCG metrics are extensions of the cumulated
gain (CG) based metrics proposed by Järvelin and
Kekäläinen in [3]. The motivation for the CG metrics
was to develop a measure for multi-grade relevance
values, i.e. to credit IR systems according to the re-
trieved documents’ degree of relevance. The motiva-
tion for XCG was to extend CG in such a way that the
problem of overlapping result and reference elements
can be addressed within the evaluation framework.

2.2.1 A brief recap on the CG metrics

The Cumulated Gain (CG) measure, accumulates the
relevance scores of retrieved documents along the
ranked listG, where the document IDs are replaced
with their relevance scores. The cumulated gain at
ranki, CG[i], is computed as the sum of the relevance
scores up to that rank:

CG[i] :=
i∑

j=1

G[j] (3)

For example, based on a four-point relevance scale
with relevance degrees of{0, 1, 2, 3}, the rankingG =
<3, 2, 3, 0, 1, 2> produces the cumulated gain vector
of CG = <3, 5, 8, 8, 9, 11>.

For each query, an ideal gain vector,I, can be de-
rived by filling the rank positions with the relevance
scores of all documents in the recall-base in decreas-
ing order of their degree of relevance. A retrieval run’s
CG vector can then be compared to this ideal rank-
ing by plotting the gain value of both the actual and
ideal CG functions against the rank position. We ob-
tain two monotonically increasing curves (levelling af-
ter no more relevant documents can be found).

By dividing the CG vectors of the retrieval runs
by their corresponding ideal CG vectors, we obtain
the normalised CG (nCG) measure. Here, for any
rank the normalised value of 1 represents ideal perfor-
mance. The area between the normalised actual and
ideal curves represents the quality of a retrieval ap-
proach.

34

2.2.2 The XCG metrics

XCG makes use of both the CG and nCG metrics. The
extension of these metrics to XML documents, and
in particular to INEX, lies partly in the way the rele-
vance score for a given document - or in this case doc-
ument component - is calculated via the definition of
so-called relevance value (RV) functions, and partly in
the definition of the ideal recall-bases.

An ideal recall-base is a set of ideal result nodes
selected from the full recall-base based on a given
quantisation function and the following methodology.
Given any two components on a relevant path1, the
component with the higher quantised score (as per cho-
sen quantisation function) is selected. In case two
components’ scores are equal, the one deeper in the
tree is chosen2. The procedure is applied recursively
to all overlapping pairs of components along the rele-
vant path until one element remains. After all relevant
paths have been processed, a final filtering is applied
to eliminate any possible overlap among ideal compo-
nents, keeping from two overlapping ideal paths the
shortest one. The resulting ideal recall-base contains
the best elements to return to a user based on the as-
sumptions that overlap between result nodes should be
avoided and that the user’s preferences are reflected
within the employed quantisation function. The de-
rived ideal recall-bases then form the basis for the ideal
gain vectors for each topic.

While I is derived from the ideal recall-base, the
gain vectors,G, for the runs under evaluation are based
on the full recall-base in order to enable the scoring of
near-miss components. All relevant components of the
full recall-base that are not included in the ideal recall-
base are considered as near-misses.

In order to obtain a given component’s relevance
score (both forI or G) at a given rank position, XCG
defines the following result-list dependent relevance
value (RV) function:

rv(ci) = f(quant(assess(ci))) (4)

whereassess(ci) is a function that returns the assess-
ment value pair for the componentci, if given within
the recall-base and(0, 0) otherwise. Therv(ci) func-
tion then returns, for a not-yet-seen componentci, the
quantised assessment value pairquant(assess(ci)),
where quant is a chosen quantisation functions, e.g.
sog. In this casef(x) = x. For a component, which

1A relevant path is defined as a path in an article file’s XML tree,
whose root node is thearticle element and whose leaf node is a
relevant component (i.e.(e>0, s>0)) that has no or only irrelevant
descendants. E.g. in Figure 1 there are 6 relevant paths.

2We are also experimenting with the alternative option, i.e. se-
lecting the the node higher in the tree.

has been previously fully seen by the user, we have
rv(ci) = (1 − α) · quant(assess(ci)), i.e. f(x) =
(1− α) · x. With α set to1, the RV function returns0
for a fully seen, hence redundant, component, reflect-
ing that it represents no value to the user any more. Fi-
nally, if ci has been seen only in part before (i.e. some
descendant nodes have already been retrieved earlier
in the ranking), thenrv(ci) is calculated as:

rv(ci) = α ·

m∑
j=1

(rv(cj) · |cj |)

|ci|
+ (1− α) · quant(assess(ci))

(5)

where m is the number ofci’s relevant child nodes.
In addition to the above, the final RV score is ob-

tained by applying a normalisation function, which
ensures that the total score for any group of descen-
dant nodes of an ideal result element cannot exceed
the score achievable if retrieving the ideal node it-
self. For example, in Figure 1 the two ideal result
nodes for the quantisation functionsogaresec4 and
sec6 . Since these results represent the best nodes for
the user, a system returning these should be ranked
above others. However, if another system retrieved all
the leaf nodes, it may achieve a better overall score
if the total RV score for these nodes exceeds that of
the ideal nodes. The following normalisation function
safeguards against this by ensuring that for anycj ∈ S:∑

c∈S

rv(c) ≤ rv(cideal) (6)

whereS is the set of retrieved descendant nodes of the
ideal node and wherecideal is the ideal node that is on
the same relevant path ascj .

3 EVALUATION SETUP

3.1 What to evaluate?

The evaluation of a metric requires a number of tests.
Voorhees in [8] identifies two aspects to qualify an
evaluation: fidelity and reliability. Fidelity reflects the
extent to which an evaluation metric measures what it
is intended to measure, while reliability is the extent to
which the evaluation results can be trusted. In this pa-
per we concentrate on the latter test. We take the view-
point of [8] that in a comparative evaluation setting,
reliability reflects “a metric’s ability to rank a better
system ahead of a worse system”. This is, of course,
highly dependent on a definition on what makes a sys-
tem better or worse than another. The basis for such a

35

decision lies within the user satisfaction criterion de-
fined within the given retrieval task.

This criterion in the INEX CO track is (largely) de-
fined by the task definition. According to this, within
the CO task, the aim of an XML retrieval system is to
point users to the specific relevant portions of docu-
ments, where the user’s query contains no structural
hints regarding what the most appropriate granular-
ity of relevant XML elements should be. The evalu-
ation of a system’s effectiveness should hence provide
a measure with respect to the system’s ability in re-
trieving such components. But what exactly are these
“most appropriate” components? At the moment, we
don’t actually have an exact answer to this in INEX.
Intuition dictates that users would prefer elements that
contain as much relevant information and as little irrel-
evant information as possible. Therefore, given a set of
possible retrievable components in an arbitrary docu-
ment (such as an article in INEX), the best elements
to return to the user should be those that are “most”
exhaustive and “most” specific to the user’s request3.
However, given two relevant components, one highly
exhaustive but only fairly specific ((e, s) = (3, 2)) and
another which is only fairly exhaustive but highly spe-
cific ((e, s) = (2, 3)), which one should be regarded
as better? The answer to these kinds of questions in
INEX is provided by the quantisation functions. As
mentioned in the previous section, each quantisation
function reflects a set of possible user preferences. Ac-
cording to these preferences, it is then possible to iden-
tify the “best” components as those elements that score
highest.

Overall, systems should then rank these “best”
components in decreasing order of their quantised
scores, i.e. highest scoring elements should be ranked
first. In addition, we reason that users do not want to be
returned overlapping redundant elements, so systems
should be either penalised or at least not rewarded for
such redundancy.

Given a user satisfaction criterion, a simple method
to evaluate a metric’s reliability is to construct appro-
priate test data for which we can derive expectations
as to what the metric’s outcome should be and check if
the expected output is indeed obtained. The expected
output is in the form of rankings of systems that meets
user expectations. A system ranking is simply an or-
dered list of runs sorted by decreasing value of effec-
tiveness. For example, according to the user prefer-
ence that non-overlapping results are preferred to over-

3Note that most exhaustive and specific heredoes not! equate
to (e, s) = (3, 3) nodes, but refers to the nodes with the highest
available exhaustivity and specificity score. For example, it may be
that amongst all the possible retrievable components in an article, the
most exhaustive node ise = 1, or the most specific node iss = 2.

lapping ones, we would expect that from two systems
producing respective result rankings, the former would
be regarded as the better system by a reliable evalua-
tion metric.

For our test data, we constructed a number of simu-
lated runs, which are described next.

3.2 Simulated runs

Each simulated run is populated with components de-
rived from the full recall-base4, where the selection
and ordering of the components is according to an as-
sumed set of user preferences defined by thesogquan-
tisation function (Equation 2). We constructed the fol-
lowing simulated runs:

iBsog: is a ranked result list that contains only ideal
results selected according to the quantisation
function sog, where the ordering of the com-
ponents within the ranking is also according to
sog. The selection of the ideal results here is
done according to the procedure described in Sec-
tion 2.2.2. As an example, consider the relevant
nodes in Figure 1 as an imaginary full recall-base.
From this, we would obtain the following result
ranking for our iBsog run:{sec6, sec4}.

frbBsog: is a run that contains all relevant com-
ponents of the full recall-base, where the
components are ordered by the quantisation func-
tion sog. E.g. for Figure 1, all shown nodes will
be included as follows:{sec6, sec6/p1,
sec6/p2, sec6/ip12, sec4/p1,
sec4/ip12, sec4, sec4/p2, bdy1,
article1 }.

iaBsog: contains all ideal results and all their rele-
vant ascendant nodes ordered bysog. E.g. from
Figure 1, we obtain:{sec6, sec4, bdy1,
article1 }.

idBsog: contains all ideal results and all their rel-
evant descendant nodes ordered bysog. E.g.
from Figure 1, we get: {sec6, sec6/p1,
sec6/p2, sec6/ip12, sec4/p1,
sec4/ip12, sec4, sec4/p2 }.

loBsog: contains all relevant leaf nodes ordered by
sog. E.g. from Figure 1, we get:{sec6/p1,
sec6/p2, sec6/ip12, sec4/p1,
sec4/ip12, sec4/p2 }. Note that a leaf
node here refers to leaf nodes on the relevant
paths within an article, which may be non-leaves
within the article file itself (e.g.sec[6]/p[2]

4We used assessments04-v1.0.tar.gz.

36

Figure 1: Sample assessments showing only relevant
nodes (i.e.e>0 ands>0) for topic 163 in the article
file co/2001/r7022.xml. For each node, the node name,
the assessment value pair(es), the size in characters
and the size ratio to its parent node is shown.

may have a number of irrelevant descendant
nodes).

aoBsog: contains only relevant article nodes or-
dered bysog. E.g. from Figure 1, we get:
{article1 }.

3.3 Expected system rankings

Based on the user preferences captured by thesog
quantisation function, systems that return the best
components (i.e. highest quantised-scoring elements)
should be ranked above others. Based on the intu-
ition that users do not want to be inundated with multi-
ple redundant, nested components, systems that return
minimum amount of overlapping results would be pre-
ferred.

From these two assumptions, we can derive a rel-
ative ranking of simulated runs that should then be
matched by a metric if it is to be proved reliable.
From the latter assumption, we can reason that the runs

should be ranked as follows:

iBsog (0%)� loBsog (0%)� aoBsog (0%)�
idBsog (57.9%)� iaBsog (70.7%)� frbBsog (77.5%)

wherea � b signals that ‘runa performs better than
b’.

Based on the quantisation function, a metric should
rank those systems first that are able to return the best
components. Since, the best components are defined
by the quantised score of the quantisation function,
without looking at the document collection and the
actual relevance assessments we cannot safely predict
much more than:

iBsog� b

whereb ∈ {loBsog, aoBsog, idBsog, iaBsog, frbBsog}.
This is because the best scoring elements could be,
e.g., the leaf or article nodes (depending on the
judgements of the assessor). With respect to the runs
idBsog, iaBsog, frbBsog, since iBsog is a subset of all
these runs, the expectation is that they could produce
possibly as good results as the ideal run, but not better.

The combination of these two criteria, if producing
conflicting rankings, is currently an open question. It
may be solved by defining the relative importance of
the two aspects, which may be a parameter of a given
user’s model for XML retrieval. Within the XCG met-
rics, given that the derived ideal recall-bases are com-
pletely overlap-free and that the overlap of result ele-
ments is considered directly within the way the rele-
vance scores are calculated (RV function) for a run, it
is not actually possible for the two criteria to produce
conflicting rankings.

3.4 Metric reliability tests

We evaluated each of the simulated runs using the two
metrics5. The resulting graphs are shown in Figures 2
and 3.

inex-2002 nXCG
iBsog 0.1430 (5) 1.0000 (1)
frbBsog 0.7437 (1) 0.5369 (5)
iaBsog 0.2567 (4) 0.7936 (3)
idBsog 0.6195 (2) 0.7790 (4)
loBsog 0.3944 (3) 0.8269 (2)
aoBsog 0.0296 (6) 0.4096 (6)

Table 1: System Rankings

In order to obtain an overall ranking, we use the
MAP measure for the inex-2002 metric and the mean

5Throughout the paper, we usedα = 1 within the XCG metrics.

37

Figure 2: Results of the inex-2002 metric

Figure 3: Results of the nXCG metric

average of the nCG values for nXCG (averaged over
the 10 rank % points). Table 1 summarises the re-
sults. The numbers in brackets show the achieved sys-
tem (run) ranks.

For the inex-2002 metric, both the graph and the
MAP results clearly illustrate that better effectiveness
is achieved by systems that return not only the most de-
sired components, but also their ascendant (iaBsog) or
descendant (idBsog) elements, hence inundating users
with redundant components. In fact, according this
measure only the article-only run (aoBsog) has worse
performance than the ideal run (iBsog). Best perfor-
mance is achieved by the run that returns the full recall-
base (frbBsog).

Looking at the results for the nXCG metric, we
can see that best performance is achieved by the ideal
run (iBsog), which is registered at a constant 1 nor-
malised cumulated gain value. The worse performer
is the article-only run (aoBsog), followed by the full
recall-base run (frbBsog). The performance of the re-
maining runs (iaBsog, idBsog and loBsog) is evaluated
as worse than the ideal, but better than the full recall-
base run.

What is clear from the above is that the inex-
2002 metric cannot reflect true performance differ-
ences when systems return overlapping elements as
these can artificially raise the performance indicator.
The nXCG metric’s ranking of system’s performances,
on the other hand, corresponds to the user satisfaction
criterion: the retrieval of ideal nodes representing the
best nodes for the user (in accordance with a given set
of user preferences expressed within a chosen quan-
tisation function) is rewarded, while the retrieval of
near-misses is also considered. Systems that retrieve
such near-misses can achieve good performances, but
cannot surpass an ideal system’s score.

In both graphs, the comparison of the article-only
(aoBsog), the leaf-only (loBsog) and the ideal (iBsog)
runs gives an indication of the metrics’ capabilities
for ranking systems whose output contains no over-
lapping results. With the inex-2002 metric, the ideal
run is scored lower than the leaf-only run, while with
the nXCG metric, although the leaf-only run’s perfor-
mance is the second best, it never beats the ideal run’s
effectiveness. The article-only run achieves worst per-
formance in both cases. This suggests that the inex-
2002 metric is able to rank systems when no overlap-
ping results are returned. However, the fact that the
leaf-only run seems to perform better than the ideal run
points to the need that a similar score-normalisation
function to that described in Section 2.2.2 would be
required.

38

3.5 Top ten INEX CO runs

In this section, we list the top ten of the INEX 2004
runs for both metrics as an indication of how the rank-
ings are effected, see Tables 2 and 3. As it can be seen,
amongst the top ten only the run by Carnegie Mellon
University appears in both tables, although the Uni-
versity of Amsterdam and the University of Waterloo
also appear in both, but with different runs (and one
run by Queensland University of Technology is actu-
ally ranked 11th by nXCG).

It can be observed that runs with less overlap score
better in nXCG, but overlap-free runs are not a suf-
ficient condition for obtaining high values, but rele-
vant nodes still need to be found. In fact, in total
there are 18 submitted runs with 0% overlap (while
several other runs also have minimal overlap, e.g. 1%
or less), but their average rank is only 41 (out of 69).
There are a couple of runs, which nicely reflect the
effect of overlap on the nXCG scores: e.g. the Univer-
sity of Amsterdam submitted these runs: UAms-CO-
T-FBack (81.85% overlap) and UAms-CO-T-FBack-
NoOverl (0% overlap), which are scored as 0.2636
and 0.3521, respectively. Another example may be the
runs submitted by the University of Tampere (see Ta-
ble 3). On the other hand, the runs submitted by RMIT:
Hybrid CRE (82.12% overlap), HybridCRE specific
(0% overlap) and HybridCRE general (0% overlap)
achieve scores of 0.2791, 0.2576 and 0.2540, re-
spectively. The drop in effectiveness score suggests
that when reducing overlap, the higher scoring nodes
are removed from the ranking, leaving lower scoring
nodes in the ranking and (presumably) filling the rest
of the ranks with irrelevant nodes (provided the three
runs are produced from the same baseline, of course).

Note that the detailed analysis of the difference in
these rankings will follow in a separate paper.

4 CONCLUSIONS

In this paper we investigated how closely the output of
the two metrics, inex-2002 and nXCG, reflect the user
satisfaction criteria defined within the INEX CO task.
The results confirm the weaknesses of the inex-2002
metric reported in [4, 5], but show that with an ap-
propriate quantisation function (e.g. when leaf nodes
represent the best nodes) or with an arbitrary quanti-
sation function when combined with a normalisation
method, the inex-2002 metric is able to produce sys-
tem rankings that match the evaluation criteria, pro-
vided no overlapping results are returned by the sys-
tems.

We also described and further developed the XCG

metrics, which produced promising results in our met-
ric reliability test. A weakness of the XCG metrics,
however, is that they produce effectiveness scores for
a given rank (or rank %) and not for recall. To address
this issue, Gabriella Kazai is currently working on a
version of the metric that is able to give recall related
performance indicators. She is also working on an ex-
tension of the generalised Precion and Recall measures
introduced in [6]. These will be published in the near
future.

In the future, we also hope to be able to derive bet-
ter user models and hence arrive at more accurate user
satisfaction criteria based on the outcome of the INEX
2004 interactive track.

References

[1] W. Cooper. Expected search length: A single mea-
sure of retrieval effectiveness based on the weak
ordering action of retrieval systems.American
Documentation, 19(1):30–41, 1968.

[2] N. Gövert and G. Kazai. Overview of the INitia-
tive for the Evaluation of XML Retrieval (INEX)
2002. In N. Fuhr, N. G̈overt, G. Kazai, and M. Lal-
mas, editors,Proceedings of the First Workshop
of the INitiative for the Evaluation of XML Re-
trieval (INEX). Dagstuhl, Germany, December 8–
11, 2002, ERCIM Workshop Proceedings, pages
1–17, Sophia Antipolis, France, March 2003.
ERCIM. http://www.ercim.org/publication/ws-
proceedings/INEX2002.pdf.

[3] K. Järvelin and J. Kek̈aläinen. Cumulated Gain-
based evaluation of IR techniques.ACM Trans-
actions on Information Systems (ACM TOIS),
20(4):422–446, 2002.

[4] G. Kazai. Report of the inex 2003 metrics working
group. In N. Fuhr, M. Lalmas, and S. Malik, edi-
tors,Proceedings of the 2nd Workshop of the INi-
tiative for the Evaluation of XML retrieval (INEX),
Dagstuhl, germany, December 2003, pages 184–
190, April 2004.

[5] G. Kazai, M. Lalmas, and A. de Vries. The overlap
problem in content-oriented XML retrieval evalu-
ation. In Proceedings of the 27th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, Sheffield,
UK, 2004., pages 72–79. ACM, July 2004.

[6] J. Kek̈aläinen and K. J̈arvelin. Using graded rel-
evance assessments in IR evaluation.Journal of

39

rank Run MAP overlap %
1 IBM Haifa Research Lab (CO-0.5-LAREFIENMENT) 0.1327 80.89
2 IBM Haifa Research Lab (CO-0.5) 0.1274 81.46
3 University of Amsterdam (UAms-CO-T-FBack) 0.1060 81.85
4 LTI, Carnegie Mellon University (LemurCO KStemMix02 Shrink01) 0.0941 73.02
5 IBM Haifa Research Lab (CO-0.5-Clustering) 0.0923 81.10
6 LTI, Carnegie Mellon University (LemurCO NoStemMix02 Shrink01) 0.0879 74.82
7 Queensland University of Technology (COPSStop50K049 025) 0.0839 71.06
8 Queensland University of Technology (COPS099 049) 0.0803 76.81
9 Queensland University of Technology (COPSStop50K099 049) 0.0784 75.89
10 University of Waterloo (Waterloo-Baseline) 0.0781 76.32

Table 2: Top ten INEX 2004 runs according to inex-2002, quant: sog

rank Run MAnCG overlap %
1 University of Tampere (UTampereCO average) 0.3725 0
2 University of Tampere (UTampereCO fuzzy) 0.3699 0
3 University of Amsterdam (UAms-CO-T-FBack-NoOverl) 0.3521 0
4 Oslo University College (4-par-co) 0.3418 0.07
5 University of Tampere (UTampereCO overlap) 0.3328 39.58
6 LIP6 (bn-m1-eqt-porder-eul-o.df.t-parameters-00700) 0.3247 74.31
7 University of California, Berkeley (BerkeleyCO FUS T CMBZ FDBK) 0.3182 50.22
8 University of Waterloo (Waterloo-Filtered) 0.3181 13.35
9 LIP6 (bn-m2-eqt-porder-o.df.t-parameters-00195) 0.3098 64.2
10 LTI, Carnegie Mellon University (LemurCO KStemMix02 Shrink01) 0.2953 73.02

Table 3: Top ten INEX 2004 runs according to nXCG, quant: sog

the American Society for Information Science and
Technology, 53(13):1120–1129, 2002.

[7] V. Raghavan, P. Bollmann, and G. Jung. A crit-
ical investigation of recall and precision.ACM
Transactions on Information Systems, 7(3):205–
229, 1989.

[8] E. M. Voorhees. Overview of the TREC 2003
question answering track. InText REtrieval Con-
ference, Gaithersburg, 2003.

40

MultiText Experiments for INEX 2004

Charles L. A. Clarke Philip L. Tilker
School of Computer Science, University of Waterloo, Canada�������������
	���
 ��������������	������������ ��� �!����	��#"�"$� �%�

1. INTRODUCTION& ' ��()��(*� ' �,+�	�(��*-!�%��	.� ' ���/� ' �101������� & �%2��43�	�"����5�6��	��������87�6������9:�8;=<?>A@CB)
6(��$D6E)�������8;6�F� ' 	��%�)	���;G(AHI"�	/� ' �)�%"
;�����;���7J"�;���-�!9 ' "��*	��%��	����%K
���L����(���� & ".����;G��	��!���*� ' �%(��)	���;G(%
M� �/�%"�END$�8;6�%9"
�$	O�%2���(����8;6�1�%2�����	�����;G���*��;691��"�"
��(A� ��� ' � ' �N�!9$K������)�
;G91��9��%��(HI"���;G9P�8;F	����%��;��N<?>A@CBQ�6������	�(*R�S�
UT�VJ
G��;6���8;6�%��	��8;6�P�.(�"��8��9W(�-�(�7����EX�%���6��D����F"
HN����	�H?"
	�E)�8;6�5� ' �1D6��(����Y����(��Z�8;[�F	��%�!(�"�;6��D����HI��(' ��"�;M�
2. RETRIEVAL METHODS\ �8�]	���;6(^�G(���91�/K���	�(���"
;Y"�H_� ' �N`��!�
�$�Ma 0Yb!c)E*�%�!(��$	���
6���6��7Ed��;����%9e��;69Q����;G��9Q��"fE*�%���1� ' �F	��%g����8	��%E*��;���(Y"�Hd��;eBh0Pi	�����	����%K
���.���!(����j`�;G�W	���;lk�m6n�o�p�q�r�s�s�t�u�n!v�p�rxw%y6p�z{�6(��%9|"
;$��-� ' �^D6��(����hE*�%� ' "�9]
��h(��%�%"
;G9)	���;Pk�m6n�o�p�q�r�s�s�t%}�~���n�y���p���z���9�9��%9�6(����69$"
7?	������%K
��;6�%��HI�%�%9�DG�!����
!��;69N��� ' �8	�9.k�m6n�o�p�q�r�s�s�t���w�r�o�p�q�p���z�!9$9��%91+�������	��8;6�1��")	��%9��6�%�)"
K!��	������M�
2.1 Basic Method& ' �N01�$����� & �%2��h(�-�(����%E�(��$����"�	���(h�);��6E�D���	N"�H_HI�����8�8�������%(AHI"�	g��6��	�-��8;6��BA0Pi���;69�"�� ' ��	{(���	��G�%����	��%9e9$"����GE*��;��P��-����%(%
h�8;$7���8�G9��8;G�Y����;G��	��
�8���%�%9f(����$��"
	��AH?"�	�`��!�����Ca 0Yb�c.g��G��	�����()"
H � ' �HI"�	�E q�n�y��.�Z���Z�� ' ��	��L����(M��(��$D�7Jg��G��	�-/(����%���8H?-��8;G�N��(��%�M"�H69$"����GE*��;��_�����%E*��;���(��"WD��P	���;�����9Q�
;G9��Z��(P�fK��%����"�	P"
H*(���D�7�g��6��	����%(Y(����%���8H?-��8;G��8;69���K���9x���
�^	�����	����%K
���C����	�E*(%�� "
	h"���	N<?>A@CB�b��!��T*	���;G(%
6� ' �/(��$D�7Jg��G��	�-P�Q(��������8+G��9F�)�8��(��"
HC� ' �AHI"��8��"
� �8;G�=�������%���6����D����%�����%�
H^;6"�9��%(%�v�p��O�{n�q�oGw!��r�pNv�vG� �����)���Pw%�M�Nv�v��N��o.n��6v� w
�*n����d���4r$w � �& ' ��(^�8��(�� "
H����%�����G���
D$���A������H�;G"�9��%(�L��(C��	��%������9*E*��;��6���8��-*H�	�"!E� ' �P�%"
�8���%�%����"�;���;69�� ' �Yb
���� W	�������K��
;G���*¡��69���E*��;���(%� \ ;[����7�����G���
D$�������%��H�;6"�9$� ��(C"�;6� � ' ���C"��%����	�(¢H�	���g��G��;�����-N�8;.� ' ���%"��8���%��7����"
;�
 ' �!(^��	��%��(�"
;G�
D$���h��K!��	����!� ����;G�!� '
��
;G9 ' ��(_Ed��;�-N��"�(�������K!�	������%K
��;6�%�/¡��69$�!E*��;���(/��(�(�"������!���%9Z� ��� ' ���%�Y£��8;G�%�4� ' �*�8��(��*�L��(��	��%�����%9fE*�
;��G�
�8��-�
^;6"P(����%���8+G�P� ' 	��%(' "���9�(��L��	��*(��%�NH?"�	d� ' �%(����	�������	����$�<�;P����;G��	��
�?
�����	�E*(�8;��PE*�
-*D��)��"�E)�����%2G
M�%"�;����
�8;$�8;6�1�$	�"
2�7��E/����-Y��;69F(���	��6�%����	����C�%"
;G(���	��
�8;���(%�)¤h"
� �%K���	

GH?"�	�<¥>A@CB¦b��!��T$
�[� ��(.9���	���K��%9�H�	�"!EX� ' �Y��"������F����������(���E)�$��-ZD�-=���8��E)�8;6�����8;6�(���"
��� "�	�9�(_��;69A;6�%���!����K�� ����	�Ed(^k?� ' "�(��C(�����	����8;6�A� ��� ' ��7J��z�

(����8����7���8;6�*�
�G�
	��^� ' 	���(���(%
G��;69.(����%E*E)�8;6�*� ' ��	��%Ed���8;��8;G�.����	�E*(L�§��� '� ' �N¨_"�	�����	A(�����E*E*��	
� � "
	A��2���E)������
�� ' �)���������NH�	�"�E¦��"�������S�©�©
Copyright is held by the author/owner.
INEX 2004, December 2004
.

ªG« o�q�p�pfp��Gw
o5�Gw!v�o�n�y6��p «4ªZ¬�­�® t¯w%�6n���pD��%����E*�/� ' �AHI"���	�7�����	�Elg��G��	�-«!° o�q�p�p «W«!° p��Gw
o «W«!° �Gw!v�o�n�y6��p «W«!° ~��6r «� ' ��	��P� ' �P�²±��f"�����	�����"�	{� ��� ' �8;e�fg��6"����%9�(���	��8;6�f(����%E*(.� ' �����	�El� ' ��� H?"
�8��"���(����%�`���)��E/�$���%Ed��;���������"
;�"�H�`����
�$�La 0Yb!c���(�D6��(��%9�"�;f� ' �*9���7(���	��8�6����"�;="�HL³�"�D���	���(�"�;f�%�h���?�CR8c%VC� ��� ' �6��	��!E*�%����	d(��%�����8;6��(N"�H´4µ ��¶ ·!�$
_¸�¹ µ S��$
C¸�º µ �P�
;G9f¸�» µ�¼ � & ' ��K
�
�8�G�%(.� ' "
7(���;fH?"
	.¸ ¹ ��;69 ´ � ��	��.� ' ��	��%(������*"�HO���$;��8;6�W"
K���	.� ' �P<?>A@CBb��!�� 4��"������%(N��;69/¡��69$�!E*��;���(%½M� ' �*"!� ' ��	A�6��	���Ed�%����	/K
���8�6�%(N��	��(�����;69���	�91H?"
	A"
�$	O(�-�(����%E1�L£����%���8+6�%���8�#-�
_�
��K���;Y�d����	�El(��%�h¾)
G�9�"����GEd��;��A¿*��(���(�(����
;G�%9Y� ' �N(��%"�	��ÀÁ¥Â�ÃhÄ�Å ¹�ÆJÇ Á k?¸ ¹_È S
z�¿ ÁÉ È ¿ Á k�S�z
� ' ��	�� Ä�Å ¹�Æ µ ��"!�1ÊLËÍÌ�Ë Á È �$¶ cË Á È ��¶8c ÎË µ ;��6E�DÏ��	N"
HC9$"����6E*��;���(��8;Y� ' �N��"�	����G(Ë Á µ ;��6E�DÏ��	N"
HC9$"����6E*��;���(h�%"�;����
�8;$�8;6�PÐÇ Á µ H�	���g��G��;6�%-4� ' �!�AÐC"��%����	�(��8;P� ' �/��"������¿ Á µ H�	���g��G��;6�%-4� ' �!�AÐC"��%����	�(��8;P¿É µ ¸�¹�k�k�S Ì ´ z È ´ Ñ�Ò�Ó
Ô
Ò¥Õ�ÖI× zÒ Ó µ ����;6��� ' "
HC¿Ò Õ�Ö?× µ �
K���	������/9�"����GEd��;�������;6��� '
� "
	N� ' �����$	��Ï"�(��%(N"
H �%"!E)���G���8;6� Ë �
;G9 Ë Á
��*9�"����6E*��;��N� �!(9���+$;6�%9e��"FD��Y��;¯n�q�oGw!��r�p²
��
;G9�� ' �%(��P����	�Ej(���������(�������(1� ��	���6(��%9WH?"�	/	���;����8;G�����8�h�����%E*��;��*��-�����(%� \ H?����	/	��%��	����%K
���h� ' �*	���7(�������(*� ��	��*+�������	��%9f��"1���8��E/�8;G�!���FK!��	�-F(' "�	��/�����%Ed��;���(1k���;G9���	b�c � "
	�9$(�z��
;G9/�����%Ed��;���(_� ��� ' ��;��G(��6�����6��� ' �%2��$	���(�(���"�;6(%
$� ' "�(��� ��� ' HI"�	�E*(h� ' �!�N9x��9F;6"��h�������%�
)�8;�� ' �,<¥>A@CB¦b��!�� �	������%K
��;��(��%�%�
2.2 Pseudo-Relevance Feedback& � ")	���;6(*k�m6n�o�p�q�r�s�s�t�}�~��6n�y²��p��N��;691m6n�o�p�q�r�s�s�t���w!r
o�p�q�p���z���6��Ed��;����%9�� ' ��(�D6��(����YE*�%� ' "�9Z� ��� ' �G(����G9�"�7?	������%K
�
;G�%�YH?�%�%9�7D6������� � "
	*D�"�� ' 	���;6(%
A� �.�G(���9�� ' �YØ \ ¨��6��(�(��!����7?	��%��	�����K��
������!"�	���� ' EÙR bx
%
Vh��"W����;6��	��!���F� ' �P��"��Úb!c:�G�!(�(����!�%(�H�	�"!EX� ' �<¥>h@^BÚ�%"��8���%������"�;=��;69F� ' �/��"��YT��*�6��(�(��!���%(AH�	�"!EÛ�*���
	����*ÜY��D�%"
�8���%�%����"�;M� & ' �4��"��=����	�E*(*�L��	��1�%2���	��!�%���%9fH�	�"�E�� ' �%(��1�G�!(�7(����!�%(%
$	���7��L����� ' ���%94��;691�!9$9��%9P��"/� ' �h"�	������8;6���Cg��6��	�-��§<I;4E*"!(��	��%(������%��(.� �*H?"��8��"
� �%9=� ' �.�$	�"����%9x��	��1H?"
	."���	 & ³�@ Ý�³�"
D$�6(��

41

& 	��!���Y��2�����	���E*��;���(/9��%(���	��8D��%9Y�8;f� ' �/01������� & �%2�� & ³�@LÝÍb
���! �6���Ï��	*R �VJ
�� ' ��� ' E*�
-,DÏ�N�%"�;6(��$������9:H?"
	�H��$	�� ' ��	h9��%�����8��(%�
2.3 Filtering for Element Overlap<�;1�!9$9�������"�;���"N�G(����69�"�7?	������%K
��;6�%�*H?�%��9xD6������
G"
;G�N"
H_"���	�	��$;6(k�m6n�o�p�q�r�s�s�t��6w!r�o�p�q²p���z��%2�����;69$�%9/� ' �¢D6��(�����E*�%� ' "�9N� ��� ' +�������	�7�8;6�1��"/	��%9x�6�%�/"
K���	����
��� \ ;{�����%E*��;��h� ��(h���8��E)�8;6�����%9YH�	�"�El� ' �+�;6���_	���;�����91�8��(��A�8H^���h� ��(���;����8	�����-P��"�;������8;6�%9Y� ��� ' �8;�� ' ��� ' ��		��
;$�²�%9W������E*��;��%
_"
	N�8H����N��"�;������8;6�%9f� ' ��� ' ��	/	���;����%9������%E*��;����"�K!��	��8;6�1��� ���%�!(��A·!���l"�H_����(A��"�;�����;���(%������	��8;G�4����"�9$�N	��%K����%��
H?����	."
�$	{<?>A@CB b
����TY	��$;6(.� ��	��1(���D6E)�������%9�
A� �49$�����%�%���%9=��Ï"�(�(��8D����1��	�	�"
	A�8;Y� ' ����E)�����%E*��;���������"�;="
H � ' ��(A+$������	��8;G�1��	�"��%��79���	����Y¤A"
� �%K!��	

_� � ' �
K��.;G"!� ' ��9f��; "�����"�	�����;$���J-Z��"4K���	��8H?-�
;G9P��"�	�	��%�%��� ' ��(A��	�	�"
	

G"
	A��"/	���7?	��$;{� ' �N�%2��Ï��	���E*��;��%�
3. RESULTS AND CONCLUSION� "
	L<¥>h@^B=b��!��T�
$"
�$	_��	���E*�
	�-*��"!���6� ��(_��"N(��6�%�%�%(�(�H#�$�8��-*��"�E)7�����%���N� ' ��D6��(����N�!9 ' "��A���!(���
$�
;G94� � D����8���%K!�)� ' ���L� � ' �
K��h(�����7��(�+6�%9�� ' ��(*��"!���?��¤h"
� �%K���	

¢DÏ"�� ' �6(����69$"
7?	������%K
��;6�%�PH?�%�%9�DG�!����
;G9."
K���	������1+�������	��8;6� ' �!9��A;6�%�!������K��A��E/�G�!�%��"�;.����	�H?"
	�E*��;6�%��
�
;G9f� �.(���	��$	���(���95D�-W� ' ��()	��%(������%�f<�;WH��6���$	���
C� �*������;=��"P�8;$7K!�%(��������!���)� ' �%(��A��(�(��6�%(%
���;691;6�%2���-��%�
	A�L� ' "
���N��"*�%2�����;69P"���	�6��	��������8�G�!����"�;f��")�8;6���8�69$�."!� ' ��	O<?>A@CBQ���!(���(%�
4. REFERENCESR�S�V��A�
K���9�Ý§�
	�E*���?
�� "����8���d£G�G0P���
	�����
G0P�!����;Y0P�
;G9����8D�	�"�9]

� "!(��_0P�!(�(%
G��;69 \ -!�.£�"�����	
�Ï£x����	�� ' �8;6�1Bh0PiW9$"����GE*��;���(K����.BA0PiFH�	��!��E*��;���(%��<I;
	���
�����������������
����! "�$#�%��! '&��"�)(*&�+
�,�"�-�����)&��.��
��"&�+0/214365"7�8�7�9:��
��;�;�������)����
��'9��<�=��&��>�� '&��"�
����?��;+!
�@BAC���"�4�,�D���;�;
���AE&��,
��F�����-���,��?�&�+8
��G�!���%(/S
c�S�GGS�c�·��\ Ý§0�¨_	��%(�(%
�b
���! $�R b�V�Ý ' �
	����%(AiC� \ �6Ý^����	��²��
�3A"
	�9$"
;IH)�ÏÝ§"
	�E*������
G�
;G9& ' "!E*��(h³��6i�-�;6��E1�6@^2�����"������8;6�1	��%9��$;69���;6�%-1�8;Yg��G��(�����"�;��;6(�� ��	��8;6�$�M<�;J	��>
����������,������
����! "�$#�KL�! '&��)�"(*&�+
�,�"�-�����)&��.��
��"&�+0/214365"7�8�7�9:��
��;�;�������)����
��'9��<�=��&��>�� '&��"�
����?��;+!
�@BAC���"�4�,�D���;�;
���AE&��,
��F�����-���,��?�&�+8
��G�!���%(h �c
·�G� !©�c�
>A�%�Ú`�	����%�
;G(%
M£����6���%E�DÏ��	/b
���$S!�R �V��A�
K���9Yi^��� ���$;6�$
ÏÝ ' ��	�����(Ai^� \ �6Ý^����	��²��
�3A"
	�9$"
;IH)�Ý "�	�E*�!����
 &§' "�Ed��(A³N��i�-�;6��E4
���;691@C����9���"1i^� & ��	�	��$�& ��(���7U£����%���8+6�.Ø��6��	�-.@^2��6��;6(���"�;�k?01������� & �%2��@^2��Ï��	���E*��;���(AH?"
	 & ³�@LÝQb
���! �z���<�;J	��>
����������,������
����! "�
M4N �;+ �;�! M ��O��P9����-���,��?�&�+Q1P
��;�;���>���"���%
�3A�
��� ' ��	�(�D$��	��$
M0D�)
b��!�� $��>h������"
;G�
�C<I;6(��������6���)"
HL£x���
;G9���	�9�(N��;69 & �%� ' ;G"
��"���-!�R T�VSR����
�ITN��E)�6(%
G0P�!��	�����;{9$�/³ � ¡�����
6��;69Pa�U"�	�����	£²���
�$	�D²¡�U"
	�;G(�(�"
;��Mi���;G�!� ' ;6"�	�E*�
�8���%������"
;W�8;PBh0Pi:	��%��	�����K��
�?�<I;
	���
����������,�V�V�W
����X "��#)Y��! '&��"�"(�&�+L�,�)�.�����"&��-�,
���&�+
��
��=�;���>���"���Z
��[9��;�;��&��>�� '&��)�2����?��;+!
�@BAC���"�L�,�D�,�;�;
���AC&��.��
��
�>���-������?�&�+8
��6���!�%(A·!��G²·�\x� \ Ý§0�¨_	��%(�(%
�b
���!T$�R c�V�£Ï�6@��6³�"�D���	���(�"
;�
M£G�GÜY���8�²��	

G�
;G9P0W�6a �%�
�$�8�����M� `����
�$� ���& ³�@LÝ^7]\x� \ �6��"�E*�!�����)�!9 ' "���
$+�������	��8;6�$
BHAi ÝZ��;69�8;�����	���������K��*��	��!�����Ï<I;J	��>
����������,������
����! "��5L��?����)�X M ��O��
9�^��-���,��?�&�+Q1P
��;�;���>���"���%
�3A����� ' ��	�(�D��$	���
�0D�/
�S;_�_!·$�>A�!����"�;6���L<I;6(��������6���)"
HL£x���
;G9���	�9�(N��;69 & �%� ' ;G"
��"���-!�

42

Logic-Based XML Information Retrieval for Determining the Best Element

to Retrieve

Maryam Karimzadegan Jafar Habibi Farhad Oroumchian

Department of Computer

Engineering,
Sharif University of Technology,

Azadi Street,Tehran, Iran.
karimzadegan@ce.sharif.edu

Department of Computer
Engineering,

Sharif University of
Technology,

Azadi Street,Tehran, Iran.
habibi@sharif.edu

University of Wollongong in Dubai
FarhadOroumchian@uowdubai.ac.ae

Abstract – This paper presents UOWD-Sharif
team’s approach for XML information retrieval.
This approach is an extension of PLIR which is an
experimental knowledge-based information
retrieval system. This system like PLIR utilizes
plausible inferences to first infer the relevance of
sentences in XML documents and then propagates
the relevance to the other textual units in the
document tree. Two approaches have been used for
propagation of confidence. The first approach
labeled “propagate-DS” first propagates the
confidence from sentences to upper elements and
then combines these evidences by applying
Dempster-Shafer theory of evidence to estimate the
confidence in that element. The second approach
“DS-propagate” first applies the Dempster-Shafer
theory of evidence to combine the evidences and
then propagates the combined confidence to the
parent element. The second approach performs
relatively better than the first approach.

Index Terms-- Dempster-Shafer theory of evidence,
Knowledge-based Information Retrieval, Plausible
Reasoning, XML information retrieval.

1. Introduction
The widespread use of Extensible Markup
Language (XML) has brought up a number of
challenges for information retrieval systems. These
systems exploit the logical structure of documents
instead of a whole document. In traditional
information retrieval (IR), a document is considered
as an atomic unit and is returned to a user as a query
result. XML assumes a tree like structure for the
documents for example sentences, paragraphs,
sections etc. Therefore XML retrieval not only is
concerned with finding relevant documents but with
finding the most appropriate unit in the document
that satisfies users’ information need. A meaningful
retrievable unit shouldn’t be too small because in

this case it might not cover all the aspects of users
need (coverage). It shouldn’t be too large either
because in this case there could be a lot of non-
relevant information that are of no particular
interest to users current information need
(specificity). Therefore, XML retrieval is an
approach for providing more focused information
than traditionally offered by search engines when
we know the structure of the documents.

We have used the INEX collection for evaluation
of our XML retrieval system. The INEX document
collection is made up of the full-texts, marked up in
XML that consists of 12,107 articles of the IEEE
Computer Society’s publications from 12
magazines and 6 transactions, covering the period
of 1995-2002. Its size is about 494 megabytes. The
collection contains scientific articles of varying
length. On average an article contains 1,532 XML
nodes, where the average depth of a node is 6.9.
Overall, the collection contains over eight millions
XML elements of varying granularity (from table
entries to paragraphs, sub-sections, sections and
articles, each representing a potential answer to a
user’s query [12].

The INEX collection consists of two sets of
queries: CO (content only) and CAS (Content and
Structure). There are 40 Co and 40 CAS queries in
INEX 2004. In CO topics, the retrieval system is
expected to return a ranked list of the most relevant
elements. In other words, the granularity of the
response varies depending on the relevance of the
element while in CAS queries; a retrieval system
should return a ranked list of elements as specified
in the topic. For more information about CO and
CAS queries, one can refer to [13]. The focus of this
paper is on CO topics.

This paper explores the possibility of using
Human Plausible Reasoning [1] and theory of
Dempster-Shefer [2] for combining evidences as a
means of retrieving relevant units (elements) of

43

documents. Collins and Michalski [3] developed the
theory of Human Plausible Reasoning for question-
answering situations. An experimental information
retrieval system called PLIR which utilizes HPR is
described in [4]. In [5], [6] and [7] authors suggest
some applications of the theory for adaptive
filtering, intelligent tutoring and document
clustering, respectively. All these implementations
confirm the usefulness and flexibility of HPR for
applications that need to reason about users’
information need. In this study, the theory HPR has
been extended to accommodate XML information
retrieval. This method utilizes Rich Document
Representation [6] using single words, phrases,
logical terms and logical statements that are
captured from document contents.

2. Basics of Human Plausible
Reasoning
For approximately 15 years, Collins and his
colleagues have been collecting and organizing a
wide variety of human plausible inferences made
from incomplete and inconsistent information [1].
These observations led to the development of a
descriptive theory of human plausible inferences
that categorizes plausible inferences in terms of a
set of frequently recurring inference patterns and a
set of transformations on those patterns. According
to the theory, a specific inference combines an
inference pattern with a transformation that relates
the available knowledge to the questions based on
some relationship (i.e. generalization,
specialization, similarity or dissimilarity) between
them. The primitives of the theory consist of basic
expressions, operators and certainty parameters. In
the formal notation of the theory, the statement
“coffee grows in the Lianos” might be written:

GROWS-IN (Lianos) = Coffee,γ = 0.1
This statement has the descriptor GROWS-IN

applied to the argument Lianos and the referent
coffee. The certainty of the statement (γ) 0.1, since
it declares a fact about the Lianos. The pair
descriptor and argument is called a term.
Expressions are terms associated with one or more
referents. All descriptors, arguments and referents
are nodes in (several) semantic hierarchies. Any
node in the semantic network can be used as a
descriptor, argument or referent when appropriate.
Figure 1 demonstrates the basic elements of the core
theory.

There are many parameters for handling
uncertainty in the theory. There is no complete
agreement on their computational definitions and
different computer models have implemented them

in different ways. The definition of the most
important ones according to [1] is:
1. γ The degree of certainty or belief that an
expression is true. This is applied to any
expressions.
2. φ Frequency of the referent in the domain of the
descriptor (e.g. a large percentage of birds fly).
Applies to any non-relational statements.
3. τ Degree of typicality of a subset within a set.
This is applied to generalization and specification
statements.
4. δ Dominance of a subset in a set (e.g. chickens
are not a large percentage of birds but are a large
percentage of barnyard fowl). That is applied to
generalization and specification statements.
5. σ Degree of similarity of one set to another set.
Sigma applies to similarity and dissimilarity
statements.

This theory provides a variety of inferences and
transforms that allow transformation of known
knowledge (statements) into not known information
(new statements). For more information on how to
implement the theory, one can refer to [8].

 Figure 1. Basic Elements of the Core Theory

3. Information Retrieval by Plausible
Inferences
There are four elements in a logic based IR system.
Those are the description of documents, the

Arguments a1, a2, f (a1)
 e.g. Fido ,collie, Fido’s master
Descriptors d1, d2
 e.g. bread, color
Terms d1 (a1), d2 (a2), d1 (d2 (a1))
 e.g. bread(Fido), color(collie), color(breed(Fido))
Referents r1, r2, r3, {r1…}
 e.g. collie, brown and white, brown plus other colors
Statements d1 (a1)= r1: γ, φ

e.g. means-of-location(bird)={fly…} :certain, high
frequency(I am certain almost all birds fly)

Dependencies between terms d1 (a1) d2 (f (a1)): α,β,γ
 e.g. latitude(place) average-temperature(place):
moderate, moderate, (I am certain that latitude contains
average temperature with moderate reliability, and that
average temperature constrains latitude with moderate
reliability)
Implication between statements d1 (a1)=r1 d2 (f (a1))=r2:
α,β,γ

e.g. grain(place)={rice…} rainfall(place)=heavy:
high, low certain

 (I am certain that if a place produces rice, it implies the

place has heavy rainfall with high reliability, but that if a place

has heavy rainfall it only implies the produces rice with low

reliability)

44

representation of queries, a knowledge base
containing domain knowledge and a set of inference
rules. This study also acknowledges that retrieval is
inference but relevance is not material implication
[9]. A document is retrieved only if its partial
description can be inferred from a query
description. Thus the retrieval process is expanding
a query description by applying a set of inference
rules continuously on the description of the query
and inferring other related concepts, logical terms
and statements until locating a document or
documents which are described partially by these
concepts or logical terms or statements. In XML
retrieval the smallest unit that is inferred is a
sentence.

3-1 Document Representation
In this model, documents are represented in possible
worlds by a partial set of single words, phrases,
logical terms and logical statements, i.e., the
representation of a document is not limited to the
set of its representative phrases or logical terms and
statements. Any concept that can be inferred from
representation, by plausible reasoning using the
given knowledge base, is also a representative of
the document content. In its simplest form, a typical
document such as Van Rijsbergen’s 1986 article
entitled “A non-classical logic for information
retrieval” can be represented as follows:

1. REF (Information Retrieval) = {doc#l }
2. REF (Non-classical Logic)= {doc#l }
3.REF (Non-classical Logic (Information
Retrieval))= {doc#l }

The first statement indicates the concept
Information Retrieval is a reference for doc#l. The
second statement states that the concept Non
classical Logic is a reference for doc#l. The third
statement expresses that the term Non-classical
Logic (Information retrieval) is a reference for
doc#l.

3-2 Representing a Query as an
Incomplete Statement
A query can be represented as an incomplete logical
statement in which the descriptor is the keyword
REF (reference) and its argument is the subject in
which the user is interested. The referents of this
statement i.e. the desired documents, are unknown.
So, we should find the most suitable referent for this
logical statement. A typical query in logical
notation will have the form like this below:

REF (A-Subject)={?}

Therefore the retrieval process can be viewed as
the process of finding referents and completing this
incomplete sentence.

A query with a single phrase, such as "Content
Retrieval Technique ", can be formulated as:

REF(Content-based Retrieval Technique) = (?)
A query consisting of a sentence fragment can be

treated as a regular text. Therefore it can be scanned
for extracting its logical terms. For example,
consider the topic number 197 from the INEX2004
[10] collection.

Figure 2. CO Topic number 197 of INEX2004
collection

The query in Fig 2 contains the sentence fragment
“data compression in information retrieval
systems”. This query can be converted into a logical
term, which is revealed by the proposition in. The
query can be represented as:

REF(data compression (information retrieval

system))= {?}

Queries with more than one concept or term can

be represented as a set of simple queries and the
system can retrieve a set of references for each one
separately and then reexamine the sets by

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="197" query_type="CO"
ct_no="178">
<title>"data compression" +"information
retrieval"</title>
<description>We are interested in articles about usage
data
compression in information retrieval systems, because
IR systems are very memory consuming, and these
systems offer wide range of various data to be
compressed i.e. texts, index data, images, video
etc.</description>
<narrative>Our research team ARG (AmphorA
Research Group) develops experimental information
retrieval system called AmphorA. The AmphorA
includes many retrieval techniques such as
implementation of vector and boolean queries,
multidimensional indexing etc. Other research activity
is background of such system, which means data
compression and storage for indexing and querying
algorithms. We are especially interested in word-based
compression. Article is considered relevant if it
provides information about compression in IR system.
Compression means compression of text, index, query
evaluation on compressed index and text, image
retrieval e.g. retrieval in JPEG compressed images.
Watermarking, straightforward storage of compressed
images in database etc. is considered as non-relevant
article.</narrative>
<keywords>data, compression ,information, retrieval,
indexing, data structure</keywords>
</inex_topic>

45

combining the confidence on references, which are
members of more than one set. Then the sets can be
joined and the resulting set can be sorted according
to the confidence value.

3-3 Document Retrieval
The process of information retrieval in this system
as mentioned above is about finding referents and
completing an incomplete statement. The
incomplete statement which is formed from the
query has one of the following two formats:

• REF(c) = {?}
• REF(a(b)) = {?}

The above statements mean, we are interested in
referents (references, documents) for the concept c
or logical term a(b). The following steps describe
the process of completing the above query
statements.

Find references that are indexed by the concepts or
terms in the query.
- Scan the query and extract single words,

phrases and logical terms.
- Find all the references in the collection for the

followings:
o All the single words such as “Software” in

the query.
o All the phrases such as “information

retrieval”
o All the terms such as a(b) that are in query

such as (coding algorithm(text
compression)).

In the experiments, syntactic phrases of length 2 or
3 have been used.

Find references that are rewording of the logical
term in query.

- find referents c for all the logical terms a(b) where
a(b) = {c}.
- find all the references to the referents.
For example Fortran is a referent for the logical
term Language (programming) in the logical
sentence: Language (programming))=Fortran.
The above statements means Fortran is a
programming language. Therefore if query is about
programming languages, system will return all the
references for Fortran.

This step uses all the transforms and inference of
the theory to convert the original concepts and/or
logical statements into new statements and retrieve
their references as the references of the query.
- find other referents such as f with SPEC, GEN
and/or SIM relationship with referent c where f
{SPEC or GEN or SIM} c in order to conclude a(b)
= {f}. Then find all references indexed by f in the
collection.
- find all the logical terms such as d(e) with mutual
dependency relationship with term a(b) where a (b)
<---> d(e). Find all references for d(e).
- find all the logical statements such as d(e)={b}
with mutual implication with statement a(b)={c}
where a(b)={c} d(e)={b}. Find all references
for new logical statements.

Step 3 is repeated as many times as necessary in
order to find the best elements. Basically, the
process is similar to rewriting query and looking for
references for the new query.

Since a term, referent or sentence in a document
could be reached through several different
relationships or inferences, therefore a method for
combining the confidence values attributed from
these different evidences should be taken. For
combining these confidence or uncertainty values,
the Dempster-Shefer theory of evidence has been
employed.

Through the application of steps 1 through 3 the
best possible sentence candidates will be recovered.
However, since the documents have structures
therefore system needs to propagate the confidence
in the sentences to the confidence in the other
elements of this structure.

The inference depicted in figure 3 propagates the
certainty value of a sentence to the paragraph that
this sentence resides in. The first line represents our
assumption that if a sentence is relevant to a
concept then the paragraph that this sentence resides
in is also relevant. The second line expresses the
confidence on a specific sentence such as s1 to be
relevant to some concept such as c1. The third
sentence describes the importance of sentence s1 for
the paragraph p1. The parameter δ1 represents the
dominance of the sentence among other sentences
in the paragraph. We have assumed that the middle
sentences in a paragraph are of less important than
beginning and ending sentences. For that, we use a
linear function that the slope of it is negative 1 from
the first sentence till the middle sentence, then the
slope of the function increases to positive 1 from
the middle sentence to the last sentence in the
paragraph. The parameter µ1 describes how much

STEP 1- SIMPLE RETRIEVAL

STEP2- SIMPLE BUT INDIRECT RETRIEVAL

STEP3- USE RELATIONSHIPS AND
INFERENCES

STEP 4- PROPAGATION

46

of concepts in the paragraph are covered by the
sentence s1. This parameter is estimated by “The
number of concepts in sentence s1 divided by the
total number of concepts in p1”. The parameter A1
represents acceptability of the sentence s1 being
relevant to a concept c1 by the user population. The
optimum value of this parameter could be learned
during experiments. The rest are true for all cases.
The inference estimates the confidence γ on
paragraph p1 to be relevant to concept c1. This
confidence is influenced by the confidence on the
relevance of the sentence s1 to the query, the
dominance of sentence s1 in the paragraph p1 and
the amount of paragraph p1 which is covered by the
sentence s1. The propagation does not stop at
paragraph level and with the help of inferences
similar to the one described in figure 3, it will
continue until the document itself receives
confidence values from its children.

Fig.3. Inference for Propagating the Certainty Value
from a sentence to a paragraph.

Each element in the document structure may

receive multiple confidence values. Sentences
retrieved through different inferences will have a
confidence value from derived from each inference.
Other elements receive different confidence values
through propagation of the confidence values of
their children. For combining these different values,
we used the Dempster-Shafer theory of evidence. In
sentence level, every inference returns a certainty
value for each sentence of the document inferred by
each term of the query. These certainty values are
modeled by a density function Ω2:m [0,1]
called a basic probability assignment (bpa).

 ∑
Ω⊂

==
A

Amm 1)(,0)(φ (1)

m(A) represents the belief exactly committed to A,
that is the exact evidence that the sentence of the
document is relevant to a query term. If there is
positive evidence for relevance of a sentence of a
document to a query term, then m(A)>0, and A is
called a focal element. The focal element and bpa
define a body of evidence. In this problem, we
assume that focal elements are singleton sets. Each
body of evidence is composed of the confidence on
relevance of a document to each query term as
estimated by inferences of plausible reasoning.
Then,

 1)(})({,0)(=+= Tmdocmm jφ (2)
m(T) is referred to evidence that can not be

assigned yet. The m(T) represents the uncertainty
associated to the entire set of sentences of
documents being relevant to a query term. Given a
bpa m, belief function is defined as the total belief
provided by the body of evidence for relevance of a
sentence of a document to a query term. Because
the focal elements are singleton, then the belief
function equates to the mass function. Dempster-
Shafer rules for combination, aggregates two
independent bodies of evidence defined within the
same frame of discernment into one body of
evidence. Since the focal elements are singleton, the
combination function becomes simpler than
Dempster’s rules of combination. DS provides
three functions for scoring of documents: mass,
belief, and plausibility functions. For the first level,
we compute the mass function to combine the
evidences for one query term. In the second level,
the evidences of each query part for different
sentences of the documents should be combined to
compute the final result. In this level, no preference
are given to any of the query terms, therefore we
have used the average function. These processes are
repeated for each level (paragraph, section, …) of
the documents.

In the first phase of experiments, first sentences
with the highest confidence in their relevance to
user’s information need have been inferred using
plausible inferences. Then by using the inference
depicted in figure 3 and Dempster-Shefer theory,
the confidence in sentences is propagated to their
paragraphs, sections and the entire document XML
documents. Then the elements with highest
confidence values are selected and put in order in a
rank list to be shown to the user. This method of
combining is called “propagate-DS” method.

We have used another method for combining the
evidences named “DS-propagate”. It assumes that,

1- REF(C) ={sentence} AND Located (
sentence) = { paragraph } > REF (c) =
{paragraph} 11 ,γα

2- REF(c1)={s1} 12 , Aγ

3- Located (p1)={s1} 11 , µδ

4- P1 SPEC Paragraph 3γ 1

5- S1 SPEC Sentence 4γ 1

6- C1 SPEC Concept 5γ 1
--
REF (C1) = {P1}

,(*),,(* 111112 γαµδγγ SQRTSQRT Α=

47

if more than one sentence relates to the user’s
query, first we should combine the evidences using
DS theory of evidence, and then propagate the
confidences gained to the higher levels.

The difference between these two approaches
relies on the fact that, in “propagate-DS” approach,
first we propagate the confidences to higher levels,
then we utilize the DS theory for combining the
evidences, whereas in the “DS-propagate”
approach, we first combine the evidences by using
the DS theory, then propagate the combined
confidence value to higher level.

4- Experiments
We have experimented with two approaches for
combining the evidences. The results (for average
of all RP measures) are depicted in fig. 4 and fig. 5,
respectively. The results show that we entertain
relatively higher precision for the DS-propagate
method. It seems that by using the DS theory first,
then propagating the result to the higher levels, our
precision will become higher.

Fig 4. Average of all RP measures for DS-
propagate approach

Fig 5. Average of all RP measures for
propagate-DS approach

Our systems performs relatively better on
“Exhaustivity” rather than on “Specificity”
parameter. The figures for those motioned
approaches are in fig. 6 and fig. 7, respectively.

Fig. 6. RP (exhaustivity oriented with s=3,2) for
DS-propagate approach

Fig. 7. RP (exhaustivity oriented with s=3,2) for
propagate-DS approach

5. Conclusion
We presented a novel approach and implementation
for finding, scoring and ranking of the meaningful
units of retrieval in the context of XML information
retrieval. A new specialized inference is added to
the inferences of Collins and Michalski theory of
Human Plausible Reasoning in order to handle
XML information retrieval. Then by using the DS
theory of evidence, we have combined different
confidence values coming from different sources to
estimate the final confidence in each element of an
XML document element.

Currently we are analyzing the results of our
experiments. Other experiments are underway with
other methods of combining evidences such as
fusion. It is possible also to develop other
inferences for propagation of confidence from
sentences to higher elements of the document the
document tree.

48

6. References
[1] A. Collins and M. H. Burstejn, “Modeling a

theory of human plausible reasoning”, Artificial
Intelligence III, 1988.

[2] G.A. Shafer, “Mathematical theory of
evidence”, Princeton University Press,1976.

[3] A. Collins and R. Michalski, “The logic of
plausible reasoning A core theory”, Cognitive
Science, vol. 13, pp. 1-49, 1989.

[4] F. Oroumchian, R.N. Oddy, “An application of
plausible reasoning to information retrieval”,
Proc. Of the 19th ACM SIGIR Conference on
Research and Development in Information
Retrieval, Zurich , pp. 244-252, August 1996.

[5] F. Oroumchian, B. Arabi, E. Ashori, “Using
plausible inferences and Dempster-shafer
theory Of evidence for adaptive information
filtering”, 4th International Conference on
Recent Advances in Soft Computing
(RASC2002), Nottingham, United Kingdom,
Dec 2002.

[6] F. Oroumchian, B. Khandzad, “Simulating
tutoring decisions by plausible inferences”, 4th
International Conference on Recent Advances
in Soft Computing (RASC2002), Nottingham,
United Kingdom, Dec 2002.

[7] A. Jalali, F. Oroumchian, “Rich document
representation for document clustering”,
Coupling Approaches, Coupling Media and
Coupling Languages for Information Retrieval
Avignon (Vaucluse), France, vol. 1, pp. 802-
808, April 2004.

[8] K. Dontas, “An implementation of the Collins-
Michalski theory of plausible reasoning”,
Master's Thesis, University of Tennessee,
Knoxville, TN, August 1987.

[9] C. J. Van Rijsbergen, “Toward an information
logic”, In N. J. Belkin &C. J. Van Rijsbergen
(Eds.), Proceedings Of The 12th Annual
International SIGIR Conference, Cambridge,
MA, 1989.

[10]http://inex.is.informatik.uni-duisburg.de:2004/
accessed 7th of Agust 2004.

[11] F. Oroumchian, “Information retrieval by
plausible inferences: an application of the
theory of plausible reasoning of Collins and
Michalski”, Ph.D. Dissertation, School Of
Computer And Information Science, Syracuse
University, 1995.

[12] N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas,
“INEX: INitiative for the Evaluation of XML
retrieval”, In Ricardo Baeza-Yates, Norbert
Fuhr, and Yoelle S. Maarek, editors,
Proceedings of the SIGIR 2002 Workshop on
XML and Information Retrieval, 2002.

[13] B. Sigurbjörnsson, B. Larsen, M. Lamas, S.
Malik, “INEX 2003 guidelines for topic
development”, In Proceeding of INEX 2003
Conference, Schloss Dagstuhl, Dec 2003.

49

Analyzing the Properties of XML Fragments
decomposed from the INEX Document Collection

Kenji Hatano†, Hiroko Kinutani‡, Toshiyuki Amagasa†

Yasuhiro Mori♮, Masatoshi Yoshikawa♮, Shunsuke Uemura†

† Nara Institute of Science and Technology, Japan
{hatano,amagasa,uemura}@is.naist.jp

‡ Ochanomizu University, Japan
kinutani@dblab.is.ocha.ac.jp

♮ Nagoya University, Japan
mori@dl.itc.nagoya-u.ac.jp, yosikawa@itc.nagoya-u.ac.jp

ABSTRACT
In current keyword-based XML fragment retrieval systems,
various granules of XML fragments are returned as retrieval
results. The number of the XML fragments is huge, so
that it causes adverse effects on index construction time
and query processing time of the XML fragment retrieval
systems if the XML fragment retrieval systems can not ex-
tract only answer XML fragments certainly. In this paper,
we propose a method for determining XML fragments which
are relevant in keyword-based XML fragment retrieval. We
think it would help to improve overall performance of the
XML fragment retrieval systems. The proposed method uti-
lizes and analyzes statistical information of XML fragments
based on a technique of quantitative linguistics. Moreover,
our keyword-based XML fragment retrieval system runs on a
relational database system. In this paper, we briefly explain
implementation of our system.

Categories and Subject Descriptors
H.2.4 [System]: Relational databases; H.3.1 [Content Anal-
ysis and Indexing]: Linguistic processing; H.3.3 [Infor-
mation Search and Retrieval]: Selection process; H.3.4
[Systems and Software]: Performance evaluation (effi-
ciency and effectiveness)

General Terms
Relational database, XML Information retrieval, CO, Per-
formance evaluation

Keywords
XML fragment retrieval system on relational database sys-
tem, Analyzing properties of XML fragments

1. INTRODUCTION
Extensible Markup Language (XML) [5] is becoming widely
used as a standard document format in many application
domains. In the near future, we believe that a great vari-
ety of documents will be produced in XML. Therefore, in a
similar way to developing Web search engines, XML infor-
mation retrieval systems will become very important tools
for users wishing to explore XML documents.

In the research area of XML retrieval, it is important to

propose a method for retrieving fragments of XML docu-
ments. XQuery [4], proposed by the World Wide Web Con-
sortium (W3C), is known as a standard query language for
XML fragment retrieval. Using XQuery, users can issue a
flexible query consisting of both some keywords and XPath
notations. If users already have knowledge of structure of
XML documents, users can issue XQuery-style queries for
XML fragment retrieval. Consequently, we afford to say
that XQuery is suitable for searching data in XML docu-
ments1.

At the same time, XML Query Working Group has been de-
veloping powerful full-text search functions [3, 2] to XQuery.
This is because there are a lot of document-centric XML
documents like articles in XML form, including structured
information such as the names of authors, date of publi-
cation, sections, and sub-sections, as well as unstructured
information such as the text contents of the articles. How-
ever, the document-centric XML documents like these have
different XML schemas in each digital library, so that no-
body can comprehend the structure of XML documents and
can issue a formulated query like XQuery into XML frag-
ment retrieval systems. Therefore, we believe that XML in-
formation retrieval systems should employ a much simpler
form of query such as keyword search services without uti-
lizing XQuery-style queries. Keyword search services enable
users to retrieve needed information by providing a simple
interface to information retrieval systems. In short, it is the
most popular information retrieval method since users need
to know neither a query language nor the structure of XML
documents.

Because of the aforementioned background on XML frag-
ment retrieval, much attention has recently been paid to a
keyword-based XML fragment retrieval system. This type of
XML fragment retrieval systems usually decomposes document-
centric XML documents into XML fragments using their
markup, and generates an index of decomposed fragments
for searching. In spite of simple approach in XML fragment
retrieval, this method enables to retrieve XML fragments re-
lated to keyword-based queries pretty well. However, XML
documents are decomposed as far as possible using their

1In this paper, we refer this type of XML documents to
data-centric XML documents.

50

markup; thus index construction time and query processing
time are too long compared with current document retrieval
systems. This is because returning various granules and the
huge number of XML fragments as retrieval results causes
adverse effects on processing time unless XML fragment re-
trieval systems can extract only answer XML fragments cer-
tainly.

We believe that XML fragments required to keyword-based
fragment retrieval are only part of decomposed fragments
from document-centric XML documents. In short, we think
there are a certain type of XML fragements which are never
returned as retrieval results regardless of issued keyword-
based queries. In particular, extremely small XML frag-
ments are unlikely to become retrieval results of keyword-
based query from the viewpoint of the information retrieval
research area. Therefore, we will be able to perform XML
fragment retrieval more efficiently than with current sys-
tem if we can eliminate irrelevant fragments in XML frag-
ment retrieval from index file. To cope with this problem,
we have to determine XML fragments which are relevant
in XML fragment retrieval extracted from document-centric
XML documents.

In this paper, we propose a method for determining the rel-
evant XML fragments to efficiently search XML fragments.
Our method utilizes and analyzes statistical information of
XML fragments decomposed from original documents based
on a technique of quantitative linguistics. Our proposal
holds the promise of not only reducing index construction
time and query processing time of XML fragment retrieval
systems, but also dealing with many types of document-
centric XML documents, because statistical information does
not depend on structures of XML documents. We also per-
form some experiments for verifying the effectiveness of our
proposal.

2. RESEARCH ISSUES
Currently, we believe that there are two types of keyword-
based XML fragment retrieval systems. In this paper, we
refer to these two types of keyword-based XML fragment re-
trieval systems, data-centric type and document-centric type
of XML fragment retrieval systems, for the sake of conve-
nience. The former is based on structured or semi-structured
database systems with keyword proximity search functions
that are modeled as labeled graphs, where the edges cor-
respond to the relationship between an element and a sub-
element and to IDREF pointers [1, 10, 13]. Dealing with XML
documents as XML graphs facilitates the development of
keyword-based information retrieval systems, which are able
to perform the retrieval processing efficiently. On the other
hand, the latter has been developed in the research area of
information retrieval [8, 9], and enables us to retrieve XML
fragments without indicating element names of XML doc-
uments. The large difference of these two types of XML
fragment retrieval systems derives from data propriety of
their retrieval targets. In short, we consider that the former
focuses mainly on XML documents which have data-centric
view, whereas the latter deals with ones with document-
centric view. In the meanwhile, almost all XML fragment
retrieval systems currently assume the existence of DTD of
XML documents in either research. It is true that DTD fa-
cilitates enhancing retrieval accuracy and query processing

time of their systems. However, there are some problems
associated with searching heterogeneous XML fragments on
the Web. Thus, other types of XML retrieval systems not
utilizing DTD are required. Consequently, XML fragment
retrieval systems in the future will have to deal with hetero-
geneous XML documents whose strutures are not uniform.

To meet the needs of the new architecture of XML fragment
retrieval systems, we have been developing a keyword-based
XML fragment retrieval system [12]. Our system focuses on
retrieval of document-centric XML documents rather than
that of data-centric ones, and does not utilize any informa-
tion about elements of XML documents, whereas almost all
existing XML fragment retrieval systems take advantage of
the information for querying and indexing of XML docu-
ments. In our approach, XML documents must be decom-
posed into their fragments and decomposed fragments must
be utilized to generate an index file. XML is a markup
language, so that XML documents can be automatically
decomposed into their fragments using their markup [16].
However, a problem surfaces because this gives rise to an un-
manageable profusion of XML fragments. In other words, it
takes very long time to construct an index file and to search
XML fragments related to a keyword-based query. For this
reason, inspecting not all decomposed XML fragments, but
the XML fragments which are relevant in XML fragment re-
trieval would be better for reducing index construction time
and query processing time. In the next section, we explain
the method for determining the relevant fragments in XML
fragment retrieval based on a technique of quantitative lin-
guistics.

3. ANALYSIS OF INEX TEST COLLECTION
Our research group has been analyzing statistical informa-
tion of the INEX document collection since the last year.
According to our analysis, it was notable that variances of
the statistical information, especially variance of length of
XML fragments, were too large. Therefore, we have focused
on the length of XML fragments since we found this fact.
In our INEX 2003 paper [11], we regarded small XML frag-
ments as irrelevant ones in XML fragment retrieval, and ver-
ified the reasonability of our proposal using recall-precision
curves. However, we just sketched the outline of our pro-
posal and did not show good ground for adopting our pro-
posal. In this section, consequently, we show the practical
justification of our proposal.

3.1 Properties of XML Fragments
3.1.1 Quantitative linguistics
In our INEX 2003 paper, we determined threshold of the
length of XML fragments, and regarded the XML fragments
whose length could not meet the threshold as irrelevant ones
in XML fragment retrieval. However, this approach required
a lot of experiments to decide the threshold, so that it was
inappropriate to adopt this approach for developing a large-
scale XML fragment retrieval system. Therefore, we think
that we have to decide the threshold systematically.

It is well known that statistical information of XML frag-
ments, such as a number of tokens, length of XML frag-
ments, and so on, is useful to decide the thresholds. In
the research area of quantitative linguistics, the statistical

51

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � 	

� � � � � �

� � � � � � � � � � ��� � � � � �
� � � � � � ��� � � � � � � � �
��� � � � � � �

� �
� �
��
� ��
�
!"#

Figure 1: Relationship between n and N(n).

information is often used. This is because analyzing the
statistical information helps us to discover some rules in
a document set, and the discovery of rules is essential for
constructing a sound basis of a theory of terminology. In
this research area, it is thought that examination to dis-
cover rules is similar to find out the systematic processes
underlying a document set. For this reason, we employ a
technique of quantitative linguistics to determine threshold
using the number of tokens and XML fragments as statis-
tical information, following the book [14]. Needless to say,
not only the number of tokens and XML fragments, but also
other mathematical or algebraic information can be utilized
as statistical information. The reason for using such statis-
tical information is that they can be extracted easily when
our XML fragment retrieval system simultaneously analyzes
XML documents and decomposes them into fragments.

Adopting a technique of quantitative linguistics, we can de-
cide the threshold systematically.

3.1.2 Deciding relevant XML fragments
In the research area of quantitative linguistics, capturing
properties of a document set is performed by analyzing sta-
tistical information. Utilizing the number of tokens and doc-
uments as statistical information, we can find a number of
relationships. However, a small minority of documents have
no relationship between the statistical information, so that it
is said that the documents without relationship have anoma-
lous property. Therefore, it is believed that such documents
are not suitable for capturing properties of the document
set, and should be disregarded in capturing properties.

We think that this concept can be utilized for determining
irrelevant fragments in XML fragment retrieval. In short,
if we are able to define a function between statistical infor-
mation, XML fragments which do not follow the function
can be regarded as irrelevant XML fragments. It is difficult
to explain the process of determining irrelevant XML frag-
ments on a conceptual basis, so that we describe the process
using the following example.

Figure 1 shows log-log plots of the relationship between the
number of tokens and XML fragments of the INEX docu-

Table 1: Comparison of APD with MPD in INEX
2003 relevance assessment.

of fragments index construction (s)
APD 8,224,053 513,878
MPD 1,011,202 109,115

query processing (s/topic) average precision
APD 17.66 0.0707
MPD 5.27 0.1038

ment collection, where n is the number of tokens in each
XML fragment and N(n) is the number of XML fragments
that contain n tokens. This figure shows that property of
the INEX document collection is similar to that of Web doc-
ument collection, because the log-log plots follow Zipf’s dis-
tribution (or power-law distribution) [17]. Therefore, it is
no wonder that statistics information of the INEX docu-
ment collection follows the Zipf’s distribution. However, it
is difficult to determine whether XML fragments, in general,
follow the Zipf’s distribution or not.

From statistical point of view in quantitative linguistics, it
is said that gaps between plots on Figure 1 cause a harm-
ful effect on statistical information. Therefore, statistical
information in plots with gaps is not used for capturing
the property of the document set. In short, we afford to
that XML fragments in these plots with gaps are irrelevant
in XML fragment retrieval because we cannot capture the
property of the document set accurately. As a result, we
defined the relevant fragments in XML fragment retrieval
as XML fragments in the plots in Figure 1 whose number of
token is no fewer than 10, nor more than 10,000 in the case
of adopting the INEX document collection. We think that
this definition is sensible, because small XML fragments are
not informative enough and large ones are too informative
for users in keyword-based queries, so that small/large XML
fragments are unlikely to be answers to the CO-topics.

3.1.3 Verification of XML fragments’ properties
In order to verify the validity of the use of a technique of
quantitative linguistics, we performed some experiments us-
ing the INEX 2003 relevance assessment. In these experi-
ments, we measured average precisions, index construction
time, query processing time, and the number of indexed
XML fragments of the following two types of index files of
our XML fragment retrieval system: the index files of all
XML fragments (APD) and XML fragments except the ir-
relevant fragments described in Section 3.1.2 (MPD).

Figure 2 shows the recall-precision curves based on the INEX
2003 relevance assessment. We initially expected that recall-
precision curves of APD and MPD were a very close each
other, because the fragments which were judged as irrel-
evant in XML fragment retrieval did not rank in the top
1,500 of all. However, the recall-precision curve of MPD
was higher than originally expected. Therefore, we think
that the method proposed in Section 3.1.2 does not deteri-
orate the retrieval accuracy of XML fragment retrieval sys-
tems. In addition, the number of indexed XML fragments
was significantly reduced by adopting our method, so that
index construction time and query processing time were also
reduced (see Table 1).

52

�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

���

��� �

�

� ��� ����� �
��� ����� ����� ����� ����� 	����

��� � �
��������� �

� ��
� !
 "
#

$&%('
) %*'

Figure 2: Recall-precision curves based on the INEX
2003 relevance assessment.

As afore-mentioned points, proposed method is useful not
only to reduce index construction time and query process-
ing time, but also to improve retrieval accuracy of XML
fragment retrieval system. We think, therefore, proposed
method can be also acceptable in INEX 2004 relevance as-
sessment.

3.2 Experiments using INEX 2004 Relevance
Assessment

Proposed method in this year worked well for reduction of
index construction time and query processing time; thus we
apply it to the INEX 2004 relevance assessment.

Figure 3 shows the recall-precision curves based on the INEX
2004 relevance assessment. Unlike the case of using the
INEX 2003 relevance assessment, recall-precision curves of
APD and MPD were a very close each other. The XML
fragments which were judged as irrelevant in XML fragment
retrieval based on proposed method did not rank in the top
1,500 of all; thus, the recall-precision curves were almost
the same. Moreover, average precisions in the INEX 2004
relevance assessment were smaller than those in the INEX
2003. Our XML fragment retrieval system tends to retrieve
relatively small XML fragments, so that it could not retrieve
large XML fragments whose root node is article, bdy, or
fm. As a result, exhaustively of our system tends to be small,
while specificity of our system tends to be large, and average
precision becomes small. We think this characteristic of our
XML fragment retrieval system causes negative effects on
average precision; therefore we have to propose new term
weighting scheme for XML fragment retrieval. Currently,
some term weighting schemes including ours have already
published; however, they are not suitable for XML frag-
ments which overlap each other. Consequently, we have to
adopt another weighting scheme suitable for XML fragment

�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� �

�

����� �
��� ��� � ����� ����� ����� ����� ����� 	����
��
��������� �

� ��
�� �
�
!

"$#&%
' #&%

Figure 3: Recall-precision curves based on the INEX
2004 relevance assessment.

retrieval2.

In order to ascertain the problems of proposed method, we
also calculated the number of indexed XML fragments us-
ing proposed method of that of answer XML fragments in
the relevance assessment. Table 2 shows the success ratio,
which is the ratio of the number of answer XML fragments
which were indexed by proposed method to that of all an-
swer XML fragments. In this table, we show the topic IDs
whose success ratios were in the bottom five of topics. Al-
most all success ratios of CO-topics of the INEX 2003/2004
relevance assessments were more than 90%; however, only
the success ratios of these topics listed in Table 2 were re-
markable small. In topic 185, especially, the higher the ex-
haustivity and the specificity, the smaller the success ratio.
Moreover, the number of fragments, which were irrelevant in
our method and were answers in the relevance assessment,
was extremely large. We think that keyword-based queries
(CO-topics) are usually issued for not specifying the hottest
topics in contents, but just searching contents related to key-
words. If this concept is true, the CO-topics whose answers
contain small XML fragments are not suitable for the rele-
vance assessment in XML fragment retrieval. Consequently,
we think that not only controversial points of term weight-
ing scheme for XML fragment retrieval, but also impertinent
CO-topics for the INEX relevance assessment cause low av-
erage precision of our system.

On the other hand, the number of indexed XML fragments
was significantly reduced by adopting our method in the
same line with the case of INEX 2003, so that query pro-

2We think that length normalization of XML fragments [15]
is one of the term weighting schemes in XML fragment re-
trieval. We believe that not only normalization of length
of XML fragments, but also frequencies of tokens in XML
fragments are important for improving average precision of
our system.

53

Table 2: Success ratios of our method (worst 5).

topic ID
(E, S) = (2, 3) (E, S) = (3, 2) (E, S) = (3, 3)

total
miss all success ratio miss all success ratio miss all success ratio

187 378 554 0.32 1,028 1,463 0.30 646 848 0.25 0.50
166 9 15 0.40 5 48 0.90 27 62 0.56 0.76
192 5 42 0.88 0 0 N/A 1 10 0.90 0.81
194 3 4 0.25 0 5 1.00 4 11 0.64 0.83
179 0 6 1.00 3 5 0.40 0 0 N/A 0.88

Table 3: Comparison of APD with MPD in INEX
2004 relevance assessment.

query processing (s/topic) average precision
APD 25.48 0.0263
MPD 13.03 0.0286

cessing time was reduced as shown in Table 3. Therefore,
XML fragment retrieval systems could perform index con-
struction and query processing more efficiently than current
systems if we adopt our method.

3.3 Discussions
Through the experiments based on INEX 2003 and 2004 rel-
evance assessments, we found that index construction time
and query processing time were reduced by adopting our
method based on quantitative linguistics. Moreover, aver-
age precision of XML fragment retrieval system adopting our
method did not become worse. As a result, proposed method
helps to improve performance of the XML fragment retrieval
systems. We are now working for improving average preci-
sion of our XML fragment retrieval system. We foresee that
a novel term weighting scheme for XML fragment retrieval
and a phrase match function enable to improve average pre-
cision of our XML fragment retrieval system.

4. IMPLEMENTING XML FRAGMENT RE-
TRIEVAL SYSTEM ON RELATIONAL XML
DATABASE

It goes without saying that not only accuracy, but also per-
formance is the essential aspect of an XML fragment re-
trieval system. In fact, this is not an easy task, because
we have to deal with several millions of fragments extracted
from a document collection. In our project, we have been
attempting to develop an XML fragment retrieval system
based on relational databases. The reason for using rela-
tional databases is that we can utilize a variety of techniques,
such as query optimization, storage management, and top-
k ranking, for speeding up the process of XML fragment
retrieval.

This section describes our first attempt for constructing such
an XML fragment retrieval system. The system is based on
a path-based relational XML database system, XRel [18],
that is for storing and retrieving XML documents using off-
the-shelf relational databases. In fact, we make an extension
to XRel, that originally supports XPath as its basic query
language, for supporting IR queries including CO- and CAS-
topics.

4.1 An overview of XRel
4.1.1 The basics
XRel [18] is a scheme to realize XML databases on top
of off-the-shelf relational databases. Using XRel, we can
store any well-formed (or valid) XML documents in a rela-
tional database, and can retrieve XML fragments from the
database using XPath expressions.

For storing XML documents, we shred the documents into
small fragments so that they can be stored in relational tu-
ples. Actually, we take the path-based approach, in that
each node in an XML tree, such as element node, attribute
node, and text node, is extracted and stored in a relational
table with its simple path expression from the root and the
region in the document. Here, a region is represented as
a pair of integers (start , end), where start and end repre-
sent the starting and ending byte positions of the node in
the XML file, respectively. This information is necessary
and sufficient to retain the topology of XML tree, and we
can therefore achieve lossless decomposition of XML docu-
ments into flat relational tables. An important notice here
is that, for given regions, we can detect relationships among
XML nodes, such as ancestor, descendant, precedes, and fol-
lows, by applying subsumption theorem3[18, 6]. Optionally,
depth, that represents the depth of a node from the root,
may be added as the third dimension in a region. In that
case, we can additionally detect parent and child relations.

4.1.2 The schema design
The components extracted from an XML document are stored
in relational tables. Actually, there are countless ways to
design the relational schema. In XRel, we decided to use
four kinds of tables according to the node types, namely,
Element, Attribute, Text, and Path. In addition, metadata
about XML files, such as location, size, and identifier, are
stored in Document table. The actual schema definition of
the tables are as follows:

Document (docID, filepath, length)
Element (docID, elementID, parentID, depth, pathID, \

start, end, index, reindex)
Attribute (docID, elementID, pathID, start, end, value)
Text (docID, elementID, pathID, start, end, value)
Path (pathID, pathexp)

In this definition, metadata are stored in the Document ta-
ble with unique IDs. Also, all possible path expressions
are stored in the Path table as character strings with their
unique IDs. The other tables refer to these values in terms

3Node x is an ancestor (descendant) of node y iff the region
of x subsumes (is subsumed by, respectively) the region of
y.

54

<vol no="1">
<article>

<title>TITLE1</title>
<body>The first content.</body>

</article>
<article>

<title>TITLE2</title>
<body>The second content.</body>

</article>
</vol>

Figure 4: An example XML document.

of docID and pathID attributes. For the Element table, each
element node is stored with its document ID (docID), path
expression (pathID), and region (start, end, and depth).
Additionally, elementID, that is the unique identifier of an
element node, is included for efficiency reasons, although
this information is not mandatory. Likewise, parentID, that
refers to the elementID of its parent node, is defined so that
parent nodes can easily be reached. The index (reindex)
attribute represents (reverse) ordinal of nodes that share
the same parent and the same path expression, and is used
to speed up positional predicates, such as /book/author[2]
(/book/author[-2]). For the Attribute and Text tables, all
attributes, except for value, act like as in the Element table.
The value attribute is to store textual values of attribute
and text nodes.

Figure 5 demonstrates how an XML document in Figure 4
is decomposed and stored in the relational tables.

4.1.3 Query processing in XRel
For query retrieval, XRel supports XPath core, that is a sub-
set of XPath [7], as its query language. Simply speaking,
XPath core permits using “/” and “//” as location steps,
and using typical predicate expressions. Given an XPath
core expression, XRel translates it into an equivalent SQL
query that operates on the relational tables. The point here
is that the translated query can be processed solely by the
underlying relational database system. Then, the query re-
sult is obtained in the form of result table, that is, in turn,
reconstructed as result XML fragments.

For example, an XPath core query, “//article/title[2],”
can be expressed as:

SELECT e1.docID, e1.st, e1.ed
FROM Path p1, Element e1
WHERE p1.pathexp LIKE ’#%/article#/title’
AND e1.pathID = p1.pathID
AND e1.idx = 2
ORDER BY e1.docID, e1.st

We do not go into the details from the limitations of space,
but more complicated queries containing node tests and/or
predicates can be expressed in this way [18].

4.2 Supporting IR queries in XRel
4.2.1 Statistics
Although the above tables are sufficient to process XPath
core queries, when considering INEX tasks, we need more
information regarding IR statistics, in order to support IR
queries like CO- and CAS-topics. To this end, we attempt

to maintain statistics of XML nodes, in addition to the basic
tables of XRel. Those values include TF-IDF scores (includ-
ing several variations), numbers of descendant elements, and
various kinds of statistics. The concrete definition of the re-
lational tables are as follows:

Token (docID, elementID, nodeFlag, token, articleNo, \
tf, tfidf, tfidfMG, tfief, tfipf, tfOrder)

DescendantElementNum (docID, elementID, elementName, count)
ElementStatistics (docID, elementID, sentenceNum, termFreq, \

tokenFreq, wordFreq)

Let us take a closer look at the definitions. The Token table
is for storing every occurrence of a distinct token. A token
is stored with the document ID, element ID, and article ID
where it appears, term frequency (tf), and several variations
of term scores (tfidf, tfidfMG, tfief, and tfipf). tfOrder
is used for ordering the tuples in the descending order of tf,
so as to speed up table scans. The DescendantElementNum
table maintains the number of descendant elements for each
element. The ElementStatistics table is for storing various
kinds of statistics regarding elements, such as numbers of
elements, term frequencies, token frequencies, and word fre-
quencies.

4.2.2 Processing CO-topics
Using the above tables as well as the basic XRel tables,
we can express any CO-topics, in the form of [key 1, ...,

key l, +plus 1, ..., +plus m, -minus 1, ..., -minus n],
as a SQL query:

SELECT docID, elementID, SUM(t.tfidf) result
FROM token t
WHERE t.token IN (’key_1’, ..., ’key_l’)
GROUP BY docID, elementID
HAVING (SELECT COUNT(*)

FROM token
WHERE token IN (’minus_1’, ..., ’minus_n’)
AND t.docID = token.docID
AND t.elementID = token.elementID) = 0

AND
(SELECT COUNT(*)
FROM token
WHERE token IN (’plus_1’, ..., ’plus_m’)
AND t.docID = token.docID
AND t.elementID = token.elementID) = m

ORDER BY result DESC;

As can be seen, the calculation of TF-IDF is implemented
in terms of an aggregation function. It should also be no-
ticed that, in the translated query, “+key” and “-key” are
expressed in terms of HAVING clause. The resulting query
is sorted in descending order of TF-IDF scores, by the OR-
DER BY clause.

In the same way, we can express CO-topics with phrase
match by using the value attribute in the Text table. How-
ever, this may not be realistic from the viewpoint of effi-
ciency, due to the fact that the cost for approximate match-
ing in SQL is quite expensive. Consequently, a naive im-
plementation would cause serious performance degradation.
Actually, we may need an additional index, that supports
full-text search on text contents, to deal with phrase match-
ing.

55

(a) Document
docID filepath length

0 “/path/to/foo.xml” 203

(c) Attribute
docID elemID pathID st ed value

0 0 1 1 1 “1”

(b) Element
docID elemID parID depth pathID st ed idx reidx

0 0 -1 1 0 0 202 1 1
0 1 0 2 2 15 98 1 2
0 2 1 3 3 29 49 1 1
0 3 1 3 4 55 85 1 1
0 4 0 2 2 102 195 2 1
0 5 4 3 3 116 136 1 1
0 6 4 3 4 142 182 1 1
0 7 6 4 5 159 175 1 1

(d) Text
docID elemID pathID st ed value

0 2 3 36 41 “TITLE1”
0 3 4 61 78 “The first content.”
0 5 3 123 128 “TITLE2”
0 6 4 148 158 “The second “
0 7 5 163 170 “content.”

(e) Path
pathID pathexp

0 “#/vol”
1 “#/vol#/@no”
2 “#/vol#/article”
3 “#/vol#/article#/title”
4 “#/vol#/article#/body”
5 “#/vol#/article#/body#/em”

Figure 5: A storage example of XRel.

4.3 Discussions
As discussed above, our system currently just supports XPath
core and CO queries, and we therefore need further develop-
ment for the purposes of extending its ability and improving
the system performance. We are now working for improving
the entire system performance. In the scheme, we use a novel
technique to reduce the number of result candidates. Also,
we are working for the support of CAS- (VCAS-) topics. Ef-
ficient execution of top-k ranking in CO- and CAS-topics is
another important issue.

5. CONCLUSION
In this paper, we propose a method for determining XML
fragments which are relevant in keyword-based XML frag-
ment retrieval based on quantitative linguistics. Through
some experimental evaluations, we find that proposed method
helps to improve performance of our XML fragment retrieval
system. Moreover, we describe our XML fragment retrieval
system on relational database system which enables to query
processing time of our system. If we can implement a phrase
match function on our system, we can expect to improve
average precision. Currently, we have a problem related to
term weighting scheme suitable for XML fragment retrieval
and query optimization with ranking function on relational
database system. These problems are the immediate tasks
of our project, so that we are going to solve these tasks in the
near future. Originally, we are focusing on XML fragment
retrieval without scheme information; thus we are going to
address these problems with a view to the heterogeneous
collection track of INEX project.

6. ACKNOWLEDGMENTS
This work is partly supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan,
under grants #15200010, #16016243 and #16700103.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuriand, and G. Das.

DBXplorer: A System for Keyword-Based Search over
Relational Databases. In Proc. of the 18th
International Conference on Data Engineering, pages
5–16. IEEE CS Press, Feb./Mar. 2002.

[2] S. Amer-Yahia, C. Botev, S. Buxton, P. Case,
J. Doerre, D. McBeath, M. Rys, and
J. Shanmugasundaram. XQuery 1.0 and XPath 2.0
Full-Text.
http://www.w3.org/TR/xmlquery-full-text/, July
2004. W3C Working Draft 09 July 2004.

[3] S. Amer-Yahia and P. Case. XQuery 1.0 and XPath
2.0 Full-Text Use Cases. http:
//www.w3.org/TR/xmlquery-full-text-use-cases/,
July 2004. W3C Working Draft 09 July 2004.

[4] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language.
http://www.w3.org/TR/xquery, Oct. 2004. W3C
Working Draft 29 October 2004.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0 (Third Edition). http://www.w3.org/TR/REC-xml,
Feb. 2004. W3C Recommendation 04 February 2004.

[6] S.-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang.
Storing and querying multiversion XML documents
using durable node numbers. In Proc. of the 2nd
International Conference on Web Information Systems
Engineering, pages 270–279, 2001.

[7] J. Clark and S. DeRose. XML Path Language
(XPath) Version 1.0. http://www.w3.org/TR/xpath,
Nov. 1999. W3C Recommendation 16 November 1999.

56

[8] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
Proc. of 29th International Conference on Very Large
Data Bases, pages 45–56. Morgan Kaufmann, Sep.
2003.

[9] N. Gövert, N. Fuhr, M. Abolhassani, and
K. Großjohann. Content-Oriented XML Retrieval with
HyREX. In Proc. of the First Workshop of the
Initiative for the Evaluation of XML Retrieval, pages
26–32. ERCIM, Mar. 2003.

[10] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In Proc. of the 2003
ACM SIGMOD International Conference on
Management of Data, pages 16–27. ACM Press, June
2003.

[11] K. Hatano, H. Kinutani, M. Watanabe, Y. Mori,
M. Yoshikawa, and S. Uemura. Keyword-based XML
Portion Retrieval: Experimental Evaluation based on
INEX 2003 Relevance Assessments. In Proc. of the
Second Workshop of the Initiative for the Evaluation
of XML Retrieval, pages 81–88, Mar. 2004.

[12] K. Hatano, H. Kinutani, M. Yoshikawa, and
S. Uemura. Information Retrieval System for XML
Documents. In Proc. of the 13th International
Conference on Database and Expert Systems
Applications, volume 2453 of LNCS, pages 758–767.
Springer, Sep. 2002.

[13] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs. In Proc.
of the 19th International Conference on Data
Engineering, pages 367–378. IEEE CS Press, Mar.
2003.

[14] K. Kageura. The Dynamics of Terminology. John
Benjamins, 2002.

[15] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length
Normalization in XML Retrieval. In Proc. of the 27th
Annual International ACM SIGIR Conference on
Research and Development in Informaion Retrieval,
pages 80–87. ACM Press, July 2004.

[16] M. Kaszkiel and J. Zobel. Passage Retrieval Revisited.
In Proc. of the 20th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 178–185. ACM Press,
July 1997.

[17] J. Nielsen. Do Websites Have Increasing Returns?
http://www.useit.com/alertbox/9704b.html, Apr.
1997. Jakob Nielsen’s Alertbox for April 15, 1997.

[18] M. Yoshikawa, T. Amagasa, T. Shimura, and
S. Uemura. XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents using Relational
Databases. ACM Transactions on Internet
Technology, 1(1):110–141, June 2001.

57

An algebra for Structured Queries in Bayesian Networks
Jean-Noël Vittaut
LIP6, Paris, France

vittaut@poleia.lip6.fr

Benjamin Piwowarski
LIP6, Paris, France

bpiwowar@poleia.lip6.fr

Patrick Gallinari
LIP6, Paris, France

gallinar@poleia.lip6.fr

ABSTRACT
We present an algebra to represent structured information
queries which can be used in a Bayesian Network framework.
This framework allows us to consider content-only (CO) queries
and content-and-structure (CAS) queries. We perform the
retrieval task using inference in our network. The proposed
model can adapt to a specific corpus through parameter learning.
Thanks to this algebra, the representation of the information
demand is independent from the structured query language. It
allows us to answer both vague and strict structured queries.

Keywords
Bayesian networks, INEX, XML, Focused retrieval, Structured
document retrieval, Algebra

1. INTRODUCTION
The goal of our model is to provide a generic system for

performing different Information Retrieval (IR) tasks on
collections of structured documents. We take an IR approach to
this problem. We want to retrieve specific relevant document
elements as an answer to a query. The elements may be any
document or document part (full document, section(s),
paragraph(s), etc.) indexed from the structural description of the
collection. The Okapi and Bayesian Network (BN) models are
described in section 2 and we give the results of these models for
CO queries. In section 3, we present our algebraic approach for
the evaluation of CAS queries, and we give official INEX 2004
results.

2. CONTENT ONLY QUERIES
2.1 Okapi model
In this section, we present the Okapi model which was also used
for experiments on the INEX 2004 database. Then, we describe
the way we use this model with Bayesian Networks. Lastly, we
give the results of the experiments we conducted on the INEX
corpus.

We used Okapi as a standalone model and also as a local
baseline model for Bayesian Networks. It allows us to compute a
local score in each doxel (a document element) of the database.
Then, this score is used to order the results (if we use the Okapi
model alone) or as a source of evidence for Bayesian Networks.

Bayesian Networks needs baseline models that give a score
which can be interpreted as a probability (of relevance). So, we
adapted Okapi [19] in order to:

- reach reasonable performances on the INEX corpus
(and on a structured collection in general);

- compute a score which could be interpreted as a
probability with this model.

The local score of a doxel x for a given query q , computed by
the Okapi model, is defined by:

() () ()()
∑

= +
+

×
+

+
=

q

j j

j

jxX

jx
Xj qtfk

qtfk
tfK
tfk

xq
length

1 3

3

,

,1
,

 1 1
,Okapi ω

Where 1k and 3k are constants, ()qlength is the number of
terms in query q . This formula is similar to classical Okapi
except for the index x appearing in ω , K and tf . Okapi
makes use of different statistics relative to the document
collection such as term occurrences or mean document length.
Since for Structured Information Retrieval (SIR) elements to be
retrieved are doxels and not plain documents, these statistics
have to be adapted. Values xj,ω and xK are defined as

follows:

• ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+−
=

5.0

5.0
log,

j

j
xj n

nN
ω . In Okapi N is the number

of documents in the collection and the number of
documents containing term j . There are different
options for adapting these collection statistics to SIR.
We will present here tests where these two values
were defined respectively with respect to the classical
document set (“document frequency”) as in Okapi.

• () ⎟
⎠
⎞

⎜
⎝
⎛ +−=

avdl
dlbbkK x 11 where b is a constant and in

Okapi dl is the document length and avdl is the
average document length. Here dl was replaced by the
doxel length and one weighting scheme was tested for
avdl : the average length taken respectively over all the
doxel with the same tag (“tag”).

We chose this peculiar weighting scheme as it allowed us to
reach good performances when used by our BN model. As we
said, we needed scores which can be interpreted as probabilities.
Okapi score does not range between 0 and 1. The normalization
of Okapi is discussed in [18] in the context of filtering, where it
is proposed to make a regression of the original Okapi score via a
logistic function. We used this idea here with the following
transformation:

()() () () βα -/lengthOkapiOkapi
1

1R
qq,xe

qxMP
×+

==

58

This formula gives the normalized score for the local baseline
variants of Okapi model. The α and β parameters were
estimated on the whole INEX 2002 database. This score is
dependant on the query length. Since the parameters of the
logistic function should be valid for queries of varying length,
this score was divided by the query length. We then computed
the mean okapi score µ and the standard deviation σ for all the
CO queries of INEX 2003. We then set α and β such that the
probability ()()qxMP R Okapi = is 5.0 when the score is µ and

75.0 when the score is σµ + . These values were chosen
empirically.
This is different from [18] where the parameters of the regression
are estimated for each query. This would not be realistic here
because of the increased complexity of SIR.

2.2 Bayesian Networks
2.2.1 Model
Let us consider a hierarchically structured collection like the
INEX corpus. Documents are organised in a category hierarchy
with corpus as the root node, journal collections as its immediate
descendents, followed by journals, articles etc. We view retrieval
for such a collection as a stochastic process in which a user goes
deeper and deeper in the corpus structure: the user starts its
search at the “root node” of all categories, and then selects one or
several categories in which relevant documents should be. For
each category, he or she selects subcategories and/or documents
within these categories. This process is iterated until the user has
found relevant and highly specific doxels.
The BN structure we used directly reflects this document
hierarchy and retrieval will follow the above stochastic process.
We consider that each structural part within the hierarchy has an
associated random variable. The root of the BN is thus a
“corpus” variable, its children the “journal collection” variables,
etc. The whole collection is thus modelled as a large BN which
reflects the doxel hierarchy in the collection.

Each random variable in the BN can take its values in a finite
set. Existing BN models for flat [2] or structured [14] documents
use binary values (R, ¬R). This is too limitative for SIR since
quantifying an element relevance is more complex than for whole
documents and should somewhat be related to the two
dimensional scale (specificity, exhaustivity) proposed for INEX.
We used a state space of cardinality 3, V = {I, B, E} with:

1. I for Irrelevant when the element is not relevant;

2. B for Big when the element is marginally or fairly
specific;

3. E for Exact when the element has a high specificity.

In this model, relevance is a local property in the following
sense: if we knew that an element is relevant, not relevant or too
big, the relevance value of its parent would not bring any new
information on the relevance of one of its descendants.

For any element X and for a given query q, the probability
()BXqEXP =∧= parent s' will be used as the final Retrieval

Status Value (RSV) of this element. Using the simpler
RSV)E(qXP = led to poor performances with the BN. Our
choice was partly motivated by the work of Crestani [4][5] and by
preliminary experiments.

Besides these variables, there are two more types of random
variables in the BN. The first one corresponds to the query need,
it is denoted Q and its realization q. Q is a vector of word
frequencies taking its values in a multidimensional real space.
This random variable is always observed (known). Document
textual information is not directly modelled in this BN for
complexity reasons. Instead a series of baseline IR models will
be used to compute local relevance scores for each doxel given a
query. For each local baseline model, this score will only depend
on the doxel content and on the query. It is then independent
from the context of the doxel in the XML tree. The global score
for each doxel will then combine these local scores and will also
depend on the doxel context in the BN – the parent's relevance.
These local baseline models have been adapted from classical
(flat) retrieval IR models. In the experiments presented here one
variant of the Okapi model were used for baseline: the okapi
with standard document frequency and a length normalisation
over elements with the same tag. In the BN model a random
variable is associated to each local scorer and doxel. Let M(X)
denote the random variable associated to the local baseline
model and doxel X and m its realization. As in classical IR this
variable will take two values: R (relevant) and ¬R (not relevant),
i.e. m ∈{ R, ¬R}. The local relevance score at X given query q
for the baseline model will be P(M(X) = R| q). Note that it is
straightforward to add new baseline models; in the following, all
the formulas were adapted to the case where we have only one
baseline model.

Based on the local scores M(X) and on the BN conditional
probabilities, BN inference is then used to combine evidence and
scores for the different doxels in the document model. In our tree
like model, the probability that element X is in state I, B or E
depends on its parent state and on fact that the local baseline
models have judged the element as relevant or not relevant. The
probability for X to be in a given state V∈v is then:

() ()() ()()
{ }

∑
¬∈∈

======
RRmv

YX

Y

qmXMmXMvYvXqvXP
,,V

P,P

In this expression, the summation is over all the possible values
of mvY , (vY can take any value in V = {I, B, E}, and each mi can
take values R, ¬R). The conditional probability is expressed as
follows:

() ()

{ }
∑
=∈

=,Θ====

BEIVv

YXXYX
mYvvXc

mYvXvXc

e

emvvFm,MvYvX

,,

,,,

,,,

,,P
θ

θ

Where the mvvc YXX ,,,θ are real values to be learned. There is one

such parameter for each tag category cX and value set
mvv YX ,, . All the doxels sharing the same value set

mvvc YXX ,,, will share this θ parameter. The denominator
ensures that conditional probabilities sum to 1.

59

2.2.2 Training algorithm
In order to learn the parameters and to fit to a specific corpus, we
used a training criterion based on the relative order of elements.
We used all the assessed CO topics from the INEX 2003 dataset.
The criterion to be minimised was:

() () ()() ()∑ ∑ −=Θ
q ji

jisqjRSVqiRSV qeqw
,

,,,)(Q

where the weighted q summation is over the set of all training
queries and the i and j ones are over the set of all doxels in the
training set. RSV(i,q) is the score of the element Xi and sq is
defined as follows:

()
()
()

()⎪
⎩

⎪
⎨

⎧

=
<−
>

=

jqi

jqiij

jqiji

q

XX
XXqXX
XXqXX

jis
 otherwise0

query for than better"" is if1
query for than better"" is if1

,

The order (“better than”) between the elements depends on the
assessments for a given query q. For instance, a highly specific
and exhaustive element is “better than” a fairly exhaustive and
highly specific one. We used the following partial order between
assessments (from “best” to “worst”):

1. Highly specific and highly exhaustive
2. Highly specific and fairly exhaustive
3. Highly specific and marginally exhaustive

4. All other assessment including “not assessed”

The score of an element in the criterion formula is either

)E(qXP = for the model BN1 or ()BXqEXP =∧= parent s'
for the model BN2. The latter is more complex but more related
to our scoring algorithm. The weight w(q) was chosen in order to
normalize the contribution of different topics: even if the number
of assessments were different, this normalization ensured that
each topic had the same influence on the criterion. The criterion
is minimal when all the elements are ordered according to our
partial order.

In order to optimize the criterion, different gradient algorithms
could be used. For the experiments we used a simple gradient
descent algorithm where the learning rate (epsilon) was
automatically set by a line search; for this latter, we use the
Armijo algorithm. The number of steps was chosen so as to
optimize the performance with respect to the ERR metric. For
BN1, a maximum was reached after 195 iterations while for BN2
a maximum was reached after 700.

2.3 Experiments
Three official runs were submitted to INEX'04:

• Okapi In this run, we used the Okapi weighting
scheme; every volume (and not every doxel) in the
INEX corpus was considered as a document while the
average document length used in the Okapi formula
was local: for every doxel, the average document length
was the average length of the doxels with the same tag.

• BN1 In this run, we submitted the doxel retrieved with
the BN which is described in 2.2. The former Okapi

model was used as a base model,)E(qXP = was
used as the score of an element for the learning
process, and ()BXqEXP =∧= parent s' was used as
the score of an element.

• BN2 In this run, we also submitted the doxel retrieved
with the BN which were learnt with a different
mapping between tag names.

()BXqEXP =∧= parent s' was used as the score of
an element both for learning and testing.

Figure 1: CO official runs (Generalized recall)

Figure 2: CO official runs (average of all RP measures)

Table 1: CO official runs

 Generalized recall Average of all RP
measures

Okapi 40.74 0.10
BN1 46.45 0.04
BN2 45.97 0.05

The results are summarized in Figure 1, Figure 2 and Table 1.
For generalized recall, BN models are clearly above Okapi model
whereas curves are inversed for the average of all RP measures.

60

Contradictions between the different measures do not allow us to
conclude which model is better.

With respect to the experiments we have done the two previous
years, this ranking criterion seems the most promising one – in
INEX 2002 and 2003 we used a maximum likelihood algorithm
(EM) which was not well fitted to this task. However, the partial
order should be refined so as to be even more close to the “ideal”
criterion which is user related. We also want to investigate other
criterions such as the cross-entropy.

3. CONTENT AND STRUCTURE QUERIES
In this section, we present the algebra we have used to answer
Vague Content and Structure Queries (VCAS) starting from the
scores of BN Model or standalone Okapi model. We only give
some elements to understand the way we use this algebra in the
specific case of NEXI queries. A more detailed description of the
algebra is given in [17]. At last, we give the results of the
experiments on INEX 2004 for the Okapi model and Bayesian
Networks.

3.1 Algebra
3.1.1 Introduction
In INEX, queries are expressed in a query language (NEXI)
which is very similar to XPath in which a vague operator (about)
is introduced in order to allow for queries in a similar fashion
than in information retrieval. Such languages can be used to
express query needs that mix possibly vague content and
structure constraints. XPath is for XML documents what SQL is
for databases: it is a language that describes which information
should be retrieved from XML documents. In traditional
databases, this request is usually mapped into an algebra which
in turn is used as a query plan. This query plan is closely related
to physical operations that will give the answers to the query. In
databases, the result of a formula of the algebra is a set of tuples.
In XML databases, the result is a set of elements.

Defining or choosing an algebra is very important to answer
complex query needs. This is proved by the important number of
works within the semi-structured database field which definite
algebras like for example [15][1]. Such approaches are also used
in INEX [13]. Our algebra is very closely related to the algebra
defined by Fuhr and Grossjohan [8] when we defined our own
algebra for XML retrieval. As in classical IR, SIR aim is to
retrieve the set of document elements that fulfill a given query
need. This query need is very often imprecise. The algebra we
define here can be used to answers vague queries that have
constraints on both content and structure and make use of the
Bayesian Networks framework that we use for CO queries.

3.1.2 Algebra
Besides classical operators of the set theory like the intersection,
the union and the complementary, our algebra use structural
operators like:

• ()xdesc? (descendant or self)

• ()xanc? (ancestor or self)

• other operators we do not mention because they are
useless with the specification of NEXI language.

We denote Χ the set of all doxels. We introduce three functions:
1. ()qR which returns the set of doxels which are

answers to the query need q . That is, a doxel is in the
set with a given probability.

2. ()comparisontcomp , which returns the set of doxels x
where),(txcomparison is true. We have used

><≥≤≠= ,,,,, comparisons.

3. ()xlabel which returns the label of the doxel (the tag

name). The function ()llabel 1− returns the set of doxels
which have a label l (This function is used for SCAS
queries). In order to process VCAS queries, we can
replace the latter function by a vague one called

()linvlabel which returns a set of labels with a given
probability.

The algebra is defined on the set ()ΧΡ (the set of all the part of
the set of doxels). We use the operator “ o ” to compose the
different functions defined on ()ΧΡ which take values in ()ΧΡ .

With all these operators and functions, we are able to answer
structured queries.

3.1.3 Probabilistic interpretation
In the previous section, ()qR returns the set of doxels that are
answers to the query q. In Information Retrieval (IR), the
answers to a query are not well defined: the query is expressed in
vague terms, and the real query need cannot be easily defined.
We thus have to define ()qR as a “vague” set in order to
compute the answer to a query that contains predicates like
about.
In our approach, as in the probabilistic interpretation of fuzzy
sets [6], a set X⊂A is not anymore defined strictly. We denote
such a set by vA (v for vague). vA is defined by a probability
distribution on subsets of X . The case where probability

() 1== AAP v means that the set vA is strict and not vague (the
concept of fuzzy set is thus more general than the concept
classical set). An element a belongs to vA with a probability

()vAaP ∈ which is formally defined by:

() ()∑
∈⊂

==∈
AaA

vv AAPAaP
,X

We define recursively the fact that a doxel belongs to a vague set:

()
{ }()

v
xxXx

v AxAx ∈′≡∈ ∨
′∈∈′ ϕ

ϕ
,

Lastly, intersection and union operators can also be transformed
in logical formulas:

() ()
() ()vvvv

vvvv
BxAxBAx
BxAxBAx

∈∨∈≡∪∈
∈∧∈≡∩∈

3.1.4 Algebraic expression of a CAS query
In order to convert a NEXI query into an algebraic expression,
we briefly define the way we decompose the NEXI Queries used
in INEX, which can be easily extended to XPath like queries.

61

A NEXI query is read from left to right. The different
components are separated by two slashes “ // ” which are not
within brackets. The query [] [] []nn FLFLFL //...//// 1100 can be
decomposed in []ii FL// elements.

Each component is itself composed of three parts:

1. The axis (//). This axis is an abbreviation of the
::/ selfordescendant −− axis in XPath. It defines a

set with respect to a given doxel x. For the first
component of the XPath, this set is defined by the
document d. For the first component of an XPath
within a filter, the set of selected doxels is evaluated
with respect to the document d or to the filtered doxel.
For any another component, the selection is made with
respect to the set of doxels selected by the previous
component ;

2. The label (iL). It filters the set of doxels selected by
the axis and keep only those which have the label a.
When the label is *, the “axis” set is not filtered ;

3. The filter (iF) that express a boolean condition on
doxels. It returns the subset of those doxels which
fulfill the boolean conditions expressed in the filter. An
XPath can be used in the filter: it is relative to the
context path and take the form of

nLLL //...////. 10

The filter is a condition which can be true or false for
one doxel.

An algebraic expression is defined on the parts of the set of
doxels. Each part of the query (axis, label iL , filter iF) is a
component that can be processed separately:

• An axis is transformed into the structural operator
() /// descA =Ψ except for the first component of the

XPath which is transformed into ()() ()ddescA /
0 // =Ψ .

• A label (or a set of labels) iL is transformed into a
function LΨ that selects a subset of doxels which have
a label iL in the set:

() () ()
()i

iL
LlabelXX

L
1

:
−∩

ΧΡΧΡΨ
a

a

where we handle the special case of * by
defining () Χ=− *1label

• As for the filter iF , the transformation is more
complex and is denoted FΨ :

() () ()
()iF

iF
FXX

F
Ψ′∩

ΧΡΧΡΨ
a

a:

where FΨ′ is the function which transforms a filter in
the set of doxels that fulfill the conditions expressed in
the filter.

With these notations, the query:

[] [] []nn FLFLFLp //...//// 1100=

is the result of the evaluation of the algebraic expression:

() () () ()

() () ()
() () () ()

() ()

() ()
() ()

() ⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∩

∩Ψ′
∩

∩Ψ′

∩
∩

∩Ψ′=
ΨΨΨ

ΨΨΨ

ΨΨΨ=Ψ

−

−

−

ddesc

LlabelF
desc

LlabelF

desc
desc

LlabelF
LF
LF

LFpd

F

F

nnF

ALF

ALF

AnLnF

/

0
1

0
/

1
1

1

/
/

1

0
00

11

...

//
//

...
//,

ooo

ooo

oo

We do not detail the way we evaluate FΨ′ . We use a similar
method than above in which:

• predicates about are transformed into a ()qR function.

• comparisons are transformed using ()operatortcomp ,
function.

3.2 Experiments
To compute the union or the intersection of two vague sets, we
used the probabilistic and/or operators defined below:

• () () ()BbPAaPBbAaP ∈∈=∈∧∈

•
() () ()

() ()BbPAaP
BbPAaPBbAaP
∈∈−

∈+∈=∈∨∈

Complement remains)(1)(AaPAaP ∈−=∉ . We have also
tested min/max and Lukasievicz operators, but they were
outperformed the probabilistic operator.

In order to introduce vagueness into the query structure, we used
the following labelling function:

() () { } (){ }
()

U
lxlabelx

xypayxxpalinvlabel
=∈

=∈∪∪=
,X

,X

where we supposed that all the doxels from this set have the
same probability of being labelled l . We have also tested the

labelling function ()llabel 1− function, and other simple
strategies to introduce vagueness into structure (not considering
tag names), but they were outperformed by ()linvlabel .

• Three official runs were submitted to INEX'04; the
models we used to computed the probability of
relevance are the same that in section 2.3.

62

Figure 3: VCAS official runs (Generalized recall)

Figure 4: VCAS official runs (average of all RP measures)

Table 2: VCAS official runs

 Generalized recall Average of all RP
measures

Okapi 33.14 0.05
BN1 27.97 0.05
BN2 31.67 0.04

The results are summarized in Figure 3, Figure 4 and Table 2.
Okapi model outperform BN1 and BN2 models but not
significantly. We remark results are inversed in comparison with
experiments on CO queries.

Our algebra can answer all INEX VCAS and also more complex
structured queries. Nevertheless, the connection between CO
queries and VCAS queries is not clear because the best model for
CO queries is not the best one for VCAS queries. The Okapi
model gives better results for structured queries than for content
only queries. Moreover, the choice of union and intersection
functions for aggregation like min/max, Lukasievicz or
probabilistic is not also clear regarding the base models we use.

4. CONCLUSION
We introduced a new BN model whose conditional probability
functions are learnt from the data via a gradient descent
algorithm. The BN framework has some advantages. Firstly, it
can be used in distributed IR, as we only need the score of the
parent element in order to compute the score of any its
descendants. Secondly, it can use simultaneously different
baseline models: we can therefore use specific models for non
textual media (image, sound, etc.) as another source of evidence.

We have described a new algebra we have used to process
content-and-structure queries. This algebra is a generic way to
represent structured queries and can be easily used with the IR
system based on Bayesian Networks we have developed.

Our system can answer CO and VCAS queries. The model has
still to be improved, tuned and developed. In particular, we
should improve the baseline models and fit them to the
specificities of CO or VCAS queries. We show this algebra
allows answering VCAS queries and we have to investigate new
ways of including vagueness in the structure of queries.

5. REFERENCES
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.

Wiener. The lorel query language for semistructured data.
International Journal on Digital Libraries, 1(1):68–88,
1997.

[2] Callan J, Croft WB, and Harding SM (1992) The
INQUERY Retrieval System. In A. Min Tjoa and Isidro
Ramos, editors, Database and Expert Systems Applications,
Proceedings of the International Conference, pages 78-83,
Valencia, Spain, 1992. Springer-Verlag.

[3] Y. Chiaramella, P. Mulhem, and F. Fourel. A Model for
Multimedia Information Retrieval. Technical report, IMAG,
Grenoble, France, July 1996.

[4] Crestani F, de Campos LM, Fernandez-Luna JM and Huete
JF (2003), A multi-layered Bayesian network model for
structured document retrieval, ECSQARU, LNAI 2711,
Springer-Verlag,74-86.

[5] Crestani F, de Campos LM, Fernandez-Luna JM and Huete
JF (2003), Ranking Structured Documents Using Utility
Theory in the Bayesian Network Retrieval Model, In SPIRE
(String Processing and Information Retrieval), Brazil, 2003,
pp. 168-182.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
Likelihood from incomplete data via de EM algorithm. The
Journal of Royal Statistical Society, 39:1{37, 1977.

[7] N. Fuhr and T. Rölleke. HySpirit - a Probabilistic Inference
Engine for Hypermedia Retrieval in Large Databases. In H.-
J. Schek, F. Saltor, I. Ramos, and G. Alonso, editors,
Proceedings of the 6th International Conference on
Extending Database Technology (EDBT), Valencia, Spain,
1998. Springer, Berlin.

[8] N. Fuhr and K. Grossjohann. XIRQL: A query language for
information retrieval in XML documents. In W. B. Croft, D.
J. Harper, D. H. Kraft, and J. Zobel, editors, The 24th
International Conference on Research and Developmenent

63

in Information Retrieval, New Orleans, Louisiana, USA,
Sept. 2001. ACM.

[9] T. Grabs and H.-J. Schek. ETH Zrich at INEX: exible
information retrieval from XML with PowerDB-XML. Dec.
2002.

[10] G. Kazai, M. Lalmas, and T. Rölleke. A Model for the
Representation and Focussed Retrieval of Structured
Documents based on Fuzzy Aggregation. In String
Processing and Information retrieval (SPIRE 2001)
Conference, Laguna de San Rafael, Chile, Sept. 2001.

[11] M. Lalmas. Dempster-Shafer's Theory of Evidence Applied
to Structured Documents: Modelling Uncertainty. In
Proceedings of the 20th Annual International ACM SIGIR,
pages 110-118, Philadelphia, PA, USA, July 1997. ACM.

[12] M. Lalmas and E. Moutogianni. A Dempster-Shafer
indexing for the focussed retrieval of a hierarchically
structured document space: Implementation and experiments
on a web museum collection. In 6th RIAO Conference,
Content-Based Multimedia Information Access, Paris,
France, Apr. 2000.

[13] J. List, V. Mihajlovic, A. P. de Vries, and G. Ram´ırez. The
TIJAX XML-IR system at INEX 2003. In N. Fuhr, M.
Lalmas, and S. Malik, editors, INitiative for the Evaluation
of XML Retrieval (INEX). Proceedings of the Second INEX
Workshop, Dagstuhl, Germany, Dec. 2003.

[14] Myaeng SH, Jang DH, Kim MH and Zhoo ZC (1998) A
Flexible Model for Retrieval of SGML documents. In W.
Bruce Croft, Alistair Moffat, C.J. van Rijsbergen, Ross
Wilkinson, and Justin Zobel, editors, Proceedings of the

21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
138-140, Melbourne, Australia, August 1998. ACM Press,
New York.

[15] G. Navarro and R. Baeza-Yates. Proximal nodes: A model
to query document databases by content and structure. ACM
TOIS, 15(4):401–435, Oct. 1997.

[16] B. Piwowarski, G.-E. Faure, and P. Gallinari. Bayesian
networks and INEX. In Proceedings of the First Annual
Workshop of the Initiative for the Evaluation of XML
retrieval (INEX), DELOS workshop, Dagstuhl, Germany,
Dec. 2002. ERCIM.

[17] B. Piwowarski and P. Gallinari. An algebra for probabilistic
XML Retrieval. In The First Twente Data Management
Workshop, 2004

[18] S. Robertson. Threshold setting and performance
optimization in adaptive Filtering. Information Retrieval,
5(2-3):239-256, April-July 2002.

[19] Walker S and Robertson SE (1999) Okapi/Keenbow at
TREC-8. In E. M. Voorhees and D. K. Harman, editors,
NIST Special Publication 500-246: The Eighth Text
REtrieval Conference (TREC-8), Gaithersburg, Maryland,
USA, November 1999.

64

IR of XML documents – A collective Ranking Strategy

Maha Salem
Faculty of Electrical Engineering,

Computer Science and Mathematics
University of Paderborn

Warburger Str. 100
33098 Paderborn

Germany
MahaSalem@web.de

Alan Woodley
Centre for Information Technology

Innovation
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434 Brisbane Q 4001

Australia
ap.woodley@student.qut.edu.au

Dr Shlomo Geva
Centre for Information Technology

Innovation
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434 Brisbane Q 4001

Australia
s.geva@qut.edu.au

ABSTRACT
Within the area of Information Retrieval (IR) the
importance of appropriate ranking of results has increased
markedly. The importance is magnified in the case of
systems dedicated to XML retrieval, since users of these
systems expect the retrieval of highly relevant and highly
precise components, instead of whole document retrieval.
As an international, coordinated effort to evaluate the
performance of Information Retrieval systems, the
Initiative for the Evaluation of XML retrieval (INEX)
encourages participating organisation to run queries on
their search engines and to submit their result for the
annual INEX workshop. In previous INEX workshops the
submitted results were manually assessed by participants
and the search engines were ranked in terms of
performance. This paper presents a Collective Ranking
Strategy that is supposed to facilitate the derivation of a
ranking of participating search engines and moreover
provides a system that outperforms all other search
engines.

Keywords
Information Retrieval, Document Standards, Digital
Libraries

1. INTRODUCTION
Modern society unceasingly produces and uses
information. All technical activity – in science, industry,
commerce or government – now takes place in such a
complex environment that it must be based on specially
acquired information. At the same time, every act gives
rise to information, and recorded knowledge grows
rapidly. To find the relevant information sought within the
huge mass of information now available becomes ever
more difficult. If information is supposed to be accessible
it must be organized [1].

The specific nature of information has called for the
development of many new tools and techniques for
information retrieval. Modern information retrieval (IR)
deals with storage, organisation and access to text, as well
as multimedia information resources. The concept of
information retrieval requires that there are some
documents containing information that have been
organised in an order suitable for easy retrieval [2].

Within the area of information retrieval, keyword search
querying has emerged as one of the most effective
paradigms for IR, especially over HTML documents in the
World Wide Web. One of the main advantages of
keyword search querying is its simplicity – users do not
have to learn a complex query language, and can issue
queries without any prior knowledge about the structure of
the underlying data. Since the keyword search query
interface is very flexible, queries may not always be
precise and can potentially return a large number of query
results, especially in large document collections. As a
consequence, an important requirement for keyword
search is to rank the query results so that the most relevant
results appear first.

Despite the success of HTML-based keyword search
engines, certain limitations of the HTML data model make
such systems ineffective in many domains. These
limitations stem from the fact that HTML is a presentation
language and hence cannot capture much semantics. The
XML (eXtensible Markup Language) data model
addresses this limitation by allowing for extensible
element tags, which can be arbitrarily nested to capture
additional semantics. Information such as titles,
references, sections and sub-sections are explicitly
captured using nested, applicationspecific XML tags,
which is not possible using HTML.

Given the nested, extensible element tags supported by
XML, it is natural to exploit this information for querying.
One approach is to use sophisticated query languages
based on Xpath to query XML documents. While this
approach can be very effective in some cases, a
disadvantage is that users have to learn a complex query
language and understand the schema of underlying XML.

Information retrieval over hierarchical XML documents,
in contrast to conceptually flat HTML documents,
introduces many new challenges. First, XML queries do
not always return whole documents, but can return
arbitrarily nested XML elements that contain the
information needed by the user. Generally, returning the
“deepest” node usually gives more context information.
Second, XML and HTML queries differ in how query
results are ranked. HTML search engines usually rank
documents partly based on their hyperlinked structure [3].
Since XML queries can return nested elements, as against

65

entire XML documents, ranking has to be done at the
granularity of XML elements, which requires complicated
computing due to the fact that the semantics of
containment links (relating parent and child elements) is
very different from that of hyperlinks. As a consequence,
techniques for computing rankings exclusively based on
hyperlinks are not directly applicable for nested XML
elements [4].

This paper presents an approach for effective ranking of
XML result elements in response to a user query by
considering the results of several other search engines and
producing a collective ranking on the basis of some sort of
a vote. The hypothesis is that the resulting system will
outperform all search engines delivering the results it is
based on.

1.1 Overview of INEX
Extensible Markup Language (XML) has become a
widely accepted standard for the representation and
exchange of data, attracting growing attention in digital
libraries, scientific data repositories and on the web. The
widespread use of XML documents led to the
development of appropriate information retrieval (IR)
methods for XML documents in the form of XML
retrieval systems. These systems exploit the logical
structure of documents, which is explicitly represented by
the XML markup, to retrieve document components,
instead of entire documents, in response to a user query.
This means that an XML retrieval system needs not only
to find relevant information in the XML documents, but
also determine the appropriate level of granularity to
return to the user, and this with respect to both content and
structural conditions [5]. The expansion in the field of
information retrieval caused the need to evaluate the
effectiveness of the developed XML retrieval systems.

To facilitate research in XML information retrieval
systems the INitiative for the Evaluation of XML retrieval
(INEX) has established an international, coordinated
effort to promote evaluation procedures for content-based
XML retrieval. INEX provides a means, in the form of a
large XML test collection and appropriate scoring scheme
for the evaluation of XML retrieval systems [6]. The test
collection consists of XML documents, predefined queries
and assessments. The scoring scheme is based upon two
dimensions: specificity (reflects the relevancy of a
particular XML component) and exhaustiveness (measures
whether a relevant component contains suitable coverage).
These values are quantised to the traditional metrics of
precision (the probability that a result element viewed by a
user is relevant) and recall (the total number of relevant
components returned). In turn, these metrics are combined
to form a recall/precision curve.

Together they provide a means for qualitative and
quantitative comparison between the various competitors
participating at INEX. Each year the competitors’ systems
are ranked according to their overall effectiveness.

2. RANKING OF RESULTS
Ranking of results has a major impact on users’
satisfaction with search engines and their success in
retrieving relevant documents. While searches may
retrieve thousands of hits, search engine developer claim
their systems place items that best match the search query
at the top of the results list.

Since users often do not have time to explore more than
the top few results returned, it is very important for a
search engine to be able to rank the best results near the
top of all returned results. A study conducted by [7]
indicates that 80% of users only view the first two pages
of results. The user may consider a number of factors in
deciding whether or not to retrieve a document.
Regardless of relevance-ranking theory, users have an
intuitive sense of how well the relevance ranking is
working, and a key indicator of this intuitive satisfaction is
the number of distinct query words that a document
contains. E.g., a document containing only two query
words from an eight-word query should not be higher
ranked than a document containing all eight words [8].

2.1 Collective Ranking
As described before, the INEX workshop is run once a
year and is generally based on the following steps:
1. Participating organisations contribute topics (end user

queries) and a subset of topics is selected for
evaluation.

2. The topics are distributed to participants who run
their search engines and produce a ranked list of
results for each topic.

3. The results are pooled together (disassociated and
duplicates eliminated).

4. The pooled results are individually assessed by the
original topic contributors, who act as end users
manually assessing the relevance of the results in
terms of exhaustiveness and specificity.

5. The search engines are ranked in terms of
performance (recall/precision) using several metrics.

6. Results are returned to participants who in turn write
up and present their systems and discuss it at the
workshop.

During the last two years the execution of step 4
(assessment of topics by human assessors) has emerged as
a very time-consuming procedure which led to the idea of
a “Collective Ranking Strategy“. The idea is to take the
entire set of results from all search engines and produce a
collective (“committee”) ranking by taking some sort of a
vote.
The collectively ranked results are to be evaluated against
the assessed pool of results (as determined by the human
assessors). The hypothesis is that it may be possible to
outperform any single system by taking account of the
results from all systems. If this hypothesis is verified, then
as a consequence manual assessment of pooled results by

66

human assessors (step 4) may be no longer required.
Instead, a relative comparison of submissions with the
collective ranking results will be sufficient to derive a
ranking of all search engines. Moreover, this would also
prove the assumption that you can derive a better
performing search engine by solely considering results of
several other search engines.

2.2 Strategy
Several strategies were tested and the specifics of the
Collective Ranking were determined. During the testing
phase it became obvious that the simplest strategy led to
best results. The eventually applied Collective Ranking
Strategy is described by the following algorithm, which is
to be applied seperately for both CAS and CO topics:

For each topic t1… tn:
{

For each submission s1… sm for topic ti:
{

Take the top x result elements;

Assign a value pi (points for ranking position) to
each rank ri ∈ [1…x] of the top x submitted result
elements applying the following formula:

pi := (x – ri) + 1;
}

Compute a total result element score res_scorei for each
unique submitted result element as follows (m being the
number of submissions):

 m

∀xi ∈ result elements: res_scorei := ∑ pi
k

 i=1

Rank the result elements according to the assigned result
element score res_scorei in descending order;

In the format of a submission file write the top 1500
result elements of the ranked list into the Collective
Ranking output file;

}

Within this algorithm, x (≙ number of top ranked result
elements taken from each submission for each topic) and k
(≙ weighting for pi) are variables whose optimal values
are to be determined according to the best possible results
in the testing phase.

The basic idea of this strategy is to take into account both
the number of occurrences and the ranking position of
each result element submitted by the participants’ search
engines. With reference to the number of occurrences, the
summation in the algorithm makes sure that, the more
often the same result element appears in the submitted
result lists of various search engines, the higher it is rated
and eventually ranked. This becomes evident considering
an implication provided by the algorithm: If a particular
result element is not returned in a search engine’s top 100
results, it receives 0 points for the ranking position (pi).
With respect to the consideration of the ranking position,

the definition and incorporation of pi (points for ranking
position) makes sure that, the higher the ranking position
of the same result element in each submitted result list is,
the bigger the value pi for each occurrence will be.

As the Collective Ranking is derived from a descending
list of the top 1500 result element scores, the bigger the
value pi for each occurrence of a particular result element
and as a consequence the bigger the result element score
res_scorei (derived from the summation of pi) is, the better
the final ranking position of this particular result element
in the Collective Ranking will be.

3. TESTING
The Collective Ranking algorithm was tested using
different values for the variables x and k, in order to
identify the optimal combination of these values. In the
testing phase it became evident that the bigger the depth
value x (≙ number of top ranked result elements taken
from each submission for each topic) is, the bigger the
applied value for k (≙ weighting for pi) is supposed to be
in order to obtain optimal results.

Furthermore, the algorithm was tested comparing results
when considering all submissions and merely considering
the top ten ranked submissions (as determined by INEX
2003), respectively. It became obvious that considering all
submissions instead of solely considering those
submissions ranked as the top ten in INEX 2003 led to
better results while retaining the same values for x and k.

Figure 3.1 presents an example of the different effect on
results when considering all submissions and only top ten
submissions of INEX respectively. Figure 3.2 and 3.3
show examples of test results with different values for x
and constant value for k and vice versa respectively.

Figure 3.1: Comparison of results considering all
submissions / only top ten submissions of INEX

67

Figure 3.2: Example of test results with different

values for x and constant value for k

Figure 3.3: Example of test results with constant value

for x and different values for k

4. RESULTS
After executing the described algorithm for both CAS and
CO topics and submitting the obtained Collective Ranking
result file to the INEX evaluation software the hypothesis
was verified: The recall/precision curve as well as the
average precision of the Collective Ranking outperformed
all other systems’ submissions.

In this context, best results for the different tasks and
quantisations were achieved with the following values for
x and k:

 CAS strict: x = 400 and k = 18

 CAS generalised: x = 1000 and k = 30

 CO strict: x = 1500 and k = 39

 CO generalised: x = 1500 and k = 39

Table 4.1 displays the best values of average precision
achieved by the Collective Ranking in comparison with
the best ranked submissions of participants in INEX 2003.

The Precision/Recall curves represented in Figures 4.1 to
4.4 demonstrate the performance of the Collective
Ranking (displayed in red colour) in comparison with all
other submissions of INEX 2003.

Table 4.1: Comparison of best values of Avg. Precision
of participants/Collect. Ranking (*Univ. of Amsterdam)

Avg. Precision - Best Value Task Quantisation
Participants Collect. Ranking

CAS Strict 0.3182* 0.3480

CAS Generalised 0.2989* 0.3177

CO Strict 0.1214* 0.1339
CO Generalised 0.1032* 0.1210

Figure 4.1: Results – CAS (strict)

Figure 4.2: Results – CAS (generalised)

68

Figure 4.3: Results – CO (strict)

Figure 4.4: Results – CO (generalised)

5. OUTLOOK AND FUTURE WORK
The development and implementation of a Collective
Ranking Strategy as presented in this thesis and the results
obtained establish a basis for copious future work. This
chapter gives an overview of challenges and ideas of
approaches for further research on this topic.

5.1 Realistic Assessment
In order to identify the extent of possible improvement
regarding the Collective Ranking, a programme indicating
the notionally maximum performance was implemented,
which is based on the following idea:

During the assessment process of the INEX workshop
human assessors determine the relevancy of result
elements returned by the participants’ systems and pooled
together in the pool of results in terms of exhaustiveness
and specificity. While exploring the XML files of the
INEX document collection with respect to the result
elements returned for a certain topic, assessors may add
elements of the XML files that were not returned by any

participating system but, however, are considered relevant
to the pooled results. This procedure yields a pool of
results referred to as the “Official Perfect Pool of
Results”, which provides the basis for the INEX Official
Assessment Files that are required for the evaluation of the
search engines’ performance. These assessment files
suggest an idealish ranking of particular result elements
for each topic representing a guideline for the assessment
of the actually returned results. This ranking is referred to
as “idealish” since elements from some relevant articles
might not be included in the top 100 results from any
submission, hence are not in the pool of results at all.
Adding these elements to the pool would make it
theoretically possible to achieve an even better
performance. However, due to the fact that some result
elements contained in those idealish assessment files are
manually added and not returned by any single system, it
is not realistic to expect the search engines to actually
retrieve these result elements. Therefore, it is equally
unlikely that the Collective Ranking system could perform
as good as the official ideal results, since it is solely based
on the results actually returned by the participants’ search
engines.

In order to set a more realistic benchmark to identify the
(theoretically) best possible performance of the Collective
Ranking system, a so-called “Realistic Perfect Pool of
Results” is to be established. The appendant programme
developed to derive the required Realistic Assessment
Files eliminates all result elements not actually submitted
by any participant’s search engine from the “idealish”
Official Perfect Pool of Results.

Figures 5.1 to 5.4 display the performance of the
Collective Ranking system compared with the
precision/recall curves of the “Official Perfect” and
“Realistic Perfect” Results. They reveal the remarkably
big capability of improvement regarding the Collective
Ranking Strategy.

Figure 5.1: Collective Ranking compared with
“Official Perfect” and “Realistic Perfect” results (CAS
– strict)

69

Figure 5.2: Collective Ranking compared with “Official

Perfect” and “Realistic Perfect” results (CAS-
generalised)

Figure 5.3: Collective Ranking compared with

“Official Perfect” and “Realistic Perfect” results (CO –
strict)

Figure 5.4: Collective Ranking compared with

“Official Perfect” and “Realistic Perfect” results (CO-
generalised)

Surveying these results it is particularly striking to see that
the precision/recall curves of the Realistic Perfect Results

are remarkably better performing than the Collective
Ranking, although the Realistic Perfect “system” avails
itself of the same source – solely consisting of result
elements returned by INEX participants – that is also
available for the Collective Ranking system. This
emphasises the crucial importance of successful ranking
of returned results and therefore represents a point of
origin for further examinations.

5.2 Modification of Algorithm
A possible approach to improve the performance of the
Collective Ranking system is the modification of the
algorithm applied for the implementation of the Collective
Ranking Strategy. In this context two practical ideas are
described as follows:

1. Quality Factor:
The main idea is the introduction and implementation
of a so-called Quality Factor which represents an
iterative assignment of a value qi (0, 1] to each
submission depending on its performance in relative
comparison with the Collective Ranking. In this
regard the definition of the result element score
res_scorei (currently derived from the summation of
pi only) would be the following:

Initially, for the first run qi equals 1 for every
submission. After this initial run, a first ranking of
submissions can be derived from relative comparison
with the Collective Ranking and an individual value
for qi (0, 1] can be assigned for each submission
applying the following formula (with m = number of
submissions and sri = rank of submission i according
to submission ranking derived from previous run
compared with Collective Ranking):

This means for example, if there are ten submissions,
the submission ranked first achieves the value (qi = 1)
for its individual quality factor whereas the
submission ranked tenth will be assigned a quality
factor value of (qi = 0.1) only. Consequently, as the
Collective Ranking is derived from a descending list
of the top 1500 result element scores res_scorei, the
bigger the value pi and the bigger the value qi for each
occurrence of a particular result element is, the better
the final ranking position of this particular result
element in the Collective Ranking will be.

Implementing the idea of a quality factor qi would
emphasise the impact of better performing

qi := (m – sri + 1) / m

m

∀xi ∈ result elements: res_scorei := ∑ (pi
k * qi

j)

i=1

70

submissions and as a consequence might lead to a
better performance of the Collective Ranking system.

2. Improvement of Ranking:
As the Realistic Pool results have revealed that most
of the result elements contained in the official INEX
assessment files have actually been submitted by
participants and as a consequence must be accessible
for the Collective Ranking, it becomes obvious that
an improved ranking of results for both the INEX
submissions and the Collective Ranking could be the
key for noticeable improvement of performance.
However, at present it is not quite clear yet how this
idea can be translated into successful methods.

5.3 Automatic Testing
At this stage, values identified best for x and k applied in
the Collective Ranking programme are based on results
derived from experimental testing. However, since
possible values for x can range from 1 to 1500 and
appropriate values for k can theoretically range from 0 to
infinite, it was not possible to test all possible
combinations of these two values. Therefore it is
conceivable that better “optimal” combinations may be
identified by using automated testing methods which in
turn requires the assignment of an adequate
implementation.

5.4 Automatic Assessment
At the present time, INEX Assessment Files that are used
for the evaluation of submissions are derived from
assessments conducted by human assessors who work
through the INEX document collection to identify relevant
result elements. Since this has emerged as a very time-
consuming procedure, future work and development with
respect to the Collective Ranking could benefit the INEX
workshop at such a rate that human assessments might
eventually be replaced by assessment and ranking of
submissions derived from a relative comparison of those
submissions with the Collective Ranking. For this
purpose, however, Automatic Assessment Files are to be
established within the scope of further research and
testing.

6. CONCLUSION
The results achieved within the scope of this research
project by the development and implementation of a
Collective Ranking Strategy may benefit the future
procedure of the INEX workshop since – although not yet
a suitable substitute for human assessments of results – a
ranking of participating search engines can now be
derived without manual assessment.

The hypothesis stated at the beginning of this project,
suggesting that it may be possible to outperform any
single system by taking account of the results from all
systems was verified. Moreover it was proven that an
outperforming search engine can be developed on the

basis of other search engines’ results. However, the results
derived from the implementation of the Realistic Pool
Assessment Programme revealed that there is still much
room for improvement. Therefore, ample research on the
reasons for the performance of the Collective Ranking
system will be required in order to identify means to
improve the current results.

These conclusions will provide a basis for further research
on this topic, especially for the automatic assessment and
ranking of search engines, and may be considered a
starting point for the exploration of new challenges
regarding ranking strategies within this area of modern
Information Retrieval.

7. REFERENCES
[1] B. C. Vickery. “The Need for Information”. In

Techniques of Information Retrieval, p 1, London,
1970.

[2] G. G. Chowdhury. “Basic concepts of information
retrieval systems”. In Introduction to Modern
Information Retrieval, pp 1-2, London, 2004.

[3] S. Brin, L. Page. “The Anatomy of a Large-Scale
Hypertextual Web Search Engine”, WWW Conf.,
1998.

[4] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram.
“Ranked Keyword Search over XML Documents”,
p.1, San Diego, CA, June 9-12, 2003.

[5] N. Fuhr and S. Malik. Overview of the Initiative for
the Evaluation of XML Retrieval (INEX) 2003. In
INEX 2003 Workshop Proceedings, pp 1-11,
Schloss Dagstuhl, Germany, December 15-17,
2003.

[6] N. Fuhr, N. Gövert, G. Kazai and M. Lalmas.
“Overview of the Initiative for the Evaluation of
XML Retrieval (INEX) 2002”. In Proceedings of
the First Workshop of the INitiative for the
Evaluation of XML Retrieval (INEX), pp 1-15,
Schloss Dagstuhl, Germany, December 9-11, 2002.

[7] Jansen, J. Bernard, A.Spink, J. Bateman, T.
Saracevic. “Real Life Information Retrieval: a
Study of User Queries on the Web”. In SIGIR
Forum 32 No. 1, pp. 5-17, 1998.

[8] M. B. Koll. “Automatic Relevance Ranking: A
Searcher's Complement to Indexing” . In Indexing,
Providing Access to Information: Looking Back,
Looking Ahead, Proceedings of the 25th Annual
Meeting of the American Society of Indexers, pp
55-60, Alexandria, VA, May 20-22, 1993.

71

TRIX 2004 – struggling with the overlap
Jaana Kekäläinen

Dept. of Information Studies
33014 University of Tampere

Finland

jaana.kekalainen@uta.fi

Marko Junkkari
Dept. of Computer Sciences
33014 University of Tampere

Finland

junken@cs.uta.fi

Timo Aalto
Dept. of Information Studies
33014 University of Tampere

Finland

timo.aalto@uta.fi

Paavo Arvola
Dept. of Computer Sciences
33014 University of Tampere

Finland

paavo.arvola@uta.fi

ABSTRACT
In this paper, we present a new XML retrieval system prototype
employing structural indices and a tf*idf weighting modification.
Our runs for INEX 2004 test a) emphasizing the tf part in
weighting and b) allowing overlap to different degrees in run
results. It seems that increasing the overlap percentage leads to a
better performance. Emphasizing the tf part enables us to increase
exhaustivity of the run results.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Retrieval models,
performance evaluation

General Terms
Performance, Design, Experimentation.

Keywords
XML, Information retrieval, Relevance ranking, Overlap

1. INTRODUCTION
TRIX (Tampere retrieval and indexing system for XML) is aimed
for full scale XML retrieval. Extensibility and generality for
heterogeneous XML collections have been the main goals in
designing TRIX. We started from scratch and the first prototype
was implemented during four months in the summer 2004. This
prototype is able to manipulate CO queries but not CAS queries.
However, with the CO approach of TRIX we achieved tolerable
ranking for VCAS runs in INEX 2004.
One idea of XML is to distinguish the content (or data) element
structure from stylesheet descriptions. From the perspective of
information retrieval, stylesheet descriptions are typically
irrelevant. However, in the INEX collection these markups are not
totally separated. Moreover, some elements are irrelevant for
information retrieval. Thus, we preprocessed the INEX collection
so that we removed the irrelevant parts from the collection. We
classified these irrelevant parts into three classes. First, there are
elements which possess relevant content but the tags are
irrelevant. Tags which only denote styles, such as boldface or

italic, inhere in this class. These tags were removed but the
content of the elements was maintained. Second, there are
elements whose content seems irrelevant but their tags are
necessary in order to maintain the coherent structure of
documents. For example we appraised the content of <sgmlmath>
and <tmath> elements to inhere in this class. Third, there are
elements having irrelevant content and whose tags are not
necessary in structural sense. These elements, such as <doi> and
<en>, were removed.
The main goal of the preprocessing of the INEX collection was to
achieve a structure in which the content element has a natural
interpretation. In the terminology of the present paper, the content
element means an element that has own textual content. The
ranking in TRIX is based on weighting the words (keys) with a
tf*idf weighting modification, in which length normalization and
idf are based on content elements instead of documents.
The overlap problem is an open question in XML information
retrieval. On one hand, it would be ideal that the result list does
not contain overlapping elements [3]. On the other hand, the
metrics of INEX 2004 encourage for large overlapping among
results. In this paper, we examine how the ranking of runs
depends on the degree of overlap. For this, we have three degrees
of overlap:
1. No overlapping is allowed. This means that any element (or

document) is discarded in the ranking list if its subelement
(descendant) or superelement (ancestor) appears in the result
list.

2. Partial overlapping is allowed. The partial overlapping
means that the immediate subelements and superelement are
not allowed in the result list relating to those elements which
have a higher score.

3. Full overlapping is allowed.

In this report we present the performance of two slightly different
weighting schemes and three different overlapping degrees for
both CO and VCAS tasks. The report is organized as follows:
TRIX is described in Chapter 2, the results are given in Chapter 3,
and discussion and conclusions in Chapter 4.

72

2. TRIX 2004
2.1 Background
The manipulation of XML documents in TRIX is based on
structural indices [2]. In the XML context this way of indexing is
known better as Dewey ordering [7]. To our knowledge the first
proposal for manipulating hierarchical data structures using
structural (or Dewey) indices is found in [5]. The idea of
structural indices is that the topmost element is indexed by <1>
and its immediate subelements by <1,1>, <1,2>, <1,3> etc.
Further the immediate subelements of <1,1> are labeled by
<1,1,1>, <1,1,2> <1,1,3> etc. This kind of indexing enables
analyzing any hierarchal data structure in a straightforward way.
For example, the superelements of the element labeled by
<1,3,4,2> are found from indices <1,3,4>, <1,3> and <1>. In turn,
any subelement related to the index <1,3> is labeled by <1,3,ξ>
where ξ is a non-empty subscripts of the index.
In TRIX we have utilized structural indices in various tasks. First,
documents and elements are identified by them. Second, the
structure of the inverted file for elements is based on structural
indices. Third, algorithms for partial and full overlapping are
designed based on them.

2.2 Weighting Function and Relevance
Scoring
In TRIX the weighting of keys is based on a modification of the
BM25 weighting function [1, 6].

() N
n
N

ef
ef+b*b+v*kf

kfw

k

c

k

e

e

log

log
*

1

)(
)(−

=

where wk is the weight assigned to a key k in element e, kfe is the
number of times k occurs in the element, efc is the number of all
content subelements of the element e, efk is the number of content
subelements of e containing k, n is the number of content
elements containing k, N is the total number of content elements,
v and b are constants for tuning the weighting. The length
normalization for the element is based on the ratio of its all
content subelements and content subelements containing the key.
The weights are combined to a relevance ranking score for each
element by taking an average of the weights of keys – or query
fragments – appearing in queries and elements. By query
fragments we refer to phrases or +/- operations. Beside the
average we also used a fuzzy operation called Einstein's sum [4]:

ww
www

kk

kk
kk

21

21
2,1 1 ⋅+

+
=

Unlike average this operation is associative, which means that if
⊕ denotes Einstein's sum then wk1 ⊕ wk2 ⊕ wk3 = (wk1 ⊕ wk2) ⊕
wk3 = wk1 ⊕ (wk2 ⊕ wk3).
The ’+’ prefix in queries is used to emphasize the importance of a
search key. In TRIX the weight of the key was increased by
taking a square root of the original weight:

kk ww =+

This works because the weights are scaled between 0 and 1. The
’-’ prefix in queries denotes an unwanted key. In TRIX the weight
of such a key was decreased by changing the weight to its
negation:

kk ww −=−

TRIX does not support proximity searching. However, it is
possible to demand keys to appear in the same content element by
giving the keys in quotes: "k1,…,kn". In this case the calculation
of the weights is affected as follows:

() N
n
N

ef
ef+b*b+v*fk

fk
w

knk

c
en

en
knk log

log
*

1

)(
)(

...1
,...,1

,...,1
...1

−
=

where k1,…,nfe = min{k1fe, k2fe, …, knfe}.

2.3 Implementation
The TRIX is implemented in C++ for Windows/XP but the
implementation has not been bound to these operating systems. In
other words, the TRIX prototype could be operated in
UNIX/LINUX as well. In implementing the present TRIX
prototype, we have paid attention for effective manipulation of
XML data structures based on structural indices. However, the
efficiency has not been the main goal of TRIX, and for optimizing
of the code we have not used any tricks.
The TRIX prototype has two modes: online mode and batch
mode. In the online mode the user can run CO queries in the
default database (XML collection). The batch mode enables
running a set of CO queries. In this mode queries are saved in a
text file. Running the CO queries of INEX 2004 in the batch
mode takes about 40 minutes in a sample PC (Intel Pentium 4, 2.4
GHz, 512MB of RAM).
The command based user-interface of the TRIX prototype is
tailored for testing various aspects XML information retrieval.
This means that a query can be run with various options. For
example, the user can select:

• the method (average or Einstein's sum) used in combining of
weights,

• the degree of overlap (no overlapping, partial overlapping or
full overlapping), and

• the values of the constants.

For example the command string
TRIX –e –o b=0.1 queries2004co.txt

means that Einstein’s sum is used in combination of weights
(parameter -e), full overlapping is allowed (parameter -o) and the
b value is 0.1. Finally, queries2004co.txt denotes the file from
which the query set, at hand, is found. Actually, there is no
assumption of ordering for the parameters of a query. For
example, the command string
TRIX –o queries2004cs.txt b=0.1 –e

is equivalent with the previous query.
The online mode of TRIX is chosen by the command
TRIX

73

After this command the user may give his/her query.

3. RESULTS
For INEX 2004 we submitted both CO and VCAS runs though
our system supports only CO queries. In both cases, the title field
was used in automatic query construction. Phrases marked in
titles were interpreted as ‘TRIX phrases’ in queries, i.e. all the
phrase components were demanded to appear in the same
element. Yet, all the components were added as single keys to
queries as well. In VCAS queries the structural conditions were
neglected and all keys were collected into a flat query. Word form
normalization for the INEX collection and queries was Porter
stemming, and a stoplist of 419 words was employed.
We tested in both CO and VCAS runs the effects of a) tuning of
the constant b in the weighting scheme and b) overlap in the
results.

3.1 CO Runs
In the official submissions of the CO queries we tried both
average and Einstein’s sum in relevance scoring. The results were
so similar that we report the results based on average only.
Further, in our official submissions two overlap degrees were
tested: no overlapping and partial overlapping. Later on we added
the full overlapping case.

Table 1. Scores and Rankings of CO runs

 B Score Ranking

0.4 0.0198 45
no overlapping

0.1 0.0239 42
0.4 0.0443 31

partial overlapping
0.1 0.0487 25
0.4 0.0831 11

full overlapping
0.1 0.0957 10

Table 1 shows the effect of different overlaps and tuning of b to
the aggregate score and rank. Decreasing b has a slight positive
effect on the aggregate score and rank. When the different metrics
are considered, it is obvious that small b values enhance the
dimension of exhaustivity at specificity’s expense. Figures 3 and
5 in the appendix show a specificity-oriented metric, quantization
s3e321, and there average precision decreases as the b decreases.
Figures 4 and 6 in the appendix show an exhaustivity-oriented
metric, quantization e3s321, which shows that average precision
increases as b decreases.
The effect of overlap is more substantial: allowing the full
overlapping changes the aggregate rank from 45th to 11th when
b=0.4, or from 42nd to 10th when b = 0.1. Figure 1 illustrates the
increase in the aggregate score when overlap percentage increases
(compare Figures 3a and 5a, and 3b and 5b, etc. in the appendix).
Whether the change in the result lists is desirable from the user’s
point of view is questionable because it means returning several
overlapping elements from the same document in a row.

0

0,02

0,04

0,06

0,08

0,1

0,12

0 % 40% 44% 63% 69%

CO (b=0.4)

CO (b=0.1)

Figure 1. Scores and overlapping of CO runs

3.2 VCAS Runs
The results of the VCAS runs are very similar to CO runs.
Decreasing b value gives better exhaustivity-oriented results but
impairs specificity. Increasing the overlap enhances effectiveness.
Both these tactics have a positive effect on the aggregate score
(see Table 2).

Table 2. Scores and Rankings of VCAS runs

 b Score Ranking

0.4 0.269 30
no overlapping

0.1 0.0308 30
0.4 0.0384 25

partial overlapping
0.1 0.0421 22
0.4 0.0607 11

full overlapping
0.1 0.0754 7

Figure 2 shows the overlap percentages for different VCAS runs.
Also here the benefits of allowing the overlap are evident though
not as remarkable as for CO queries.

74

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 % 39% 42% 61% 67%

VCAS (b=0.4)

VCAS (b=0.1)

Figure 2. Scores and overlapping of VCAS runs

.

4. DISCUSSION AND CONCLUSIONS
TRIX is an XML retrieval system which employs a modification
of tf*idf weighting, using the number of content subelements in
element length normalization. In the present mode it only
supports CO queries but we aim at introducing a query language
for content and structure queries. Our original design principle
was not to allow overlap in results. Because only the titles of the
topics – providing a very terse description of the information need
– were allowed in query construction, and we did not expand the
queries, mediocre effectiveness was to be expected.
When the official results were distributed, we found out that our
official submission allowing partial overlap yielded a better
performance than runs with no overlap. We then tested runs with
full overlap and a slightly tuned weighting scheme. These tests
show that strengthening the tf part in our weighting scheme (by
decreasing b) enables us to strengthen the exhaustivity in results.
Further, allowing the full overlap leads to a dramatic
improvement in the aggregate score and rank. In our case, the
improvement in effectiveness was not necessarily an
improvement from the user’s point of view, because it led to a
massive repetition.
Since TRIX does not support querying with structural conditions
we submitted VCAS runs processed similarly as CO runs.
Surprisingly our success with the VCAS task was not worse than
with the CO task. However, if structural conditions are not
considered when assessing the relevance, it is understandable that
CO and VCAS tasks resemble each other.
Our further work with TRIX is aimed at introducing a query
expansion or enhancing module. Incapability to deal with short
content queries is a well-known disadvantage. Also, a CAS query
language allowing also document restructuring is under
construction.

5. ACKNOWLEDGMENTS
This research was supported by the Academy of Finland under
grant number 52894.

6. REFERENCES
[1] Hawking, D., Thistlewaite, P., and Craswell, P. ANU/ACSys

TREC-6 experiments. In Proc. of TREC-6, 1998. [online,
cited 21.11.2004.] Available at: <URL:
http://trec.nist.gov/pubs/trec6/papers/anu.ps>

[2] Junkkari, M. PSE: An object-oriented representation for
modeling and managing part-of relationships. Journal of
Intelligent Information Systems, to appear.

[3] Kazai, G., Lalmas, M., and de Vries, A.P. The overlap
problem in content-oriented XML retrieval evaluation. In
Proc. of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, Sheffield, UK, 2004, 72-79.

[4] Mattila, J.K. Sumean Logiikan Oppikirja: Johdatusta
Sumean Matematiikkaan. Art House, Helsinki, 1998.

[5] Niemi, T. A seven-tuple representation for hierarchical data
structures. Information systems, 8, 3 (1983), 151-157.

[6] Robertson S.E., Walker, S., Jones, S., Hancock-Beaulieu,
M.M., Gatford, M. Okapi at TREC-3. In NIST Special
Publication 500-226: Overview of the Third Text REtrieval
Conference (TREC-3). 1994. [online, cited 21.11.2004]
Available at: <URL:
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz>

[7] Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram,
J., Shekita, E., and Zhang, C. Storing and querying ordered
XML using a relational database system. In Proc. of the
SIGMOD Conference, 2002, 204-215.

75

APPENDIX

 (a) (b)
Figure 3. CO without overlap. Quantization: s3e321 (a) b = 0.4,

rank 39/70; (b) b = 0.1, rank 46/70

 (a) (b)
Figure 4. CO without overlap. Quantization: e3s321 (a) b = 0.4,

rank 45/70 ; (b) b = 0.1, rank 39/70

 (a) (b)
Figure 5. CO with full overlap. Quantization: s3e321 (a) b = 0.4,

rank 8/70; (b) b = 0.1, rank 12/70

 (a) (b)
Figure 6. CO with full overlap. Quantization: e3s321 (a) b = 0.4,

rank 17/70; (b) b = 0.1, rank 11/70

76

Merging XML Indices

Giambattista Amati, Claudio Carpineto and Giovanni Romano
Fondazione Ugo Bordoni, Via Baldassarre Castiglione 59, 00142, Rome, Italy

{gba,carpinet,romano}@fub.it

ABSTRACT
Using separate indices for each element and merging their
results has proven to be a feasible way of performing XML
element retrieval; however, there has been little work on
evaluating how the main method parameters affect the re-
sults. We study the effect of using different weighting models
for computing rankings at the single index level and using
different merging techniques for combining such rankings.
Our main findings are that (i) there are large variations on
retrieval effectiveness when choosing different techniques for
weighting and merging, with performance gains up to 102%,
and (ii) although there does not seem to be any best weight-
ing model, some merging schemes perform clearly better
than others.

1. INTRODUCTION
We focus on the Content Only (CO) task and try to extend
information retrieval (IR) techniques to deal with XML doc-
uments. As each XML document is formed by several nested
elements and the goal is to retrieve the most relevant ele-
ments, IR ranking models must be expanded with element
level statistics. However, at INEX 2003, Mass and Mandel-
brod [7] showed that, for XML documents, the use of clas-
sical IR statistics involving element and term frequencies is
not straightforward and may easily lead to inconsistencies
and errors, due to the nesting of elements.

To overcome this problem, one can compute weights at the
most specific level and propagate such weights upwards us-
ing augmentation factors [5]. Another approach, which does
not rely on user parameters, is to use a separate index for
each type of elements and compute rankings at the single
index level. Such rankings are then merged to return a com-
bined result [7].

In this paper we aim at experimenting with the latter ap-
proach, extending previous work in two directions. Our goal
is to study whether the choice of the weighting model and
the merging technique affect the retrieval performance of

XML indices in the INEX environment, and to evaluate rel-
ative merits and drawbacks of different parameter choices.

We consider three weighting models with a different theo-
retical background that have proved their effectiveness on
a number of tasks and collections. The three models are
deviation from randomness [3], Okapi [11], and statistical
language modeling [13].

The merging problem is tackled by combining the relevance
scores associated with each index through different normal-
ization techniques. We consider five schemes; namely, nor-
malization by query score, maximum score, standard norm,
sum norm, and Z-score norm.

In the following we first present the weighting models and
the normalization schemes. Then we describe the experi-
mental setting and discuss the results. Finally, we provide
some conclusions.

2. WEIGHTING MODELS
For the ease of clarity and comparison, the document rank-
ing produced by each weighting model is represented using
the same general expression, namely as the product of a
document-based term weight by a query-based term weight:

sim(q, d) =
P

t∈q∧d

wt,d · wt,q

Before giving the expressions for wt,d and wt,q for each
weighting model, we report the complete list of variables
that will be used:

ft the number of occurrences of term t in the collection
ft,d the number of occurrences of term t in document d
ft,q the number of occurrences of term t in query q
nt the number of documents in which term t occurs
D the number of documents in the collection
T the number of terms in the collection
λt the ratio between ft and T
ld the length of document d
lq the length of query q
avr ld the average length of documents in the collection

77

2.1 Okapi
To describe Okapi, we use the expression given in [11]. This
formula has been used by most participants in TREC and
CLEF over the last years.

wt,d =
(k1 + 1) · ft,d

k1 ·
»
(1− b) + b

ld
avr ld

–
+ ft,d

wt,q =
(k3 + 1) · ft,q
k3 + ft,q

· log2
D − nt + 0.5

nt + 0.5

2.2 Statistical Language Modeling (SLM)
The statistical language modeling approach has been pro-
posed in several papers, with many variants (e.g., [6], [9]).
Here we use the expression given in [13], with Dirichlet
smoothing.

wt,d = log2
ft,d + µλt
ld + µ

− log2
µ

ld + µ
− log2λt +

lq
|q ∧ d| ·

log2
µ

ld + µ

wt,q = ft,q

2.3 Deviation From Randomness (DFR)
Deviation from randomness has been successfully used at
TREC, for the Web track [1], and CLEF , for the monolin-
gual tasks [2]. It is best described in [3].

wt,d = (log2(1 + λt) + f∗t,d · log2
1 + λt
λt

) · ft + 1
nt · (f∗t,d + 1)

wt,q = ft,q

with

f∗t,d = ft,d · log2(1 + c · avr ld
ld

)

3. MERGING METHODS
Most of IR work on method combination has focused on
merging multiple rankings with overlapping documents, whereas
combining disjoint rankings has not received much attention.
If training information is available, one can learn cut-off val-
ues for each ranking [12] or give a value to each index [4]. As
in this case we did not have access to prior data (this is our
first participation in INEX), we use combination techniques
that do not require such data.

One simple approach would be to combine the original scores
into a large ranked list, without modifying the scores. How-
ever, such an approach would not work, due to the different
scales of the scores yielded by each index. In fact, the rel-
evance scores used in our experiments are not probabilities

and the statistics on which they are based are relative to in-
dices of varying size. Thus, the scores need to be normalized,
and the merging problem essentially becomes a normaliza-
tion problem.

Normalization can be done in different ways (see for instance
[8]). We test five approaches, which feature different prop-
erties in terms of shift and scale invariance and outlier tol-
erance. Such approaches are detailed in the following.

3.1 Q
The raw scores of the elements retrieved in response to query
Q by index i are divided by sim(q, q), which is the score
of the query itself (as if it were a document in the index)
according to the weighting model of index i. This technique,
denoted here by Q, has been used in [7].

3.2 Max
The raw scores are divided by the maximum score in the
corresponding index. Note that each index will produce one
element with normalized score = 1. In the combined rank-
ing, these topmost elements are ordered according to their
original value. This normalization scheme will be referred
to as Max.

3.3 MinMax
This scheme consists of shifting the minimum raw score to
zero and scaling the maximum to one, i.e.

score−minimum
maximum−minimum

This scheme will be denoted by MinMax.

3.4 Sum
A normalized score is obtained by shifting the minimum raw
score to zero and the sample sum to one; i.e.,

score−minimumX
N

scores − N ·minimum

This scheme will be denoted by Sum

3.5 Z-score
This is the classical standard score, denoted Z-score. It is
derived by subtracting the sample mean from raw scores and
then dividing the difference by the sample standard devia-
tion, i.e.,

score−mean
σ

4. EXPERIMENTAL SETTING
As also pointed out in [7], the great majority of highly rel-
evant elements are taken from the set: {article, bdy, abs,
sec, ss1, ss2, p, ip1}, because they represent more mean-
ingful results for a query. We intended to build a separate
index for each of these elements; however, a bug in the pro-
gram for building the indices of more specific elements (i.e.,
paragraphs) and a tight schedule prevented us from doing
so. In the experiments reported here we use only 5 types of

78

Table 1: Average precision (strict quantization) by
weighting method and by normalization scheme.

DFR Okapi SLM

Q 0.0695 0.0769 0.0927
Max 0.0903 0.0963 0.0931
MinMax 0.0853 0.0911 0.0848
Sum 0.0713 0.0806 0.0492
Z-score 0.1018 0.0987 0.0938

elements: {article, abs, sec, ss1, ss2 }. Even the runs actu-
ally submitted by us to INEX for evaluation had the same
limitation.

Each index was built as follows. We identifed the individual
words occurring in the elements of interest, ignoring punc-
tuation and case; thus, a strict single-word indexing was
used. The system then performed word stopping and word
stemming, using Porter algorithm [10].

At run time, we ran each INEX 2004 CO topic against all 5
indices and computed the ranking associated with each in-
dex. Only the title topic statement was considered. For each
query and for each index, we then computed three rankings,
one for each weighting model. The choice of the parameters
involved in the weighting models was as follows.

DFR c = 2
Okapi k1 = 1.2, k3 = 1000, b = 0.75
SLM µ = 1000

Then, for each query, we merged the index level rankings of
each weighting model using the five normalization schemes
described above.

5. RESULTS
We computed in all 15 rankings, i.e., three weighting models
times five normalization schemes. In order to evaluate the
retrieval effectiveness, we focus on strict relevance; i.e., on
highly exaustive and specific (E3S3) elements. This choice
was partly motivated by the importance of this task for an
XML information retrieval system, partly by the observation
that a E3S3 relevance judgement may better reflect the will
of the assessor rather than the rules enforced by the evalua-
tion system, which were found to produce a proliferation of
small irrelevant elements labeled as (partially) relevant.

The results are shown in Table 1; performance was mea-
sured using average precision averaged on the 25 topics with
nonempty E3S3 elements.

Before discussing the results, we would like to make one gen-
eral comment about the absolute value of the strict quan-
tization figures at INEX 2004. Our impression is that the
results have been penalized by a large number of elements
that have probably been mistakenly labeled as strictly rele-
vant (E3S3) for some topics. For instance, there are as many
as 288 E3S3 ”it” elements and 68 E3S3 ”tmath” elements
associated with one single topic. Also, the 55% of all E3S3
elements (i.e., 1429 out of 2589 elements) is associated with

only two topics. Even though evaluation of precision may
not be so much affected by these spurious elements, because
they will probably not be highly ranked by the retrieval sys-
tems, this will definitely downweight the recall part of the
evaluation measures.

Turning to the relative behaviour of the different methods
tested in the experiments, the results in Table 1 show that
there was a huge variability in retrieval effectiveness. The
worst performance was obtained by the pair SLM/Sum, with
an average precision of 0.0492; the best performance by the
pair DFR/Z-score, with an average precision of 0.1018 (+
102%). Incidentally, the submitted runs were obtained us-
ing DFR with Q, with official scores very similar to that
reported here (0.0695).

If we look at the behaviour of the weighting models when
the normalization scheme is kept constant, we see that no
weighting model clearly won. DFR achieved the best results
for Z-score, Okapi for Max, MinMax, and Sum, and SLM for
Q. In most cases (i.e., for Max, MinMax, and Z-score), the
results were comparable.

The results for the normalization schemes reveal a more
interesting pattern. The most important finding is that
Z-score achieved the best performance for each weighting
model, with notable performance improvements over the re-
sults obtained by the other normalization schemes using the
same weighting model. In particular, for DFR, the average
precision grows from 0.0695 with Q to 0.1018 with Z-score,
and for Okapi, it grows from 0.0769 with Q to 0.0987 with
Z-score.

The results in Table 1 also show that Max was consistently
ranked as the second best normalization scheme for each
weighting model, although with more comparable perfor-
mance improvements than Z-score. The other three nor-
malization schemes showed a mixed behaviour.

The results presented so far were obtained considering the
full set of relevance judgements. As our system only deal
with five types of elements, all the other relevant elements
cannot be actually retrieved. So it may be interesting to see
what happens if we remove from the relevance set all the
elements other than those used by the system. This should
give an idea about the results that this method might obtain
if we expanded the number of indices to include at least
the body and paragraph elements. On the other hand, it
must be considered that not all indices are alike; chances
are that there are proportionally fewer small elements (e.g.,
paragraphs) that are relevant, so it may be more difficult to
find them.

If we consider only the elements dealt with by our system,
we get 614 E3S3 elements (rather than 2589). In Table 2,
we show the retrieval effectiveness of the weighting/merging
methods relative to such a restricted set of E3S3 elements,
in which only the elements {article, abs, sec, ss1, ss2 } have
been kept.

If we compare the results in Table 1 with those in Table 2,
we see that passing from unrestricted to restricted relevance
judgements roughly doubles the retrieval performance. The

79

Table 2: Average precision (strict quantization) by
weighting method and by normalization scheme on
the restricted relevances.

DFR Okapi SLM

Q 0.1352 0.1500 0.1673
Max 0.1716 0.1791 0.1651
MinMax 0.1594 0.1654 0.1479
Sum 0.1520 0.1517 0.0911
Z-score 0.2080 0.2033 0.1807

improvement might seem smaller than one might expect by
judging from the decreasing in the number of relevant ele-
ments. Consider that the system retrieves the same elements
in the same order in both situations, so the change in average
precision only depends on the different number of relevant
elements per query. As this number roughly reduces to one
fourth (from 2589 to 614), it may be somewhat surprising
to see that the average precision just doubled, rather than
becoming four times greater. In fact, we checked that most
of the relevant elements other than those considered by our
system are concentrated in a very small number of topics.
For instance, 323 out of the 691 E3S3 paragraphs are asso-
ciated with just one query.

The results in Table 2 confirm the main findings obtained
for the unrestricted relevances. The main differences are
that DFR achieved the best performance for two normaliza-
tion schemes rather than for one and that the performance
variations were slightly less marked.

On the whole, our results suggest that while the differ-
ent weighting models achieved comparable retrieval perfor-
mance the normalization schemes differed considerably, with
Z-score showing a superior performance. This raises the
question of why Z-score worked better. One explanation
is that Z-score is based on aggregate statistics, which are
more robust (e.g., with respect to outliers). However, this
is not completely satisfying, because Sum is also based on
aggregate statistics and it did not score so well. A better
understanding of why some methods perform better than
others would probably require a deeper analysis of the rank-
ing data.For instance, as standard scores are especially ap-
propriate for data that are normally distributed, one can
hypothesize that the ranking data follow this distribution.

Our results also suggest that certain combinations of weight-
ing and merging work particularly well (e.g., DFR and Z-
score) or particularly badly (e.g., SLM and Sum); an anal-
ysis of the mutual relationships between weighting models
and merging schemes is another issue that deserves more
investigation.

6. CONCLUSIONS
The main indication of our experiments is that there is
much scope for improving the performance of XML retrieval
based on separate indices. We showed that an appropri-
ate choice of the weighting model and normalization scheme
may greatly improve the retrieval effectiveness of this tech-
nique.

One direction for future work is to use more queries and eval-
uation measures, incorporating past statistics about distri-
bution of relevant elements across element types to improve
combination of results. As one shortcoming of using sepa-
rate indices is that the relationships between the elements in
different indices are not taken into account, future work will
also consider how to discriminate between nested retrieval
results

7. REFERENCES
[1] G. Amati, C. Carpineto, and G. Romano. FUB at

TREC-10 Web Track: A Probabilistic Framework for
Topic Relevance Term Weighting. In Proceedings of
the 10th Text REtrieval Conference (TREC-10), NIST
Special Publication 500-250, pages 182–191,
Gaithersburg, MD, USA, 2001.

[2] G. Amati, C. Carpineto, and G. Romano. Comparing
weighting models for monolingual information
retrieval. In Working Notes for the CLEF 2003
Workshop, pages 169–178, Trondheim, Norway, 2003.

[3] G. Amati and C. J. van Rijsbergen. Probabilistic
models of information retrieval based on measuring
divergence from randomness. ACM Transactions on
Information Systems, 20(4):357–389, 2002.

[4] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
Proceedings of the 18th Annual International ACM
SIGIR Conference on Reasearch and Development in
Information Retrieval, pages 21–28, Seattle,
Washington, USA, 1995.

[5] N. Fuhr and K. GrossJohann. XIRQL: A quey
language for information retrieval in XML documents.
In Proceedings of SIGIR 2001, pages 172–180, New
Orleans, LA, USA,, 2001.

[6] D. Hiemstra and W. Kraaij. Twenty-one at TREC-7:
Ad hoc and cross-language track. In Proceedings of the
7th Text REtrieval Conference (TREC-7), NIST
Special Publication 500-242, pages 227–238,
Gaithersburg, MD, USA, 1998.

[7] Y. Mass and M. Mandelbrod. Retrieving the most
relevant XML components. In Proceedings of the
INEX 2003 Worksop, pages 53–58, Schloss Dagsthul,
Germany, 2003.

[8] M. Montague and J. Aslam. Relevance score
normalization for metasearch. In Proceedings of the
10th International ACM Conference on Information
and Knowledge Management, pages 427–433, Atlanta,
Georgia, USA, 2001.

[9] J. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the 21st Annual International ACM SIGIR
Conference on Reasearch and Development in
Information Retrieval, pages 275–281, 1998.

[10] M. F. Porter. An algorithm for suffix stripping.
Program, 14:130–137, 1980.

80

[11] S. E. Robertson, S. Walker, and M. M. Beaulieu.
Okapi at TREC-7: Automatic Ad Hoc, Filtering,
VLC, and Interactive track. In Proceedings of the 7th
Text REtrieval Conference (TREC-7), NIST Special
Publication 500-242, pages 253–264, Gaithersburg,
MD, USA, 1998.

[12] E. Voorhees, N. Gupta, and B. Johnson-Laird.
Learning collection fusion strategies. In Proceedings of
the 18th Annual International ACM SIGIR
Conference on Reasearch and Development in
Information Retrieval, pages 172–179, Seattle,
Washington, USA, 1995.

[13] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of the 24th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 334–342, New Orleans, LA, USA, 2001.

81

The Utrecht Blend: Basic Ingredients for an XML Retrieval
System

Roelof van Zwol

Centre for Content and
Knowledge Engineering

Utrecht University
Utrecht, the Netherlands

roelof@cs.uu.nl

Frans Wiering

Centre for Content and
Knowledge Engineering

Utrecht University
Utrecht, the Netherlands

frans.wiering@cs.uu.nl

Virginia Dignum

Centre for Content and
Knowledge Engineering

Utrecht University
Utrecht, the Netherlands

virginia@cs.uu.nl

ABSTRACT
Exploiting the structure of a document allows for more pow-
erful information retrieval techniques. In this article a basic
approach is discussed for the retrieval of XML document
fragments. Based on a vector-space model for text retrieval
we aim at investigating various strategies that influence the
retrieval performance of an XML-based IR system.

The first extension of the system uses a schema-based ap-
proach that takes into account that authors tag their text
to emphasise on particular pieces of content that are of im-
portance. Based on the schema used by the document col-
lection, the system can easily derive the children of mixed
content nodes. Our hypothesis is that those child nodes are
more important than other nodes.

The second approach discussed here is based on a horizontal
fragmentation of the inverse document frequencies, used by
the vector space model. The underlying assumption states
that the distribution of terms is related to the semantical
structure of the document. However, we observed that the
IEEE collection is not a good example of semantic tagging.

The third approach investigates how the performance of the
retrieval system can improve for the ’Content Only’ task
by using a set of a-priori defined cut-off nodes that define
‘logical’ document fragments that are of interest to a user.

1. INTRODUCTION
The upcoming XML standard as a publishing format pro-
vides many new challenges. One of these challenges, the
scope of INEX [2], is the retrieval of structured documents.
This requires new techniques that extend current develop-
ments in text retrieval. Not only should an XML retrieval

system be equipped with an adequate text retrieval strategy,
it is also required that the system is capable to take the doc-
ument structure into account during the retrieval process.

The structure of the XML document is not only used to re-
fine the query formulation process, it also allows to retrieve
more accurate the relevant pieces of information that a user
is interested in. For the ad hoc track of INEX, two tasks
are defined that take these aspects into account: the Con-
tent Only (CO) task and the ‘Vague Content and Structure
(VCAS) task [4]. The aim of both tasks is to retrieve rele-
vant document fragments. The difference lays in the query
formulation. The CO task uses only a keyword specification,
as commonly used for text retrieval and the well-known In-
ternet search engines. The VCAS task, however, also takes
the document structure into account for the query formula-
tion, using the NEXI specification.

The challenge is thus to build the best content-based XML
retrieval system that allows for the retrieval of relevant text
fragments, while taking the structure of the XML documents
into account. Our personal aim is more modest, since we are
primarily interested in the effect of our hypothesis on the re-
trieval performance of an XML retrieval system. Therefore
we have built a retrieval system, that is based on the vector
space model for text retrieval and use a strict interpreta-
tion of the structural constraints, formerly referred to as
the strict content and structure (SCAS) task.

We have three hypothesis that we want to put to the test.
First of all our aim is to investigate whether the retrieval
performance of our default XML retrieval system can be im-
proved by taking into account that the author uses markup
(structure) to emphasise on particular pieces of text that
are of extra importance, i.e. bold/italic text, itemised lists,
or enumerations. Focusing on the XML structure, examples
of these text fragments are typically found within mixed-
content nodes. The content model of a mixed-content node
contains a mixture of text and child-elements. Using the
DTD or XML-schema definition the content type of nodes
can easily be determined. In this article we refer to this as
the schema-based run.

Another hypothesis that we want to investigate here, takes

82

into account that some terms will occur more often within
certain XML document fragments, than in other document
fragments. Adjusting the term weights taking this distribu-
tion into account will increase the performance of the rank-
ing of the retrieval strategy. This hypothesis has already
been tested successfully in the context of XML and seman-
tical schemas [9]. The vector space model consists of two
components: a document statistic, i.e. the term frequency
(tf), and a collection statistic, i.e. the inverse document fre-
quency (idf). These two statistics are calculated for each
term in the document collection. However, the inverse doc-
ument frequencies are no longer calculated over the entire
document, but for small text fragments. Assume now that
some terms occur less frequently in abstract, than in other
parts of the document. As a result the idf, and thus the
term weight, of those terms is valued relatively low com-
pared to other terms in the abstract. Using a fragmented
document frequency, where the idf is calculated per XML
element name corrects this problem. Our experience is that
for semantically tagged XML documents an increase in re-
trieval performance can be achieved, when the query consists
of two or more query terms [9]. We refer to this strategy as
the fdf run.

The third hypothesis focuses on the CO task. For the CO
task it is not specified in the query, which document frag-
ments should be returned by the system. Returning entire
documents as the result of a query will result in a low perfor-
mance according to the specificity quantisation [3], since it
is likely that only small portions of the XML document will
contain relevant information. To deal with this we have de-
fined a cutoff node set, that consists of XML elements that
provide a partial logical view on the XML document. When
retrieving XML document fragments this node set is used
to return smaller fragments, that have a higher specificity
of the content in relation to the query terms. We refer to
this strategy as the cutoff run.

1.1 Organisation
In the remainder of this article we first discuss the approach
used to index the XML collection in Section 2. In Sec-
tion 3 the different retrieval strategies for querying XML
documents is discussed for the different runs that we have
submitted for INEX 2004. The results of our system are
presented in Section 4, together with the unofficial runs that
we computed with improved performance of the vector space
model. Finally we come to our conclusions in Section 5.

2. INDEXING THE XML COLLECTION
To index the IEEE XML document collection the XML
structure of each document is analysed and a text retrieval
strategy is implemented. In Section 2.1 the indexing of the
index structure is discussed, while in Section 2.2 the text
retrieval component is described.

2.1 Processing XML Structures
To index the XML collection the structure of each document
is analysed as follows. The nodes are numbered using the
method described in Table 1. This resembles an approach
adopted by others [5], however we have chosen not to number
the individual terms within a text fragment, but to refer to
a text fragment as a whole.

<ElementA>1

TextFragmentA2

<ElementB>3

TextFragmentB4

</ElementB>5

<ElementC>6

TextFragmentC7

</ElementC>8

<ElementB/>9

TextFragmentD10

</ElementA>11

Table 1: XML example. illustrating the numbering

of nodes

Furthermore we keep track of parent-child relations for each
node. All node information is stored in the Element table,
as shown in Figure 2. This table contains the following
information about element nodes: A unique id, the element
name, a reference to its parent, a pointer to the document
containing the element, and the unique path leading to the
element node. Finally, for each element node the start and
end positions are stored, as explained above.

Whenever the indexer encounters a text fragment, a new
id is generated and stored in the table TextFragment. A
reference to the parent node, its position in the document,
the number of terms, i.e. the length, and a pointer to the
document URI is stored. The text fragment is then handed
to the text indexer.

Document

id uri

Element

id name parent document path start end

Textfragment

id parent position length document

Term

content fragment tf tfidf

Table 2: Internal data structure

2.2 Processing Text Fragments
The text retrieval component of our indexing system is based
on vector space model [1]. This component analyses the
rather small text fragments according to the following steps:

• pre-processing. A number of basic text operations
are called during the pre-processing step. Among these
are lexical cleaning, stop word removal and stemming [1].

• indexing. Using a bag of terms approach the fre-
quencies of the terms occurring in the text fragment
are calculated. After processing a text fragment, all
the terms are stored in the Term table. For each term,
its content, a reference to the corresponding text frag-
ment and the term frequency is stored in the database.

• post-processing. Once all documents have been in-
dexed the collection statistics are calculated. For each
unique term in the collection the inverse document fre-

83

quency is calculated as:

idf(t) = log(
N

n(t)
), (1)

with N being the total number of unique terms, and
n(t) the number of text fragments in which term t
occurs.

Later on, we also used a normalised tf factor [7]. The
ntf factor reduces the range of the contributions from
the term frequency of a term. This is done by com-
pressing the range of the possible tf factor values. The
ntf factor is used with the belief that mere presence of
a term in a text should have a default weight. Addi-
tional occurrences of a term could increase the weight
of the term to some maximum value. To compute this
factor we used:

ntf(t) = 0.5 + 0.5 ∗

tf(t)

max tf(t)
(2)

tf(t) contains the raw term frequency for the term,
while max tf(t) provides the maximum term frequency
found in that text fragment.

The tfidf for each term in Term is then calculated as:

tfidf(t) =
(tf(t) ∗ idf(t)

l
) (3)

Where l is the length of the text fragment. NB. this is
not a standard way to normalise the term weights for
the length of the text fragments.

3. QUERYING THE XML COLLECTION
For INEX we submitted six runs, as discussed below. They
all use the same vector space model, with the exception of
the fdf runs. Furthermore, we believe that this implemen-
tation of the vector-space model leaves plenty of room for
improvement. When discussing the results, we will show
some simple modifications that improve the retrieval per-
formance of our system. Our interest in this experiment
focuses mainly on the effect of using different XML-based
mechanisms for calculating the relevances of the document
fragments retrieved by our system. The following official
runs where computed for the INEX 2004 topic set:

3.1 Content and Structured XML retrieval
The so called vague content and structure (VCAS) topics
are defined using the NEXI specification [8]. Our system
implements the NEXI grammar for these types of topics
and evaluates the NEXI queries by following the path ex-
pressions and narrowing down the possible set of results. In
fact our system enforces that the path constraints defined
by the topic are computed in a strict fashion, according to
the SCAS specification. We computed the following three
runs for the VCAS ad hoc task:

• 33-VCAS-default. Our default approach to com-
pute a ranking of the retrieved documents simply de-
termines a set of possible document fragments for the
first structural constraint, and assigns a textual rele-
vance of ‘0’ to them. If a filter clause is available, this
set is narrowed down, according to the conditions de-
fined in the filter. If an about-clause is defined within

that filter, a relevance ranking of the document frag-
ments is obtained by the system. This basic approach
is followed for all VCAS runs submitted. The variance
between the runs is determined by the implementation
of the about-clause.

Consider for example the following NEXI-query, pre-
sented in Table 3.

//article[about(.//abs, classification)]//sec[about(.,
experiment compare)]

Table 3: NEXI example: INEX 2004, topic 132.

During the first step a set of article-fragments is re-
trieved, having a relevance score of ‘0’. The next step is
to evaluate the about-filter, narrowing down the set of
articles to those containing an abstract, which con-
tains the word ‘classification’. The relevances com-
puted by the about function are then summed and
associated with the corresponding article-fragments.
For this set, the second path-constraint is computed,
which in this case results in a set of sec-nodes, which
inherit the relevances computed for the parent article
nodes. Again the about-filter is evaluated and the rel-
evances are added to the existing relevance scores of
the retrieved sec nodes.

For the default run the relevances for the document
fragment are simply calculated by filtering all the rel-
evant terms from the TERM table, using only the pos-
itive query terms. The relevance for each document
fragment, defined in the offset of the about clause, is
then calculated by summing over the terms of the text
fragments that are contained within the start- and end
position of the document fragment.

• 33-VCAS-schema. The structural constraints for
this run are computed similar to the default run. How-
ever the about function uses a weighing function, that
increases the weight of those nodes which are consid-
ered of more importance.

The underlying hypothesis is that authors writing text
use markup to emphasise on particular pieces of con-
tent that they find of more importance. Simple ex-
amples are those text fragments containing bold and
italic text. A reader’s attention is automatically drawn
whenever a bold or italic text fragment is seen. In
XML, this markup is typically found within mixed-
content nodes. Mixed content nodes are nodes that
allow both text fragments and additional markup to
be used in a mixed context. In our case, we are in-
terested in the set of child nodes found within such
mixed-content nodes. Using the DTD, or XML-schema
definition this node set can be easily computed.

To compute the relevances of the XML document frag-
ments the system first has to derive the set with text
fragments containing relevant terms. If one or more
ancestor nodes are contained in the set with mixed-
content nodes a multiplication factor, i.e. 2, 4, 8, or
. . ., is added to the weight of that text fragment, de-
pending on the number of mixed-content nodes that
are found. Next, the relevance for each document frag-
ment is calculated by summing over the terms of the

84

text fragments that are contained within the start- and
end position of the document fragment.

• 33-VCAS-fdf. This run uses an alternative way of
calculating the term weights. The vector space model
uses a combination of two statistics to calculate the
term weights, i.e. the term frequencies and the in-
verse document frequencies. The inverse document
frequency is a collection measure, that determines how
frequently a term occurs in different documents of the
collection. For the ’fragmented document fragments’-
run (fdf) we have used a fragmented version of the
inverse document frequencies (ifdf).

The underlying assumption for this fragmentation is
that if the XML structure of the document is not
merely based on presentation, but defines a semantic
structure for the content contained in the document, it
is likely that some terms, associated with the semantic
structure will appear more often in certain document
fragments than other terms.

For example, in text fragments discussing cultural in-
formation about a destination, the term ‘church’ is
more likely to appear, than in text fragments that dis-
cuss sports activities1. Consider now the following in-
formation request: ‘Find information about basketball
clinics in former churches’, the term church is an im-
portant query term in this search, however the idf for
the query term ‘church’ will be relatively low if the
document collection contains both cultural- and sports
descriptions of destinations. We have found that the
retrieval performance improves significantly [9], when
using the fdf approach. The retrieval strategy, based
on the ifdf, is capable of ranking the relevant docu-
ments higher in the ranking, if the query consists of two
or more query terms. In fact, increasing the amount
of query terms will result in a higher retrieval perfor-
mance.

3.2 Content Only XML retrieval
For the CO task we have defined four runs.

• 33-CO-default. The content only runs are mainly
driven by the text retrieval component. The positive
query terms defined for each content only topic are
used to find relevant text fragments. The term weights
found in each text fragment are summed over the cor-
responding parent node of each text fragment.

In the next step the result set is grouped and summed
per document. As a result the smallest common docu-
ment fragment that can be retrieved for each document
is returned as the result of a query. This approach
ensures that no redundancy is possible between the
document fragments retrieved by the system.

This approach has two advantages: no redundancy in
the retrieved document fragments, and the retrieved
fragments should score high on the exhaustiveness mea-
sure. This also introduces the drawback of this ap-
proach: together with the relevant information a lot

1This example is based on the Lonely Planet collection,
where the tagging of content is semantically organised[9].

of ‘garbage’ is retrieved, resulting in poor performance
from a specificity point of view.

• 33-CO-schema. This run is a combination of runs 33-
CO-default and 33-VCAS-schema. It uses the multi-
plication scheme for the children of the mixed-content
nodes, and the combinational logic as defined for the
default approach described above. In this way, for each
document the smallest document fragment is returned
that contains all relevant text fragments.

• 33-CO-cutoff. From a user point of view not all docu-
ment fragments that can be retrieved are logical units.
To facilitate this, we have defined a set of nodes that
provide the users logical document fragments. The
aim here is to find a balance between the exhaustive-
ness and specificity measures. For the IEEE collection
we have defined a cutoff-node set containing five nodes:
fm, abs, sec, bib, article. The article element forms the
root node of many documents and should always be
there, to prevent losing documents from the result set.

After retrieving the relevant text fragments, the par-
ent nodes are retrieved and (child) results merged into
larger document fragments, until a node is found that
is contained in the set with cutoff-nodes.

• 33-CO-fdf2 This run is also a combination of two
other runs: 33-VCAS-fdf, and 33-CO-default. Instead
of the default tfidf weights this run uses the tfifdf in-
dex, as explained in Section 3.1

4. RESULTS
In this section we will first present the results CO task and
then the results for the VCAS task. All plots and measures
were calculated using the on-line evaluation tool [6].

4.1 CO task
We first discuss the results of the official run for the CO
task in Section 4.1.1. To improve on the performance for
the CO task we need a better retrieval strategy for the text
retrieval component. In Section 4.1.2 we investigate the ef-
fect of minor modifications in the vector space model on the
retrieval performance for the CO task. Finally we compare
and discuss the performance for all CO runs in Section 4.1.3.

4.1.1 Official runs
Figure 1 gives an overview of the performance of our CO
runs. The CO-default-run performed best when evaluated
using the strict quantisation measure. Slightly better per-
formed the run CO-schema, while using the e3 s32 quan-
tisation, which illustrates that this approach is best used,
when searching for exhaustive document fragments. On the
other hand, the CO-cutoff -run performed best for the s3 e32
quantisation measure. This was expected, since the aim of
this approach was to return smaller logical document frag-
ments, that would score better on the specificity scale.

These aspects are better illustrated in Figure 2. The av-
erage over all RP measures is showed in the top-left cor-
ner. On average, the best performance with the official runs

2For the official INEX runs, this approach is left out, since
only six runs per participant were permitted.

85

INEX 2004: CO-default

quantization: strict; topics: CO
average precision: 0.0010

rank: 62 (69 official submissions)

INEX 2004: CO-schema

quantization: e3s32; topics: CO
average precision: 0.0192

rank: 45 (69 official submissions)

INEX 2004: CO-cutoff

quantization: s3e32; topics: CO
average precision: 0.0009

rank: 62 (69 official submissions)

Figure 1: Official runs for the CO task - best performances

was obtained with CO-schema, while the CO-cutoff -run per-
formed worst. Surprisingly however, the run CO-cutoff per-
formed best when looking at the expected ratio of relevance
(bottom-right) for the generalised recall, and slightly bet-
ter when evaluation is based on the specificity quantisation.
The top-right graph shows that for the CO task, it makes
sense to include the markup added by the author to empha-
sise certain terms in the text into the ranking process.

4.1.2 Comparing the variation in the vector-space
models

Due to the time constraints of INEX, our vector space model
is not as sophisticated as we desired. The vector space model
used for the official runs, uses a naive approach to take the
length of the text fragment into account, i.e. its simply di-
vides the term weights by the length of the text fragment.
To see what the effect of the text retrieval component of
our system is on this, we have also constructed a set of runs
where the vector space model is not taking the length of the
text fragment into account, and a set where the vector space
is extended with normalisation of the term frequencies. Nor-
malisation of the term frequencies is explained in Section 2.2.
In Figure 3 two graphs are shown. The left graph com-
putes the recall-precision based on the e3 s32 quantisation.
This stresses the differences between the three variations of
the vector space that are computed for the default runs,
i.e.. CO-default (the official run), CO-default-tfidf (not us-
ing length normalisation), and CO-default-ntf (the variant
that is based on normalised term frequencies). Using nor-
malised term frequencies improves the retrieval performance
at the lower recall levels (0.0 - 0.1). Not taking the length
of the text fragments into account also provides a significant
improvement at the recall levels 0.1 - 0.5.

The graph on the righthand-side plots the expected ratio
of relevance for the generalised recall. It shows that on av-
erage the ntf-approach has the best performance, but the
differences are only marginal.

4.1.3 Overall comparison
In Figure 4, we have computed the graphs for all nine vari-
ations of the CO runs. The average over all RP measures
show that CO-schema performs best at the lower recall lev-

els (0.0 - 0.1), and that the ntf-runs have a positive effect
on the precision at th recall levels 0.1-0.5. Looking at the
generalised recall, it is obvious that the cutoff-runs perform
significantly better than the others. As expected the cut-
off run also performs better, when looking at the s3 e32
specificity quantisation. But when the focus is more on the
exhaustive quantisation (e3 s32) measure, the schema-based
(mixed-content) runs perform better.

4.2 VCAS task
We first discuss the results of the official run for the VCAS
task in Section 4.2.1. To improve on the performance for the
VCAS task we feel that we need a better retrieval strategy
for the text retrieval component. In Section 4.2.2 we inves-
tigate the effect of minor modifications in the vector space
model on the retrieval performance for the VCAS task.

4.2.1 Official runs
Figure 5 gives an overview of the performance of our VCAS
runs. The VCAS-default-run performed best when evalu-
ated using the s3e32 quantisation measure. Not surpris-
ing, since the implementation of our system uses the strict
content and structure approach. The same is true for the
VCAS-fdf -run. For the VCAS-schema-run the best per-
formance is gained using the exhaustiveness quantisation
measure. The differences between the runs however are
marginal.

4.2.2 VCAS task - Comparing the variation in the
vector-space models

Again additional runs were computed to investigate the ef-
fect of the same modifications, as discussed in Section 4.1.2,
to the text retrieval component. Figure 6 provides two
graphs showing that contrary to the CO runs, the results
of the VCAS runs are not dominated by the text retrieval
component. Here the performance is mainly determined by
the structural constraints defined for the query.

5. CONCLUSIONS
Our goal within INEX was to investigate the influence of the
three hypothesis on the retrieval performance. Obviously
our system does not belong to the best performing systems.

86

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average over all RP measures

CO-schema
CO-cutoff

CO-default

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over e3-s32

CO-schema
CO-cutoff

CO-default

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over s3-e32

CO-schema
CO-cutoff

CO-default

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600

Generalised recall

CO-schema
CO-cutoff

CO-default

Figure 2: Official runs for the CO task - comparison

Various explanations can be found. Probably the most influ-
ential for the CO task, is the lack of a good implementation
of the text retrieval component. With respect to the VCAS
task we have restricted ourselves to SCAS and not VCAS.
It seems that the text retrieval component is less influential
in that case, but nevertheless major improvements can be
achieved there as well.

However the comparison between the runs that we submit-
ted for the CO task, clearly showed that, if authors use
markup to emphasise particular pieces of content that they
find of more importance, it makes sense to increase the
weights of those document fragments to improve the re-
trieval performance. The results show that more relevant
document fragments are ranked higher in the result list.

On the other hand we can increase the specificity of the re-
trieved document fragments, by using a so called cutoff node
set. The system then returns smaller document fragments
that are more relevant for the given topic.

Finally, the runs that were using the fragmented document
frequencies (fdf) did not increase the retrieval performance
of our system. We feel that this is mainly caused by the
absence of a semantical markup of the content of the IEEE
document collection. We therefore plead that the XML tag-
ging should not be related to the functional role of the ele-
ment, but rather have a semantic role.

6. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. ACM Press, 1999.

[2] N. Fuhr, N. Kazai, and M. Lalmas. INEX: Initiative for
the evaluation of XML retrieval. In In Proceedings of
the ACM SIGIR 2000 Workshop on XML and
Information Retrieval, 2000.

[3] G. Kazai. Report of the inex’03 metrics working group.
In In Proceedings of the Second INitiative for the
Evaluation of XML Retrieval (INEX) Workshop, pages
184–190, Dagstuhl, Germany, 2003.

[4] M. Lalmas and S. Malik. Inex 2004 retrieval task and
result submission specification, June 2004.
http://inex.is.informatik.uni-
duisburg.de:2004/internal/pdf/INEX04 Retrieval Task.pdf.

[5] J. List and A. de Vries. Cwi at inex 2002. In In
Proceedings of the First Workshop of the INitiative for
the Evaluation of XML Retrieval (INEX). ERCIM
Workshop Proceedings, 2002.

[6] S. Malik and M. Lalmas.
http://inex.lip6.fr/2004/metrics/official.php, 2004.

[7] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing and
Management, 24(5):513–523, 1988.

[8] A. Trotman and R. A. O’Keefe. The simplest query
language that could possibly work. In Proceedings of the
Second Workshop of the INitiative for the Evaluation of
XML retrieval (INEX). ERCIM Publications, 2004.

[9] R. van Zwol. Modelling and searching web-based
document collections. Ctit ph.d. thesis series, Centre for
Telematics and Information Technology (CTIT),
Enschede, the Netherlands, 26 April 2002.

87

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over e3s32

CO-default
CO-default-ntf

CO-default-tfidf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600

Generalised recall

CO-default
CO-default-ntf

CO-default-tfidf

Figure 3: CO task - Variation in vector space model - comparison

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average over all RP measures

CO-schema
CO-cutoff

CO-default
CO-default-ntf

CO-schema-ntf
CO-cutoff-ntf

CO-cutoff-tfidf
CO-schema-tfidf
CO-default-tfidf

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600

Expected Ratio of Relevance

CO-schema
CO-cutoff

CO-default
CO-default-ntf

CO-schema-ntf
CO-cutoff-ntf

CO-cutoff-tfidf
CO-schema-tfidf
CO-default-tfidf

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over s3e32

CO-schema
CO-cutoff

CO-default
CO-default-ntf

CO-schema-ntf
CO-cutoff-ntf

CO-cutoff-tfidf
CO-schema-tfidf
CO-default-tfidf

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RP over e3s32

CO-schema
CO-cutoff

CO-default
CO-default-ntf

CO-schema-ntf
CO-cutoff-ntf

CO-cutoff-tfidf
CO-schema-tfidf
CO-default-tfidf

Figure 4: CO task - Overall comparison

88

INEX 2004: VCAS-default

quantization: s3e32; topics: VCAS
average precision: 0.0219

rank: 37 (52 official submissions)

INEX 2004: VCAS-schema

quantization: e3s32; topics: VCAS
average precision: 0.0218

rank: 38 (52 official submissions)

INEX 2004: VCAS-fdf

quantization: s3e32; topics: VCAS
average precision: 0.0221

rank: 36 (52 official submissions)

Figure 5: Official runs for the VCAS task - best performances

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average over all RP measures

VCAS-default
VCAS-default-ntf

VCAS-default-tfidf

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600

Expected Ratio of Relevance

VCAS-default
VCAS-default-ntf

VCAS-default-tfidf

Figure 6: VCAS task - Variation in vector space model - comparison

89

Hybrid XML Retrieval Revisited

Jovan Pehcevski
RMIT University

Melbourne, Australia

jovanp@cs.rmit.edu.au

James A. Thom
RMIT University

Melbourne, Australia

jat@cs.rmit.edu.au

Anne-Marie Vercoustre
INRIA

Rocquencourt, France

anne-marie.vercoustre@inria.fr

ABSTRACT
In this paper, we report on the participation of the RMIT
University group in the INEX 2004 ad-hoc track. Our pre-
liminary analysis of CO and VCAS relevance assessments
identifies two complementary cases of modified relevance as-
sessments: General and Specific. Further analysis of the
General relevance assessments reveal two categories of re-
trieval topics: Broad and Narrow. We design runs that
follow a hybrid XML approach and implement two retrieval
heuristics with different level of overlap among the result el-
ements. We show that for the initial INEX 2004 test collec-
tion the overlap CO runs outperform the non-overlap runs,
and the heuristic which favours less specific over more spe-
cific result elements performs best. Importantly, we present
results which show that, in a scenario where users prefer
compound and non-overlapping answers to their queries, the
choice of using a plain full-text search engine is still a very
effective choice for XML retrieval.

Keywords
XML Search & Retrieval, eXist, Zettair, INEX

1. INTRODUCTION
INEX 2004 explores two types of ad-hoc retrieval topics:
Content-Only (CO) topics and Vague Content-And-Structure
(VCAS) topics. Forty CO topics are used in the CO ad-hoc
sub-track, while thirty-five VCAS topics are investigated in
the VCAS ad-hoc sub-track.

CO topics do not refer to the existing document structure.
An XML retrieval system using these topics may return ele-
ments with varying sizes and granularity, prompting a revisit
of the issue of length normalisation for XML retrieval [4].
Moreover, a large proportion of overlapping result elements
may be expected, since the same textual information in an
XML document is often contained by more than one ele-
ment. This overlap problem is particularly apparent dur-
ing evaluation, where the “overpopulated and varying recall
base” contains a substantial number of mutually overlapping
elements [6].

VCAS topics enforce restrictions on the existing document
structure and explicitly specify the target element (such as
article, section or paragraph). However, the structural con-
straints in a VCAS topic need not be strictly matched. This
means that not only are the restrictions on document struc-
ture vague restrictions, but also that the target element
could also represent any element considered likely to be rel-

evant to the information need. Thus, the same retrieval
strategies for CO topics may also be used for VCAS top-
ics, since CO topics may be considered as loosely restricted
VCAS topics.

The system we use for the ad-hoc track in INEX 2004 fol-
lows a hybrid XML approach, utilising the best features from
Zettair1 (a full-text search engine) and eXist2 (a native XML
database). The hybrid approach is a “fetch and browse” [1]
retrieval approach, where full articles considered likely to be
relevant to a topic are first retrieved by Zettair (the fetch
phase), and then the most specific elements within these
articles are extracted by eXist (the browse phase) [9].

The above approach however resulted in rather poor system
performance for INEX 2003 CO topics, where Zettair per-
formed better than our initial hybrid system. We have since
developed a retrieval module that utilises the structural in-
formation in the eXist list of answer elements, and identi-
fies and ranks Coherent Retrieval Elements (CREs) [8]. We
show elsewhere that this hybrid-CRE system produces per-
formance improvements for the (V)CAS topics [7]. Different
heuristic combinations may be used by the CRE module,
mainly to determine the final rank of each CRE.

For the INEX 2004 CO sub-track, we use our hybrid sys-
tem to explore which CRE heuristic combination yields the
best retrieval performance, and to investigate whether hav-
ing non-overlapping result elements in the answer list has
an impact on system performance.

For the INEX 2004 VCAS sub-track, we also investigate
which retrieval choice — plain queries; queries with struc-
tural constraints and no explicitly specified target element;
or queries with both structural constraints and a target el-
ement — results in a more effective VCAS retrieval.

The remainder of this paper is organised as follows. In Sec-
tion 2 we undertake a preliminary analysis of the INEX 2004
relevance assessments to identify the types of highly relevant
elements. By analysing the relevance assessments for the CO
and VCAS topics, we aim to understand what users — or
the topic authors who later assess the relevance of returned
answer elements — consider to be the most useful. In Sec-
tion 3 we provide a detailed description of the runs we con-
sider for the CO and the VCAS sub-tracks. In Section 4 we

1http://www.seg.rmit.edu.au/zettair/
2http://exist-db.org/

90

<file file="ic/2000/w4036">
<path path="/article[1]" E="3" S="3"/>
.
<path path="/article[1]/bdy[1]" E="3" S="3"/>
.
<path path="/article[1]/bdy[1]/sec[3]" E="3" S="3"/>
<path path="/article[1]/bdy[1]/sec[3]/ss1[1]" E="3" S="3"/>
<path path="/article[1]/bdy[1]/sec[3]/ss1[2]" E="3" S="3"/>
<path path="/article[1]/bdy[1]/sec[3]/ss1[3]" E="3" S="3"/>
.
<path path="/article[1]/bdy[1]/sec[4]" E="3" S="3"/>
<path path="/article[1]/bdy[1]/sec[4]/ss1[2]" E="3" S="3"/>
.

</file>

Figure 1: An extract from the INEX 2004 CO rele-
vance assessments

present results of our CO and VCAS runs. These results
reflect different retrieval scenarios based on our analysis of
the INEX 2004 relevance assessments. Finally, we conclude
in Section 5.

2. ANALYSIS OF INEX 2004 RELEVANCE
ASSESSMENTS

Analysing the INEX 2004 CO and VCAS relevance assess-
ments we observe that since neither topic restricts the an-
swer elements, the final answer list may contain elements
of different types with varying sizes and granularity. The
names of some element types in the XML document collec-
tion correspond as follows: article to a full article, abs and
bdy to article abstract and article body, sec, ss1 and ss2 to
section and subsection elements, and p and ip1 to paragraph
elements. We expect that article elements may represent
preferable answers for some topics, while for other topics
more specific elements may be preferable over article ele-
ments.

2.1 CO relevance assessments
Figure 1 shows an extract from the INEX 2004 CO relevance
assessments. Values for the two INEX relevance dimensions,
exhaustivity3 (how many aspects of the topic are covered in
the element), and specificity4 (how specific to the topic is the
element), are assigned to an article and elements within
article for assessing their relevance to a CO topic.

The focus of our analysis is on highly relevant elements.
These are elements that — for a given topic — have been as-
sessed as both highly exhaustive and highly specific (E3S3)
elements. In Figure 1 there are 8 such elements, including
the article itself. These answer elements represent the most
useful retrieval elements, even though there is a substantial
amount of overlap between them. Following our previous
analysis of INEX 2003 relevance assessments [8], we iden-
tify two distinct types of highly relevant elements: General
and Specific. Note that, unlike the INEX definitions for ex-
haustivity and specificity, the definitions for General and
Specific (highly relevant) elements result from our analysis
as follows.

3E represents the level of exhaustivity (values between 0-3)
4S represents the level of specificity (values between 0-3)

sec[3] sec[4]

article[1]

bdy[1]

SPECIFIC elements

GENERAL elements

ss1[2]ss1[1] ss1[3] ss1[2]

Figure 2: A tree-view example of GENERAL versus
SPECIFIC elements.

General:

“For a particular article in the collection, a General el-
ement is the least-specific highly relevant element con-
taining other highly relevant elements” [8].

Based on the above definition, article[1] is the only
General element in the example in Figure 1. However,
an article may contain several General elements if the
article as a whole is not highly relevant. Figure 2 shows
a tree representation of all the highly relevant elements
shown in Figure 1. The General element is the element
shown in ellipse.

Specific:

“For a particular article in the collection, a Specific
element is the most-specific highly relevant element
contained by other highly relevant elements” [8]. In
Figure 2, the Specific elements are the highly relevant
elements shown in triangles.

When there is only one highly relevant element in an article,
that element is both a General and a Specific element.

There are 40 CO topics in INEX 2004 (numbers 162-201).
We use version 3.0 of the INEX 2004 relevance assessments,
where 34 of the 40 CO topics have their relevance assess-
ments available. Of these, 9 topics do not contain highly
relevant (E3S3) elements. Consequently, a total of 25 CO
topics are used in our analysis.

Figure 3 shows the overall distribution of the most frequent
highly relevant elements (including full articles) that ap-
pear in more than half the CO topics. The figure shows
three distinct cases when relevance assessments consider all
highly relevant elements (Original relevance assessments),
General highly relevant elements only (General relevance as-
sessments) and Specific highly relevant elements only (Spe-
cific relevance assessments), respectively. The x-axis con-
tains the names of the six highly relevant elements that ap-
pear in more than half the CO topics (in the case of Original
relevance assessments). The y-axis contains the number of
overall occurrences of each element.

In the case of Original relevance assessments, p and sec

elements occur most frequently, with 691 and 264 overall
occurrences, respectively. The ss1 and ip1 elements come
next, followed by article and bdy with 99 and 89 overall

91

p se
c

ss1 ip1

art
icl

e
bd

y

Names of highly relevant elements that appear in 12 or more CO topics

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

N
um

be
r

of
 o

ve
ra

ll
el

em
en

t o
cc

ur
en

ce
s

ALL E3S3 elements
GENERAL E3S3 elements
SPECIFIC E3S3 elements

Figure 3: Overall distribution of highly relevant ele-
ments that appear in more than half the INEX 2004
CO topics, for three distinct cases of relevance as-
sessments.

occurrences. The latter implies that in most cases when a
bdy was assessed as highly relevant, the parent article is
also likely to have been assessed as highly relevant too.

For General relevance assessments, one may expect that the
situation should change in favour of the least specific and
highly relevant elements. However, in this case sec elements
are most frequent with 103 overall occurrences, followed by
article elements with 99 occurrences (however the article
occurrences are distributed across 16 topics, whereas there
are 15 topics where sec elements occur). Surprisingly, p, ss1
and ip1 follow next, with 78, 47 and 24 overall occurrences,
respectively. By looking at the number of bdy elements,
we notice that there are 8 occurrences (distributed across 6
topics) where, when a bdy was assessed as highly relevant,
the parent article has not been assessed as highly relevant.

The last case shown in Figure 3 is for Specific relevance as-
sessments. As expected, the situation changes here in favour
of the most specific elements, with p elements being most
frequent. The ip1, ss1, sec and bdy come next, followed
by only 8 occurrences of article elements. The 8 occur-
rences are distributed across 4 topics, where these article

elements were the most specific elements assessed as highly
relevant.

The two distinct cases of relevance assessments, General
and Specific, typically model different user (retrieval) be-
haviours. Indeed, in the absence of empirically-based mod-
els for expected user behaviour, the former case reflects
users that prefer compound and more informative answers
for their queries, whereas the latter case reflects users that
prefer specific, more focused answers for their queries. The
knowledge obtained from the above statistics may there-
fore be appropriately utilised by an XML retrieval system,
particularly because distinct cases of relevance assessments
favour different types of highly relevant elements.

Topic categories
In the following analysis we consider the case of General
relevance assessments. Our aim is to distinguish those CO
retrieval topics that seek to mostly retrieve less specific el-

0 10 20 30 40

Number of article/bdy E3S3 elements

0

20

40

60

80

100

N
um

be
r

of
 E

3S
3

el
em

en
ts

 o
th

er
 t

ha
n

ar
ti

cl
e/

bd
y

Figure 4: Categories of INEX 2004 CO topics when
relevance assessments consider General (highly rel-
evant) elements only.

ements (such as article and bdy), from those that mostly
retrieve other, more specific elements. Consider Figure 4: a
point on this graph represents a CO topic. The x-axis shows
the total number of General article and bdy elements con-
tained by a CO topic, whereas the y-axis shows the total
number of General elements other than article and bdy

contained by the same topic. For example, the CO topic
depicted at coordinates (23,11) contains 23 highly relevant
article/bdy elements and 11 highly relevant elements other
than article/bdy.

We use this graph to identify two different categories of
INEX 2004 CO topics. The first category, shown as full
triangles on the graph and located below the dashed line,
favours larger, less specific elements as highly relevant an-
swers. There are 9 such topics (numbers 164, 168, 175, 178,
183, 190, 192, 197 and 198). We refer to these as Broad
topics.

The second category, shown as full circles on the graph,
favours smaller, more specific elements as highly relevant
answers. There are 16 such topics. We refer to these as
Narrow topics.

The above topic categorisation cannot easily be derived in
the other two assessment cases, that is, for either the Orig-
inal or the Specific relevance assessments. However, further
analysis shows that four topics (numbers 168, 178, 190 and
198) clearly belong to the Broad category even in this two
cases. We observed in our previous work a varying behaviour
of an XML retrieval system when its performance is mea-
sured against different categories of CO topics [8]. Indeed, it
has also been experimentally shown to be a valid observation
for a fragment-based XML retrieval system [3]. Thus, it is
likely to be useful to distinguish between different categories
of CO topics.

92

p se
c

ss1

art
icl

e
ip1 bd

y

Names of highly relevant elements that appear in 11 or more VCAS topics

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

N
um

be
r

of
 o

ve
ra

ll
el

em
en

t o
cc

ur
en

ce
s

ALL E3S3 elements
GENERAL E3S3 elements
SPECIFIC E3S3 elements

Figure 5: Overall distribution of highly relevant el-
ements that appear in more than half the number
of VCAS topics, for three distinct cases of relevance
assessments.

2.2 VCAS relevance assessments
There are 35 VCAS topics in INEX 2004 (numbers 127-161).
We use version 3.0 of the INEX 2004 relevance assessments,
where 26 (out of 35) VCAS topics have their relevance as-
sessments available. Of these, 4 topics do not contain highly
relevant (E3S3) elements, and so we limit our analysis to a
total of 22 VCAS topics.

Figure 5 shows the overall distribution of the most frequent
highly relevant elements that appear in more than half the
VCAS topics. The figure also shows three distinct cases of
Original, General and Specific relevance assessments.

Since the VCAS relevance assessments have been done in
much the same way as those for the CO topics, it is not sur-
prising that graphs in Figures 5 and 3 show similar statis-
tics. In both cases, the number of overall occurrences of p
elements (in the case of Original and Specific relevance as-
sessments) is far greater than the numbers of all the other
elements. Nevertheless, there are some differences for the
number of overall occurrences of article and bdy elements.
In the case of VCAS Original relevance assessments, the
number of article elements is much greater than that of
the bdy elements (73 article occurrences across 12 top-
ics, compared to 36 bdy occurrences across 11 topics). For
VCAS General relevance assessments, article elements are
the most frequent among all the other more specific ele-
ments. In the case of VCAS Specific relevance assessments,
the number of article elements is zero, whereas there are 9
highly relevant bdy elements, which are distributed across 3
topics.

Topic categories
As for the CO topics, we use the case of General relevance
assessments to identify two different categories of INEX 2004
VCAS topics. The first category of topics favours less spe-
cific elements as highly relevant answers. There are 6 such
topics (numbers 130, 131, 134, 137, 139 and 150), which
we refer to as Broad topics. The second category of topics
favours more specific elements as highly relevant answers.
There are 16 such topics, referred to as Narrow topics.

An interesting observation is that only two VCAS topics of
the Broad category (137 and 139) explicitly ask for retriev-
ing article or bdy elements in their titles (that is, these
elements represent their target elements). This is not the
case with the other four Broad topics, where two topics ask
for sec (134 and 150), one asks for abs (131), and one asks
for p (130). Further analysis also shows that surprisingly, the
last topic belongs to the Broad category even in the other
two cases of Original and Specific relevance assessments.

The above analysis clearly shows that highly relevant ele-
ments for VCAS topics do not necessarily represent target
elements. We believe that distinguishing between categories
of VCAS topics is, similar to the case for the CO topics, im-
portant information that an XML retrieval system should
use.

3. RUNS DESCRIPTION
3.1 Background
All the runs we consider for the INEX 2004 ad-hoc track are
based on the hybrid XML retrieval approach. To determine
the ranks of CREs in the final list of answer elements, the
CRE module in our hybrid system uses a combination of the
following XML-specific heuristics:

1. the number of times a CRE appears in the absolute
path of each extracted element in the eXist answer
list — more matches (M) or fewer matches (m);

2. the length of the absolute path of the CRE, taken from
the root element — longer path (P) or shorter path (p);
and

3. the ordering of the XPath sequence in the absolute
path of the CRE — nearer to beginning (B) or nearer
to end (E).

There are 16 possible CRE heuristic combinations, since
the third heuristic is complementary to the other two and
is always applied at the end. We have found that for the
INEX 2003 test set, the best results are obtained when us-
ing the MpE heuristic combination [8]. With MpE, less specific
and more general elements are ranked higher than more spe-
cific and less general elements.

However, we have also observed that different CRE heuristic
combinations may be more suitable for different choices of
evaluation metrics, where retrieving more specific and less
general elements early in the ranking (such as with using the
PME heuristic) produces better results. We implement and
compare these two heuristics in different runs for the ad-hoc
track in INEX 2004.

The following sections provide a detailed description of our
runs for each (CO and VCAS) sub-track.

3.2 CO sub-track
For the CO sub-track we consider the following runs:

• Zettair – using the full-text information retrieval sys-
tem as a baseline run;

93

Different quantisation functions (Original assessments)
strict s3 e321 s3 e32 e3 s321 e3 s32

CO run %Ovp MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10

Zettair 0 0.049 0.073 0.008 0.097 0.020 0.088 0.088 0.206 0.071 0.132
Hybrid_MpE 82.2 0.124 0.103 0.041 0.194 0.072 0.174 0.178 0.218 0.155 0.182
Hybrid_MpE_NO 0 0.051 0.076 0.008 0.100 0.020 0.091 0.089 0.209 0.073 0.138
Hybrid_PME 82.1 0.081 0.100 0.038 0.206 0.052 0.182 0.089 0.141 0.083 0.121
Hybrid_PME_NO 0 0.047 0.088 0.023 0.197 0.027 0.165 0.031 0.123 0.034 0.109

Table 1: Performance results of INEX 2004 CO runs when using different quantisation functions and across 25
CO topics. The case of Original relevance assessments is used. For each run, an overlap indicator shows the
percentage of overlapping elements in the answer list. Values for the best runs (for each measure and under
each function) are shown in bold.

• Hybrid_MpE – using the hybrid system with MpE heuris-
tic combination in the CRE module;

• Hybrid_MpE_NO – using the hybrid system, with MpE

heuristic combination, and no overlap among the ele-
ments in the final answer list;

• Hybrid_PME – using the hybrid system with PME heuris-
tic combination in the CRE module;

• Hybrid_PME_NO – using the hybrid system, with PME

heuristic combination, and no overlap among the ele-
ments in the final answer list;

Our goals are threefold. First, we aim to explore which
heuristic combination yields best performance for the hy-
brid system under different retrieval scenarios. Second, we
aim to investigate the impact of overlapping result elements
on system performance. Thus the two cases of non-overlap
runs, Hybrid_MpE_NO and Hybrid_PME_NO, implement differ-
ent non-overlap strategies: the former allows less specific
and more general elements to remain in the list and removes
all the other (contained) elements, whereas the latter retains
more specific and less general elements, and removes all the
other elements that contain them. Finally, by comparing
the hybrid runs with the baseline run, we aim to better un-
derstand the issues surrounding the CO retrieval task.

3.3 VCAS sub-track
For the VCAS sub-track we consider the following runs:

• Zettair – using the full-text information retrieval sys-
tem as a baseline run;

• Hybrid_CO_MpE – using the hybrid system with MpE

heuristic combination in the CRE module. The struc-
tural constraints and the target element in the Title

part of each VCAS topic are removed, leaving query
terms only.

• Hybrid_CO_PME – using the hybrid system with PME

heuristic combination in the CRE module. As with
the previous run, each VCAS topic is treated as being
a CO topic;

• Hybrid_VCAS_MpE – using the hybrid system with MpE

heuristic combination in the CRE module. The tar-
get element in the Title part of each VCAS topic is

not explicitly specified (that is, it is allowed to have
any granularity), while the structural constraints are
strictly matched;

• Hybrid_VCAS_PME – using the hybrid system with PME

heuristic combination in the CRE module. As with the
previous run, the structural constraints remain, while
the target element is allowed to represent any element;

• Hybrid_CAS – using the initial hybrid system (with-
out the CRE module), where the structural constraints
and the target element in the Title part of each VCAS
topic are strictly matched.

As with the CO runs, we aim to achieve several goals through
these VCAS runs. First, we aim to investigate which re-
trieval choice (CO, VCAS or CAS) results in a more effective
VCAS retrieval. Second, for the hybrid runs using the CRE
module and a particular retrieval choice, we aim to iden-
tify the best choice of heuristic. Finally, by comparing the
hybrid runs with the baseline run, we want to empirically
check whether we can justify using a plain full-text search
engine in the VCAS retrieval task.

4. EXPERIMENTS AND RESULTS
For each of the retrieval runs, the resulting answer list for a
CO/VCAS topic comprises up to 1500 articles or elements
within articles. To measure the overall performance of each
run, two standard information retrieval measures are used:
Mean Average Precision (MAP), which measures the abil-
ity of a system to return relevant elements, and Precision
at 10 (P@10), which measures the number of relevant ele-
ments within the first 10 elements returned by a system.

In INEX 2004, an evaluation metric with different quantisa-
tion functions is used to evaluate the retrieval effectiveness of
XML systems [5]. Thus, the exhaustivity and specificity val-
ues for relevant elements may vary depending on the choice
of quantisation function. For example, if the strict quanti-
sation function (e3_s3) is used, MAP will measure the abil-
ity of a system to return highly relevant (E3S3) elements,
whereas if the e3_s321 or s3_e321 functions are used, MAP
will measure the ability of a system to return highly ex-
haustive (E3S3, E3S2, E3S1) or highly specific (E3S3, E2S3,
E1S3) elements. In the following we describe results ob-
tained from evaluating the retrieval effectiveness of our runs
for each CO and VCAS sub-track.

94

Strict quantisation function (General assessments)
All topics Broad topics Narrow topics

CO run %Ovp MAP P@10 MAP P@10 MAP P@10

Zettair 0 0.154 0.073 0.364 0.211 0.036 0.024
Hybrid_MpE 82.2 0.126 0.050 0.240 0.056 0.062 0.048
Hybrid_MpE_NO 0 0.152 0.073 0.359 0.211 0.036 0.024

Table 2: Performance results of three INEX 2004 CO runs when using the strict quantisation function and
different CO topic categories. The case of General relevance assessments is used. For each run, an overlap
indicator shows the percentage of overlapping elements in the answer list. Values for the best runs (for each
measure and under each topic category) are shown in bold.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

INEX 2004: CO Retrieval Runs

quantization: strict; topics: CO

Hybrid_MpE - MAP: 0.1235
Hybrid_PME - MAP: 0.0813

Zettair - MAP: 0.0491

Hybrid_MpE

Hybrid_PME

Zettair

Figure 6: Evaluation of three INEX 2004 CO re-
trieval runs using strict quantisation function and
the case of Original relevance assessments.

4.1 CO sub-track
Table 1 shows evaluation results for the CO retrieval runs
when the case of Original relevance assessments is consid-
ered. Different quantisation functions are used to evaluate
the retrieval effectiveness, and values for the best runs (for
each measure under each function) are shown in bold. Sev-
eral observations can be drawn from these results.

First, for overlap runs using the hybrid system, the MpE

heuristic yields better performance than the PME heuristic,
except for the highly specific quantisation functions (s3_e321
and s3_e32), where the number of relevant elements in the
first 10 returned elements is on average higher when using
the PME heuristic.

Second, the non-overlap hybrid runs perform worse than the
corresponding overlap hybrid runs. This is very likely to be a

result of the varying CO recall base, which, as previously dis-
cussed in Section 2.1, is as apparent in INEX 2004 as it was
in INEX 2003 [8]. We revisit the latter comparison in the
next section, where a non-varying recall base is considered
for evaluation (the case of General relevance assessments).

Last, the hybrid runs perform better on average than the
baseline run, except for the highly exhaustive quantisation
functions (e3_s321 and e3_s32), where the baseline run is
competitive, and, with the P@10 measure, performs even bet-
ter than both the overlap and the non-overlap Hybrid_PME

runs. These results show that when highly exhaustive ele-
ments are the target of retrieval, a full-text search engine
could still be used to satisfy the information need almost as
well.

Figure 6 shows recall/precision curves for the two overlap
hybrid runs (Hybrid_MpE and Hybrid_PME) and the base-
line run (Zettair). The runs are evaluated by using the
strict quantisation function and the case of Original rele-
vance assessments. For low recall (0.1 and less), Zettair

outperforms Hybrid_PME, although its performance gradu-
ally decreases and reaches zero for 0.5 (and higher) recall.
Overall, Hybrid_MpE performs best and is substantially bet-
ter than Hybrid_PME.

General CO retrieval scenario
In the following analysis, we use the strict quantisation func-
tion and the case of General relevance assessments to com-
pare the performance of the two Hybrid_MpE runs (over-
lap and non-overlap) with Zettair. When a run is evalu-
ated with the strict quantisation function, the case of Gen-
eral relevance assessments reflects a non-overlapping recall
base, since an article is allowed to only contain General,
non-overlapping (highly relevant) elements (see Section 2.1
for definition of General elements). Moreover, our previous
analysis has distinguished two different categories of CO top-
ics. Thus, in this General retrieval scenario, the performance
of the above runs are also compared across three topic cat-
egories: the All topics category, with all the 25 CO topics,
and the Broad and the Narrow categories, with 9 and 16
CO topics, respectively.

Table 2 shows the evaluation results for each run. Two ob-
servations are clear in the cases of All and Broad topic cat-
egories: first, with both MAP and P@10 measures Zettair

performs best, although with P@10 the non-overlap hybrid
run (MpE_NO) performs the same as Zettair; and second,
unlike for the case of varying recall base (the case of Origi-

95

Different quantisation functions (Original assessments)
strict s3 e321 s3 e32 e3 s321 e3 s32

VCAS run %Ovp MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10

Zettair 0 0.052 0.119 0.012 0.146 0.021 0.146 0.063 0.296 0.033 0.154
Hybrid_CO_MpE 78.3 0.101 0.104 0.037 0.200 0.056 0.158 0.110 0.262 0.084 0.162
Hybrid_CO_PME 78.2 0.034 0.096 0.029 0.189 0.036 0.135 0.068 0.204 0.051 0.123
Hybrid_VCAS_MpE 67.8 0.103 0.154 0.027 0.235 0.047 0.192 0.107 0.323 0.078 0.227
Hybrid_VCAS_PME 67.8 0.045 0.142 0.021 0.227 0.029 0.187 0.072 0.258 0.059 0.196
Hybrid_CAS 5.4 0.032 0.142 0.018 0.212 0.026 0.173 0.030 0.200 0.034 0.189

Table 3: Performance results of INEX 2004 VCAS runs when using different quantisation functions and
across 22 VCAS topics. The case of Original relevance assessments is used. For each run, an overlap
indicator shows the percentage of overlapping elements in the answer list. Values for the best runs (for each
measure and under each function) are shown in bold.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

INEX 2004: VCAS Retrieval Runs

quantization: strict; topics: VCAS

Hybrid_VCAS_MpE - MAP: 0.1030
Hybrid_CO_MpE - MAP: 0.1013

Zettair - MAP: 0.0523
Hybrid_CAS - MAP: 0.0316

Hybrid_VCAS_MpE

Hybrid_CO_MpE

Zettair

Hybrid_CAS

Figure 7: Evaluation of four INEX 2004 VCAS re-
trieval runs using strict quantisation function and
the case of Original relevance assessments.

nal relevance assessments), the non-overlap hybrid run sub-
stantially outperforms the overlap hybrid run. In the case
of Narrow topics, the overlap hybrid run performs best,
whereas the performance of the other two runs is the same.

4.2 VCAS sub-track
Table 3 shows evaluation results for the VCAS retrieval runs
and the case of Original relevance assessments. Different
quantisation functions are used to evaluate the retrieval ef-
fectiveness, and values for the best runs (for each measure
under each function) are shown in bold. Several observa-
tions can be drawn from the results of Table 3.

First, the strict hybrid run (Hybrid_CAS) (where structural
constraints and the target element of a VCAS topic are
strictly matched) performs worse than the other hybrid runs.
This is not surprising, since the relevance assessments for
VCAS topics have been done in the same way as those
for CO topics. Moreover, when using strict quantisation
function (with both MAP and P@10) Hybrid_VCAS runs (the
choice of strict structural constraints and no explicit target
element) perform better than Hybrid_CO runs (the choice
where plain CO queries are used).

Second, as with CO topics the MpE heuristic in hybrid runs
yields better performance than the PME heuristic.

Last, the hybrid runs perform better on average than the
baseline run, except when using strict quantisation func-
tion (with MAP), where Zettair performs better than the
strict hybrid run and both the hybrid-PME runs.

Figure 7 shows recall/precision curves for the three hybrid
runs that use different retrieval choices (CO, VCAS and CAS)
and the baseline run (Zettair). The runs are evaluated us-
ing the strict quantisation function and the case of Original
relevance assessments. The VCAS run performs best, particu-
larly for low recall (0.2 and less), however its performance is
almost identical with that of the CO run for 0.3 (and higher)
recall. When highly relevant elements are target of retrieval,
Zettair clearly outperforms the strict (CAS) hybrid run.

General VCAS retrieval scenario
In this scenario we use the strict quantisation function and
the case of General relevance assessments to compare the
performance of three hybrid VCAS runs (with retrieval choices
CO, VCAS and CAS) with Zettair. The three VCAS topic cat-
egories are also used in this analysis: the All category, with
all the 22 VCAS topics, and the Broad and Narrow cate-
gories, with 6 and 16 VCAS topics, respectively.

Table 4 shows the evaluation results for each run. One ob-
servation is very clear: for each VCAS topic category (with
both MAP and P@10 measures), Zettair by far outperforms
all the other runs. This is a very interesting observation,
since the unit of retrieval in Zettair is a full article, and
queries used are plain content-only queries. For each VCAS
topic category (with P@10 measure), the strict hybrid run
also outperforms the other two hybrid runs. Of these, the

96

Strict quantisation function (General assessments)
All topics Broad topics Narrow topics

VCAS run %Ovp MAP P@10 MAP P@10 MAP P@10

Zettair 0 0.192 0.119 0.625 0.367 0.029 0.045
Hybrid_CO_MpE 78.3 0.128 0.035 0.417 0.100 0.020 0.015
Hybrid_VCAS_MpE 67.8 0.128 0.046 0.412 0.100 0.021 0.030
Hybrid_CAS 5.4 0.061 0.085 0.162 0.233 0.023 0.040

Table 4: Performance results of four INEX 2004 VCAS runs when using strict quantisation function and
different CO topic categories. The case of General relevance assessments is used. For each run, an overlap
indicator shows the percentage of overlapping elements in the answer list. Values for the best runs (for each
measure and under each topic category) are shown in bold.

VCAS run again performs better (overall) than the CO run.

5. CONCLUSIONS
In this paper we have reported on our participation in the
ad-hoc track of INEX 2004. We have designed and sub-
mitted different runs for each CO and VCAS sub-track to
investigate different aspects of the XML retrieval task.

The two different cases of INEX 2004 relevance assessments,
which were identified as a result of our analysis, model dif-
ferent user behaviours; we have shown that the preferred
retrieval aspects vary on the user model used. Moreover,
distinguishing between existing topic categories can, in some
assessment cases, influence the choice of these aspects.

For the CO sub-track, we have shown that where users prefer
less specific and non-overlapping answers, a full-text search
engine alone can satisfy user information needs. Our hybrid
system, which is also capable of retrieving non-overlapping
compound answers, is another effective alternative. How-
ever, our results also show that a system should also dis-
tinguish between different categories of CO retrieval topics.
For a particular topic category, an XML system capable of
retrieving more focused — and possibly overlapping — an-
swers is a better choice.

For the VCAS sub-track, in the same retrieval scenario where
users prefer less specific and non-overlapping answers to
their queries, the same choice of using a full-text search en-
gine, which ignores all the structural constraints and target
elements, is very effective. Distinguishing between different
topic categories in this case does not appear to make any
difference on performance.

We have also used Zettair and the hybrid system in the
INEX 2004 Heterogeneous track. However, since the rel-
evance assessments for the heterogeneous XML collections
are not yet available, we do not report their performance
results in this paper.

The performance values for our INEX 2004 runs, generated
with MAP and P@10, are much lower comparing to the same
values for information retrieval systems retrieving whole doc-
uments. It is our hope that this work will aid better under-
standing of the different aspects of the XML retrieval task,
and ultimately lead to more effective XML retrieval.

6. ADDITIONAL AUTHORS

S.M.M. Tahaghoghi, RMIT University, Melbourne, Australia.
E-mail: saied@cs.rmit.edu.au.

7. REFERENCES
[1] Y. Chiaramella, P. Mulhem, and F. Fourel. A Model for

Multimedia Information Retrieval. Technical report,
FERMI ESPRIT BRA 8134, University of Glasgow,
April 1996.

[2] N. Fuhr, M. Lalmas, and S. Malik, editors. INitiative
for the Evaluation of XML Retrieval (INEX).
Proceedings of the Second INEX Workshop. Dagstuhl,
Germany, December 15–17, 2003, March 2004.

[3] K. Hatano, H. Kinutan, M. Watanabe, Y. Mori,
M. Yoshikawa, and S. Uemura. Keyword-based XML
Fragment Retrieval: Experimental Evaluation based on
INEX 2003 Relevance Assessments. In Fuhr et al. [2],
pages 81–88.

[4] J. Kamps, M. de Rijke, and B. Sigurbjoernsson. Length
Normalization in XML Retrieval. In Proceedings of the
27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 80–87, 2004.

[5] G. Kazai. Report on the INEX2003 Metrics working
group. In Fuhr et al. [2], pages 184–190.

[6] G. Kazai, M. Lalmas, and A. P. de Vries. The Overlap
Problem in Content-Oriented XML Retrieval
Evaluation. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 72–79,
2004.

[7] J. Pehcevski, J. A. Thom, and A.-M. Vercoustre.
Enhancing Content-And-Structure Information
Retrieval using a Native XML Database. In Proceedings
of The First Twente Data Management Workshop
(TDM’04) on XML Databases and Information
Retrieval, pages 24–31, 2004.

[8] J. Pehcevski, J. A. Thom, and A.-M. Vercoustre.
Hybrid XML Retrieval: Combining Information
Retrieval and a Native XML Database. Journal of
Information Retrieval: Special Issue on INEX (accepted
for publication), 2004.

[9] J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. RMIT
INEX Experiments: XML Retrieval using Lucy/eXist.
In Fuhr et al. [2], pages 134–141.

97

A Voting Method for XML retrieval

Gilles Hubert

(1) IRIT/SIG-EVI, 118 route de Narbonne, 31062 Toulouse cedex 4

(2) ERT34, Institut Universitaire de Formation des Maîtres, 56 av. de l’URSS, 3400 Toulouse

hubert@irit.fr

ABSTRACT
This paper describes the retrieval approach proposed by the
SIG/EVI group of the IRIT research center in INEX’2004
evaluation. The approach uses a voting method coupled with
some processes to answer content only and content and structure
queries. This approach is based on previous works we leaded in
the context of automatic text categorization.

Keywords

Information Retrieval, XML retrieval, voting method, automatic
text categorization

1. INTRODUCTION
The development of systems to perform searches in collections
constituted of XML (eXtensible Markup Language) documents[3]
has become a need since the use of XML is growing.
Consequently, a growing number of systems intend to provide
means to retrieve relevant components among XML documents.
XML retrieval systems need to take into account content and
structural aspects.

Regarding the variety of proposed XML retrieval systems it is
interesting to evaluate their effectiveness. For that, the INitiative
for the Evaluation of XML retrieval (INEX) provides a testbed
and scoring methods allowing participants to evaluate and
compare their results.

Underlying approaches of systems participating to INEX can be
classified in two categories [5] : model-oriented approaches and
system-oriented approaches. Model-oriented approaches gather
notably approaches based on language models [11][8][1] or other
probabilistic models [14] which obtained good results in 2003.
System-oriented approaches extend textual document retrieval
system adding XML-specific processing. Various systems in this
category [10][6][13][15] obtained good results in 2003.

In this paper, we present an IR approach initially applied to
automatic categorization of structured documents according to
concept hierarchies and its evolution brought for XML retrieval
notably within the context of INEX.

Section 2 is a short presentation of the INEX initiative 2004
edition. Section 3 presents the initial context in which the method
was initiated and its first application within INEX in 2003. The
evolutions made to this approach for INEX 2004 are described in
section 4. Section 5 presents the submitted runs and the obtained

results. In section 6 we conclude analyzing the experiment and
considering future works.

2. THE INEX INITIATIVE
2.1 Collection
The INEX documents correspond to approximately 12,000
articles of the IEEE Computer Society’s publications from 1995
to 2002 marked up in XML. All the documents respect the same
DTD. The collection gathers over eight millions XML elements of
varying length and granularity (ex. title, paragraph or article).

2.2 Queries
INEX introduces two types of queries:

- CO (Content Only) queries describe the expected content of
the XML elements to retrieve.

- CAS (Content and Structure) queries combine content and
explicit references to the XML structure using a variant of
Xpath [4]. CAS topics contain indications about the
structure of expected XML elements and about the location
of expected content.

Both CO and CAS topics are made up of four parts: topic title,
topic description, narrative and keywords.

Within the ad-hoc retrieval task, two types of tasks are defined:
(1) the CO task, using CO queries, (2) the VCAS task, using CAS
queries, for which the structural constraints are considered as
vague conditions.

3. A VOTING METHOD IN
 INFORMATION RETRIEVAL
The approach we proposed is derived from a process we first
defined for textual document categorisation [7][2]. Document
categorisation intends to link documents with pre-defined
categories. Our approach focuses on categories organised as
taxonomy. The original aspect of our approach is that it involves a
voting principle instead of a classical similarity computing. The
association of a text to categories is based on the Vector Voting
method [12]. The voting process evaluates the importance of the
association between a given text and a given category.

This method is similar to the HVV method (Hyperlink Vector
Voting) used within the Web context to compute the relevance of
a Web page regarding the web sites referring to it [9]. In our
context, the initial strategy considers that the more the category
terms appear in the text, the more the link between the text and
this category is strong. Thus, this method relies on terms

98

describing each category and their automatic extraction from the
document to be categorised. The result is a list of categories
annotating each document.

For INEX’2003, this categorisation process has been applied.
Every XML component has been processed as a complete
document. Every topic has been considered as a category of a flat
taxonomy. The result was a list of topics corresponding to each
XML component. It was then reversed and reordered to fit the
INEX format of results.

Results obtained for the submitted runs [16] have led us to
improve the process to suit a retrieval process. The axes of this
evolution have been as follows:

- inverse the voting process to estimate the relevance of
each XML component according to each topic,

- modify the voting function to take into account the great
variations of element sizes and to take into account
topic treatment rather than category treatment,

- integrate the aggregation aspect of an XML element
(i.e. elements composed of relevant elements),

- integrate structural constraint processing for CAS
topics.

4. EVOLUTION OF THE VOTING
METHOD WITHIN INEX

4.1 INEX collection pre-processing
From the INEX collection point of view, the documents are
considered as sets of text chunks identified by xpaths. For each
XML component, concepts are extracted automatically and saved
with the xpath identifying the XML component in which they
appear and the number of occurrences in the component. Concept
extraction involves notably stop word removal. Optionally, some
processes can be applied to concepts such as stemming using
Porter’s algorithm. For INEX'2004 experiments all XML tags
except text formatting tags (bold, italic, underline) have been
taken into account.

From the topic point of view, although our method can use all the
parts constituting CO and CAS topics, we used only the title part
for the INEX'2004 experiments as requested. For both topic types,
stop words are removed and optionally terms can be stemmed
using Porter’s algorithm.

4.2 Voting function
The voting function must take into account the importance in the
XML element of each term describing the topic and the
importance of each term in the topic representation. We have
studied different voting functions and the one providing the best
results is described as follows:

)(

),(
),(),(

TS

TtF
EtFTEVote

Tt

⋅= ∑
∈∀

where

T is the topic

E is an XML element

),(EtF This factor measures the importance of the term
t in the XML element E. F(t,E) corresponds the

number of occurrences of the term t in the
element E.

)(

),(

TS

TtF

This factor measures the importance of the term
t in the topic representation T. F(t,T)
corresponds to the number of occurrences of the
term t in the topic T and S(T) corresponds to the
size (number of terms) of T.

The voting function combines two factors: the presence of a term
in the element and the importance of this term in the topic.

4.3 Scoring function
The voting function is coupled with a third factor representing the
importance of the topic presence within the XML element.

The final function (scoring function) that computes the score of
an XML element regarding a given topic is the following:

)
)(

),(
(),(),(

TS

ETNT
fTEVoteTEScore ⋅=

where

)(

),(

TS

ETNT

This factor measures the presence rate of terms
representing the topic in the text (importance of
the topic). S(T) corresponds to the number of
terms in the topic representation T and NT(T,E)
corresponds to the number of terms of the topic
T that appear in the XML element E.

Applying a function ƒ to the third factor (i.e. the presence rate of
terms representing the topic in the text) aims at varying the
influence of this factor on the scoring function. We tried different
functions ƒ, for example the initial function was the exponential

(i.e.)(

),(

)
)(

),(
(TS

ETNT

e
TS

ETNT
f =).

4.4 Additional processes for both CO and
 CAS topics
The scoring function is completed with the notion of coverage.
The aim of the coverage is to ensure that only documents in
which the topic is represented enough will be selected for this
topic. The coverage is a threshold corresponding to the percentage
of terms from a topic that appears in a text. For example, 50% of
coverage implies that at least half of the terms describing a topic
have to appear in the text of a document to select it.

 If CT
TS

ETNT
≥

)(

),(then

)
)(

),(
(),(),(

TS

ETNT
fTEVoteTEScore ⋅=

 else
0),(=TEScore

The hierarchical structure of XML has to be taken into account.
The hypothesis on which is based our system is that an element
containing a component selected as relevant is also relevant. Our
system takes into account this hypothesis propagating the score of

99

an element to the elements it composes. The score propagated to
the composed elements is decreased applying a reducing factor.

),()),(1(),(),(

1),(

TEScoreEEdTEScoreTEScore

EEdandEofancestorE

aaa

aa

⋅⋅−⋅=
<⋅∀

α
α

where

 α is a constant coefficient E is an XML element

 d(Ea,E) is the distance between Ea and E in the xpath
associated to E (e.g. in the xpath /article/body/p/s/ss1 the
distance between ss1 and body is equal to 3 i.e.
d(body,ss1)=3)

This process tends to consider a composed element less relevant
than the element it is composed of. However, an element
composed of several relevant elements can obtain a score greater
than one of its components. The hypothesis chosen for INEX is
quite different notably due to relevance dimensions: exhaustivity
and specificity. Considering exhaustivity, a composed element is
considered at least as relevant as the most relevant of its
components. Considering specificity, the relevance of an element
composed of several relevant components is less or equal to the
relevance of the most relevant component. It would be interesting
to evaluate the impact of this difference of relevance propagation
on the retrieval results of our system.

In addition, in INEX, terms constituting a topic title can have
either the prefix + or -. The sign + is used to emphasize a concept
and – denotes an unwanted concept. The + and – signs do not
have strict semantics but just indicate preferences wished by the
topic’s author. An element containing a term prefixed by – in the
topic title can be judged relevant to the information need. In the
same way, an element judged relevant to the information need
even if it does not contain the term prefixed by + in the topic title.

To take into account the possibility of having prefixed terms, a
coefficient is associated to each term. A coefficient is fixed for
each case: term not prefixed, term with the prefix + and term with
the prefix -.

)(

),(
),(),(),(

TS

TtF
EtFTtscTEVote

Tt

⋅⋅= ∑
∈∀

where

 sc(t,T) = value 1 if t has the prefix – in the topic

 sc(t,T) = value 2 if t has no prefix in the topic

 sc(t,T) = value 3 if t has the prefix + in the topic

4.5 Specific processes for CAS topics
On one hand, we take into account different types of constraints
on content. Structural constraints on xpath of elements which are
expected to contain keywords (e.g. about(.//p,'+authorization
+"access control" +security') and constraints on the year of the
article .(e.g. //yr <='2000') are taken into account. These kinds of
structural constraints on content gathered all the constraints
appearing in the CAS topics of INEX’2004. The voting method
applied to CO topics has been extended to take into account such
constraints as follows:.

)(

),(
),()1(),(

TS

TtF
EtFTEVote

Tt

⋅⋅+= ∑
∈∀

β

where

if E matches a structural constraint defined on t then

 β>0

else

 β=0

On the other hand, an additional step identifies the structural
constraints on target elements indicated in CAS topics. All the
structural constraints defined on target elements of topics are
taken into account and stored to be processed in a post-voting step
to enrich the results issued from the voting step.

For VCAS evaluation, the target constraint specified in the topic
does not have to be strictly verified. The constraint is rather
regarded as a hint for expected results without eliminating the
elements which do not satisfy the target constraint.

To take into account these principles, the score associated to the
elements of the results that match the expected xpaths are
increased. A factor is applied to the score of matching elements as
follows:

If R matches X then

)
)(

),(
(),(),(

TS

ETNT
fTEVoteTEScore ⋅⋅= γ

where γ>1.0

5. EXPERIMENTS

5.1 Experiment setup
Our experiments aim at evaluating the efficiency of the evolution
given to the voting function and the coefficient adjustments
resulting from training performed on the INEX’2003 assessment
testbed. The training phase only concerns system processes
applied to both CO and CAS topics.

Three runs based on the voting method were submitted to
INEX'2004. Two runs were performed on CO topics and one run
was performed on CAS topics.

The runs on CO topics differ from the function f used in the
voting method. The run labelled VTCO2004TC35xp400sC-515
uses the voting function:

)

)(

),(
(

),(),(TS

ETNT

TEVoteTEScore ϕ⋅=

where ϕ=400.

The run labelled VTCO2004TC35p4sC-515 uses the voting
function:

λ









⋅=

)(

),(
),(),(

TS

DTNT
TEVoteTEScore

where λ=4.

100

The run on CAS topics labelled VTCAS2004C35xp200sC-
515PP1 uses the voting function:

)

)(

),(
(

),(),(TS

ETNT

TEVoteTEScore ϕ⋅=

where ϕ=200.

The coefficient taking into account structural predicates
associated to searched concepts was fixed to 1.0 (i.e. the vote of
an element regarding a given concept is doubled when the
element matches the structural constraint associated to the
concept). The coefficient taking into account structural predicates
for expected results was fixed to 2.0 (i.e. the score of an element
matching the structural predicate is doubled). The values of these
two coefficients were fixed arbitrarily.

For all submitted runs the other parameters of the scoring function
were the same. Coverage threshold was fixed to 35% (i.e. more
than a third of terms describing the topic must appear in the text
to keep the XML component).

Coefficients applied to take into account the signs ‘+’ and ‘-‘ used
to emphasise a concept or to denote an unwanted one were fixed
to:

- +5.0 for concepts marked with ‘+’ (the vote of these
concepts increases the score of the elements in which they
appear),

- -5.0 for concepts marked with ‘-‘ (the vote of these concepts
reduces the score of the elements in which they appear),

- 1.0 for unmarked concepts.

The values of the parameters are those which gave the best results
during a training phase done with INEX’2003 CO topics.

5.2 Results
The following table shows the preliminary results of the three
runs based on the voting method:

Run Aggregate score Rank
VTCO2004TC35xp400sC-515 0.0783 13/70
VTCO2004TC35p4sC-515 0.0775 15/70
VTCAS2004TC35xp200sC-515 0.0784 5/51

Table 1: Results of the 3 runs performed using the voting
method

The results of the two runs for CO topics are detailled in the
following table:

 VTCO2004TC35
xp400sC-515

VTCO2004TC35
p4sC-515

Quantisation Average
precision

Rank Average
precision

 Rank

strict 0.0778 18/70 0.0759 19/70

generalised 0.0683 14/70 0.0682 15/70

so 0.0559 16/70 0.0564 15/70

s3_e321 0.0395 22/70 0.0400 21/70

s3_e32 0.0508 17/70 0.0508 17/70

e3_s321 0.1456 10/70 0.1424 11/70

e3_s32 0.1106 11/70 0.1083 13/70

Table 2: Detailed results of the 2 runs for CO topics

For CO topics, the run which has obtained the best results is the
run labelled VTCO2004TC35xp400sC-515. The best measures
have been obtained with e3s321 quantisation. Average precision
is equal to 0.1456, placing the run at the 10th rank. The run
labelled VTCO2004TC35p4sC-515 has obtained values slightly
lower for most of the quantisations. Only the best results obtained
for CO topics are presented in the following graphs that is to say
run VTCO2004TC35xp400sC-515 for e3s321 quantisation.

For CAS topics, the run VTCAS2004TC35xp200sC-515PP1 has
been ranked at the 5th place. The results of the run are detailled in
the following table:

 VTCAS2004TC35xp200sC-515PP1

Quantisation Average precision Rank

strict 0.1053 5/51

generalised 0.0720 6/51

so 0.0554 9/51

e3_e321 0.0462 12/51

e3_e32 0.0644 10/51

e3_s321 0.1162 5/51

e3_s32 0.0892 5/51

Table 3: Detailed results of the run for CAS topics

101

The best measures have been obtained for quantisations strict,
e3s321 and e3s32 for which the run is ranked 5. The following
figures present the results corresponding to the strict quantisation
and e3s321 quantisation.

6. DISCUSSION AND FUTURE WORKS
Regarding the experiments that were performed and the obtained
results we can notice that:

- the chosen functions and parameters for the scoring method
tend to support exhaustivity rather than specificity. Indeed,
the importance of the factor measuring the representation of
the topic (i.e. NT(T,E)/S(T)) dominates in the scoring
function and this factor is related to the exhaustivity
relevance. It would be interesting to modify the scoring
function to increase the number of elements judged as
relevant regarding specificity.

- The measures obtained using INEX’2003 CO topics were
globally better. This suggests that our scoring method is
more efficient on certain queries. It would be interesting to
identify a class (or classes) of queries for which the function
works better, a class (classes) of queries for which the
function is less efficient and to understand why. The function
could evolve to extend its efficiency to other kinds of queries
or different functions could be applied regarding different
query classes.

- The values of coefficients applied for structural constraint
matching have been fixed arbitrarily. Additional experiments
on INEX’2004 CAS topics will help us to adjust the values
of these coefficients.

- Evaluate the profit of adding a relevance feedback process to
our method. On one hand, feedback from first ranked
elements of the assessments can be performed. This is the
process chosen this year in the relevance feedback track. On
the other hand, we plan to integrate a feedback process using
first ranked elements of a first search using our system.

7. REFERENCES
[1] Abolhassani, M., Fuhr, N., Applying the Divergence from

Randomness Approach for Content-Only Search in XML
Documents. 26th European Conference on IR Research
(ECIR), LNCS 2997, p. 409-419, Apr 2004.

[2] Augé, J., Englmeier, K., Hubert, G., Mothe, J.,
Catégorisation automatique de textes basée sur des
hiérarchies de concepts, 19ième Journées de Bases de Données
Avancées (BDA), Lyon, p. 69-87, Oct 2003.

102

[3] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
Yergeau, Y., Extensible, Markup Language (XML) 1.0.
(Third Edition), W3C Recommendation.,
http://www.w3.org/TR/REC-xml/, Feb. 2004.

[4] Clark, J., DeRose, S., XML Path Language (XPath), W3C
Recommendation, http://www.w3.org/TR/xpath.html,, Nov.
1999.

[5] Fuhr, N., Maalik, S., Lalmas, M., Overview of the INitiative
for the Evaluation of XML Retrieval (INEX) 2003,
Proceedings of the Second INEX Workshop. Dagstuhl,
Germany, March 2004.

[6] Geva, S., Leo-Spork, M., XPath Inverted File for
Information Retrieval, INEX 2003 Workshop Proceedings,
pp. 110-117, 2003.

[7] IRAIA: Getting Orientation in Complex Information Spaces
as an Emergent Behaviour of Autonomous Information
Agents, European Information Societies Technology, IST-
1999-10602, March 2000-2002.

[8] Kamps, J., de Rijke, M., Sigurbjörnsson, B., Length
normalization in XML retrieval. Proceedings of the 27th
International Conference on Research and Development in
Information Retrieval (SIGIR), pages 80-87. New York NY,
USA, 2004

[9] Li, Y., Toward a qualitative search engine, IEEE Internet
Computing, vol. 2, n°4, p. 24-29, 1998.

[10] List J., Mihajlovic V., de Vries A. P., Ramirez G., Hiemstra
D., The TIJAH XML-IR system at INEX 2003, INEX 2003
Workshop Proceedings, pp. 102-109, 2003.

[11] Ogilvie, P., Callan J., Using Language Models for Flat Text
Queries in XML Retrieval, Proceedings of the Second INEX
Workshop. Dagstuhl, Germany, March 2004.

[12] Pauer, B., Holger, P., Statfinder, Document Package
Statfinder, Vers. 1.8, may 2000.

[13] Pehcevski, J., Thom J., Vercoustre, A.M., Enhancing
Content-And-Structure Information Retrieval using a Native
XML Database", Proceedings of The First Twente Data
Management Workshop on XML Databases and Information
Retrieval (TDM'04), Enschede, The Netherlands, June 2004

[14] Piwowarski B., Vu H.-T., Gallinari P., Bayesian Networks
and INEX'03, Proceedings of the Second INEX Workshop.
Dagstuhl, Germany, March 2004.

[15] Trotman, A., O'Keefe, R. A., Identifying and Ranking
Relevant Document Elements(2003), INEX 2003 Workshop
Proceedings, pp, 2003.

[16] Sauvagnat, K., Hubert, G., Boughanem, M., Mothe, J., IRIT
at INEX 2003, Proceedings of the Second INEX Workshop.
Dagstuhl, Germany, pp 142-148, 2003

103

The University of Amsterdam at INEX 2004

Börkur Sigurbjörnsson Jaap Kamps∗ Maarten de Rijke

Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

borkur,kamps,mdr@science.uva.nl

ABSTRACT
This paper describes the INEX 2004 participation of the Informat-
ics Institute of the University of Amsterdam. We completely re-
vamped our XML retrieval system, now implemented as a mix-
ture language model on top of a standard search engine. To speed
up structural reasoning, we indexed the collection’s structure in
a separate database. We address three research questions. First,
we investigate the effectiveness of blind feedback based on top-
ranking XML-elements. Second, we analyze the impact of remov-
ing overlapping elements in the result set. Third, for the content-
and-structure topics, we want to compare the relative effectiveness
of approaches that interpret the topic strict, or ignore the structural
hints altogether. Experimental evidence is based on both of the
INEX 2004 ad hoc tasks, content-only and content-and-structure,
evaluated against a range of metrics.

1. INTRODUCTION
We follow an Information Retrieval (IR) approach to the Content-
Only (CO) and Vague-Content-And-Structure (VCAS) ad hoc tasks
at INEX. In our participation at INEX 2004 we build on top of
our element-based approach at INEX 2003 [10], and extend our
language modeling approach to XML retrieval.

Specifically, we addressed the following technological issues, main-
ly to obtain a statistically more transparent approach. For our INEX
2003 experiments we combined article and element scores outside
our language model, meaning that we created a run based on an arti-
cle index and one based on an element index, which were then com-
bined using well-known run combination techniques [6]. This year
we implemented a proper mixture language model for this combi-
nation. At INEX 2003 we estimated the language model for the
collection by looking at statistics form our overlapping element in-
dex. For our experiments at INEX 2004 we estimate this collection
model differently, by looking at statistics from our article index.
The main changes in our blind feedback approach, compared to
last year, is that this year we perform query expansion based on an

∗Currently at Archives and Information Studies, Faculty of Hu-
manities, University of Amsterdam.

element run, whereas last year we performed the expansion based
on an article run. All our runs were created using the ILPS exten-
sion to the Lucene search engine [7, 3].

Our main research questions for both tasks were twofold. First,
we wanted to investigate the effect of blind feedback on XML el-
ement retrieval. Second, we wanted to cast light on the problem
of overlapping results; in particular, we investigate the effect of re-
moving overlapping results top-down from a retrieval run. A third,
additional research question only concerns the VCAS task: we in-
vestigate the difference between applying a content-only approach
and a strict content-and-structure approach.

The remainder of this paper is organized as follows. In Section 2
we describe our experimental setup, and in Section 3 we provide
details on the official runs we submitted to INEX 2004. Section 4
presents the results of our experiments, and in Section 5 we discuss
our findings in the broader INEX context, and draw some initial
conclusions.

2. EXPERIMENTAL SETUP
2.1 Index
Our approach to XML retrieval is IR-based. We create our runs
using two types of inverted indexes, one for XML articles only and
another for all XML elements. Furthermore, we maintain a separate
index of the collection structure.

2.1.1 Article index
For the article index, the indexing unit is a complete XML docu-
ment containing all the terms appearing at any nesting level within
the 〈article〉 tag. Hence, this is a traditional inverted index as
used for standard document retrieval.

2.1.2 Element index
For the element index, the indexing unit can be any XML element
(including 〈article〉). For each element, all text nested inside it
is indexed. Hence, the indexing units overlap (see Figure 1). Text
appearing in a particular nested XML element is not only indexed
as part of that element, but also as part of all its ancestor elements.
The article index can be viewed as a restricted version of the el-
ement index, where only elements with tag-name〈article〉 are
indexed.

Both the article and the element index were word-based: we ap-
plied lower-casing and stop-words were removed using the stop-
word list that comes with the English version on the Snowball stem-
mer [12], but other than that words were indexed as they occur in
the text, and no stemming was applied.

104

Tom Waits

simple.xml /article[1]/au[1]

<article>
<au>Tom Waits</au>
<sec>Champagne for my real friends</sec>
<sec>Real pain for my sham friends</sec>

</article>

simple.xml

Champagne for my real friends
Real pain for my sham friends

Tom Waits

simple.xml /article[1]

Champagne for my real friends

simple.xml /article[1]/sec[1]

Real pain for my sham friends

simple.xml /article[1]/sec[2]

Figure 1: Simplified figure of how XML documents are split up
into overlapping indexing units.

2.1.3 Structure index
The structure of the collection is indexed using a relational database.
To index the XML trees we use pre-order and post-order informa-
tion of the nodes in the XML trees [1].

2.2 Query processing
For both the CO and the VCAS task we only use the〈title〉 part
of the topics. We remove words and phrases bounded by a minus-
sign from the queries; other than that, we do not use the plus-signs,
or phrase marking of the queries.

For the CAS topics we have a NEXI tokenizer which can decom-
pose the query into a set ofabout functions [11]. If there is a
disjunction in a location-path, we break it up into a disjunction of
about functions. That is,

about(.//(abs|kwd), xml)

becomes

about(.//abs,xml) or about(.//kwd,xml).

If there are multiple about functions with the same scope we merge
them into a single one. That is,

about(., broadband) or about(., dial-up)

becomes

about(., broadband dial-up).

For some of the VCAS runs we ignore the structural constraints
and use only a collection of content query terms. That is, from the
query

//article[about(.,sorting)]//sec[about(.,heap sort)]

we collect the query terms

sorting heap sort.

We will refer to these as thefull content queries.

2.3 Retrieval model
All our runs use a multinomial language model with Jelinek-Mercer
smoothing [2]. We estimate a language model for each of the ele-
ments. The elements are then ranked according to their prior prob-
ability of being relevant and the likelihood of the query, given the

estimated language model for the element:

P(e|q) ∝ P(e) ·P(q|e). (1)

We assume that query terms are independent, and thus we rank our
elements according to:

P(e|q) ∝ P(e) ·
k

∏
i=1

P(ti |e), (2)

whereq is a query made out of the termst1, . . . , tk. To account for
data sparseness we estimate the element language model by taking
a linear interpolation of three language models: one for the element
itself, one for the article that contains the element, and a third one
for the collection. That is,P(ti |e) is calculated as

λe ·Pmle(ti |e)+λd ·Pmle(ti |d)+(1−λe−λd) ·Pmle(ti), (3)

wherePmle(·|e) is a language model for elemente; Pmle(·|d) is a
language model for documentd; andPmle(·) is a language model
of the collection. The parametersλe andλd are interpolation fac-
tors (smoothing parameters). We estimate the language models,
Pmle(·|·) and Pmle(·), using maximum likelihood estimation. For
the element model we use statistics from the element index; for the
document model we use statistics from the article index; and for
the collection model we use document frequencies from the article
index.

The language modeling framework allows us to easily model non-
content features. One of the non-content that proved to be useful
during our experiments for INEX 2003 is document length. Specif-
ically, we assign a prior probability to an elemente relative to its
length in the following manner:

P(e) =
|e|

∑e|e|
, (4)

where|e| is the size of an elemente.

2.4 Query Expansion
We have been experimenting with blind feedback in all editions
of INEX so far, focusing on query expansion for the content-only
task exclusively. Initially, we experimented with Rocchio-style
reweighting to select up to 10 terms from the top 10 documents [9].
In INEX 2002 we observed that query expansion with Rocchio on
the article index gave intuitively useful expanded queries, leading
to the kind of improvements that familiar from article retrieval [5].
However, expanding queries based on the top 10 retrieved XML
elements seemed not to work due to the short and overlapping el-
ements in the top 10 results. Hence, we decided to expand queries
on the article index, and then run the expanded queries against the
element index. This did, indeed, give us a boost for the 2002 topics,
but, alas, substantially lowered our score for the 2003 topics [11].

Our analysis of the failure of article-index based feedback in INEX
2003 was that the terms were useful, but highly unlikely to occur in
the proper element. An example is getting prominent author names
from the bibliography, which are relevant and useful retrieval cues
but generally do not appear in a paragraph (maybe in the author
field, or the bibliography).1

We decided to go back to the idea of doing blind feedback directly
on the XML element index. This has the advantage of conser-

1We have been planning to incorporate context (i.e., tags in which
term occurs) into our model, but this would requires some CAS
features for the CO runs that are non-trivial to implement.

105

Run-id λe λd units terms% overlap
UAms-CO-T 0.1 0.3 – – 71.96
UAms-CO-T-FBack 0.1 0.3 15 5 81.85
UAms-CO-T-FBack-NoOverl 0.1 0.3 15 5 0.00

Table 1: Overview of our official content-only runs for INEX
2004. All runs are automatic runs, that only use the T (title)
topic field.

vatism, the initially retrieved top 10 elements will keep their high
ranking, but the problem of overlap in the initial result set remains.
In pre-submission experiments, the language modeling approach to
feedback [8] proved more robust, and improved performance on the
2003 topics.

3. RUNS
In this section we describe the official runs submitted by the Uni-
versity of Amsterdam for INEX 20004.

All our runs use the language modeling framework described in the
previous section. For all runs we use a two level smoothing pro-
cedure: we smooth against both the article and the collection. Our
collection model uses the document frequencies from the article in-
dex. For computing the likelihood of a term given an element, see
Equation 3, we use the following parameter settings for all runs:
λe = 0.1 andλd = 0.3. All runs also use the same length prior
settings in Equation 4.

3.1 Content-Only task
Table 1 provides an overview of our CO runs. We now describe the
specifics of each of the CO runs.

UAms-CO-T
This run uses the mixture language model approach and parameter
settings as described above.

UAms-CO-T-FBack
This run uses the same model and parameters as the previous run.
Additionally, this run uses blind feedback to expand the queries. An
element run was used as a basis for our feedback. We considered
the top 15 elements to be relevant and chose the 5 best query terms
as described in [8].

UAms-CO-T-FBack-NoOverl
This run uses the same model, parameters and feedback approach
as the previous run. Additionally, overlapping results are filtered
away. The filtering is done in a top-down manner. That is, the
result list is processed from the most relevant to the least relevant
element. A result is removed from the result list if it overlaps with
an element that has been processed previously.

3.2 Vague Content-And-Structure task
We now describe our VCAS runs; again, we provide a table with
an overview; cf. Table 2.

UAms-CAS-T-FBack
This run uses the full-content version of the queries. The run is
identical to UAms-CO-T-FBack, except for the topics, of course.

Run-id λe λd units terms% overlap
UAms-CAS-T-FBack 0.1 0.3 15 5 77.76
UAms-CAS-T-FBack-NoOverl 0.1 0.3 15 5 0.00
UAms-CAS-T-XPath – – – – 18.77

Table 2: Overview of our official vague content-and-structure
runs for INEX 2004. All runs are automaticruns, that only use
the T (title) topic field.

UAms-CAS-T-FBack-NoOverl
This run uses the full-content version of the queries. The run is
identical to UAms-CO-T-FBack-NoOverl, except for the topics, of
course.

UAms-CAS-T-XPath
This run is created using our system for the INEX 2003 Strict Con-
tent and Structure task. It uses both content and structural con-
straints. Target constraints are interpreted as strict. We refer to [11]
for a detailed description of the retrieval approach used. The run
is identical to the run referred to as “Full propagation run” in that
paper.

4. RESULTS
In this section we will try to analyze the results of our retrieval
efforts. Result analysis for XML retrieval remains a difficult task:
there are still many open questions regarding how to evaluate XML
element retrieval. We will show our results for all the suggested
measures and try to interpret the flow of numbers.

4.1 Content-Only task
Table 3 shows the results for our CO runs, using all different met-
rics. We see that the run which uses blind feedback outperforms
the normal run on all metrics except for the measures where high
exhaustivity is rewarded. Hence, at first glance, it seems thus that
blind feedback does more for the specificity of the results than for
the exhaustiveness of the results. This seems somewhat counterin-
tuitive and we will discuss it further below. The run where overlap
was removed does not score well for any metric.

Figure 2 shows precision-recall curves for our CO runs for three
measures: strict, generalized measure, specificity oriented (so). Que-
ry expansion gives improvements on all recall levels. The normal
and non-overlapping runs have similar precision at zero, but the
non-overlapping run quickly drops. The non-overlapping run sim-
ply fails to retrieve many of the relevant elements. This comes as
no surprise since the relevant elements, themselves, are frequently
overlapping.

Run
Measure CO-T CO-T-FBack CO-T-FBack-NoOverl
aggregate 0.1030 0.1174 0.0270
strict 0.1013 0.1100 0.0332
generalized 0.0929 0.1225 0.0198
so 0.0717 0.1060 0.0149
s3 e321 0.0528 0.0877 0.0148
s3 e32 0.0668 0.0891 0.0168
e3 s321 0.1840 0.1699 0.0507
e3 s32 0.1515 0.1368 0.0387

Table 3: Average scores for our CO runs, with this best scoring
run in italics.

106

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

UAms-CO-T
UAms-CO-T-FBack

UAms-CO-T-FBack-NoOverl

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

UAms-CO-T
UAms-CO-T-FBack

UAms-CO-T-FBack-NoOverl

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

UAms-CO-T
UAms-CO-T-FBack

UAms-CO-T-FBack-NoOverl

Figure 2: Precision-recall curves for our CO runs. (Left): strict measure. (Center): generalized measure. (Right): specificity oriented
(so) measure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

UAms-CAS-T-FBack
UAms-CAS-T-FBack-NoOverl

UAms-CAS-T-XPath

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

UAms-CAS-T-FBack
UAms-CAS-T-FBack-NoOverl

UAms-CAS-T-XPath

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1
P

re
ci

si
on

Recall

UAms-CAS-T-FBack
UAms-CAS-T-FBack-NoOverl

UAms-CAS-T-XPath

Figure 3: Precision-recall curves for our VCAS runs. (Left): strict measure. (Center): generalized measure. (Right): specificity
oriented (so) measure.

4.2 Vague Content-And-Structure task
Table 4 shows the results for our VCAS runs, using all the differ-
ent metrics. We see that the CO-style run clearly outperforms the
XPath-style run with respect to all metrics. Again, the run without
overlap scores the least of the three.

Figure 3 shows precision-recall curves for our VCAS runs, again
for three measures: strict, generalized measure, and specificity ori-
ented (so). The XPath-style run, tailored for a strict interpretation

Run (CAS-T-. . .)
Measure . . . FBack . . . FBack-NoOverl . . . XPath
aggregate 0.1065 0.0397 0.0619
strict 0.1260 0.0582 0.0735
generalized 0.1167 0.0330 0.0451
so 0.0912 0.0282 0.0472
s3 e321 0.0770 0.0318 0.0537
s3 e32 0.0817 0.0365 0.0781
e3 s321 0.1508 0.0495 0.0581
e3 s32 0.1020 0.0404 0.0774

Table 4: Average scores for our VCAS runs, with the best scor-
ing run in italics.

of content-and-structure topics, seems to function as a precision de-
vice. The run outperforms the CO-style run at lower recall levels.
The low scores on higher recall level can immediately be explained
by the fact that the target element is respected in the XPath-style
run, but not in the relevance judgments.

5. DISCUSSION AND CONCLUSIONS
In this paper, we documented our experiments at the INEX 2004
ad hoc retrieval track. We addressed three main research questions.
First, we investigated the effectiveness of element-based query ex-
pansion, and found that it improved retrieval effectiveness on all
but the exhaustiveness-oriented measures. We will discuss this
case below. Second, we investigated the impact of (non-)overlap
on the runs, and found that returning overlapping results results in
superior scores on all measures. Our non-overlapping runs were,
indeed, completely non-overlapping. Perhaps this is an unreal-
istically strong requirement, for it proves difficult to predict the
choices of the assessors, and many relevant elements will be re-
moved from the ranking. On a more positive note, the XPath-style
run for SCAS had only 19% overlap, and got the best score at low
recall levels. Third, our results for the VCAS task showed clear
superiority of content-oriented-based approaches over a strict in-
terpretation of the content-and-structure topics. From the vantage
point of a retrieval system, our experiments highlighted the great

107

0 1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

1800

 Log of XML Element Length

 N
um

be
r

of
 R

el
ev

an
t E

le
m

en
ts

strict
s3_e321
e3_s321

Figure 4: Length of relevant elements for strict, specificity-
oriented, and exhaustiveness oriented measures in INEX 2004.

similarity between the CO and VCAS tasks. The most notable dif-
ference, perhaps, is the fact that the XPath-style run can function
as a precision device.

Previously, we have shown that a more radical length bias is essen-
tial to achieve good results [4]. Those experiments were performed
using both the title and description fields of the topics. In the lan-
guage modeling framework, as shown in Section 2.3, the final score
of an element is the product of the prior probability of an element
and the likelihood of the query given an element. However, the
length of a query does have an effect on the number calculated
for the query-likelihood. As a result, the normal length bias has
a bigger impact on the shorter queries. Initial pre-submission ex-
periments for the title-only topics showed the normal length-prior
settings in Equation 4 in Section 2.3 to be sufficient. We did use
blind feedback to expand queries with up to 5 terms. This will re-
sult again in longer queries, and perhaps may suggest that these are
similar to the longer TD-topics. This is true in part, but there is
an important difference between the TD-topics and (expanded) T-
topics: all keywords from the title are content-bearing words spe-
cific for the query, as are supposedly the expanded terms. This may
also be a factor that lessens the need for the extreme length-priors
shown to be crucial for TD-topics [4].

We now return to the finding that query expansion does not help
on the exhaustiveness-oriented measures, i.e., e3s32 and e3s321.
One would expect that strict expansion of the query with useful
terms (witnessing the other measures), leads to improvement of
recall, and therefore would help exhaustiveness rather than speci-
ficity. In contrast, we see improvements on all measuresbut the
exhaustiveness-oriented ones. This is clearly counterintuitive. Our
best explanation to date has to do with the changing recall base
of the measures. In Figure 4 we plot the (log of) element length
against the number of relevant elements, where relevancy is de-
termined by one of three measures: strict, specificity, and exhaus-
tiveness. As can be seen from the plot, the strict and specificity
measure return different counts but a very similar distribution over
length. The exhaustiveness measure, in contrast, has a preference
for much larger elements. This is not unexpected: if we stress the
exhaustiveness dimension, we would generally expect to find larger
chunks of text containing more information. As a result, our nor-

0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

 Log of XML Element Length

 N
um

be
r

of
 R

el
ev

an
t E

le
m

en
ts

2002
2003
2004

Figure 5: Length of relevant elements in INEX 2002–2004,
measured using the strict measure.

mal length prior is clearly insufficient to satisfy the exhaustiveness
measure. The normal length prior creates more bias for the shorter
unexpanded queries. Thus, for runs with a larger length bias may
still show improvements for the expanded queries.

Figure 5 presents the distribution of the length of relevant XML
elements over the three years of INEX CO, where relevancy is
measured using the strict measure. While one has to be careful
in making performance and test set comparisons across years, the
following observations seem legit.

First, over the three years there is an declining preference for the
larger elements such as full articles. In the first edition of INEX,
i.e., in 2002, assessors frequently judged the larger elements rele-
vant. In 2003, there was less of a preference for large elements,
and in 2004 trend seems to persist: an even smaller fraction of the
longer elements were judged relevant. With exception of the (al-
most) empty elements, the distribution of elements is qualitatively
not very different from earlier years. Second, there is an amazing
number of very small elements, ranging from empty to just one or
a few words, that is judged as relevant. This raises a number of
questions regarding the INEX relevance assessment stage. We find
it implausible that an element with no or just one or two words can
completely satisfy the information need of the topic (i.e., be judged
as highly exhaustive and highly specific).

6. ACKNOWLEDGMENTS
Jaap Kamps was supported by the Netherlands Organization for
Scientific Research (NWO), under project number 612.066.302.
Maarten de Rijke was supported by grants from NWO, under project
numbers 365-20-005, 612.069.006, 612.000.106, 220-80-001, 612.-
000.207, 612.066.302, 264-70-050, and 017.001.190.

7. REFERENCES
[1] T. Grust. Accelerating XPath Location Steps. InProc.

SIGMOD, pages 109–120. ACM Press, 2002.

[2] D. Hiemstra.Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[3] ILPS. The ILPS extension of the Lucene search engine,

108

2004.http://ilps.science.uva.nl/Resources/.

[4] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length
normalization in XML retrieval. InProceedings of the 27th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, (SIGIR 2004),
pages 80–87, 2004.

[5] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. The
importance of morphological normalization for XML
retrieval. InProceedings of the First Workshop of the
INitiative for the Evaluation of XML retrieval (INEX), pages
41–48. ERCIM Publications, 2003.

[6] J. Kamps and M. De Rijke. The effectiveness of combining
information retrieval strategies for European languages. In
Proceedings 19th Annual ACM Symposium on Applied
Computing, pages 1073–1077, 2004.

[7] Lucene. The Lucene search engine, 2004.
http://jakarta.apache.org/lucene/.

[8] J. Ponte. Language models for relevance feedback. In W.B.
Croft, editor,Advances in Information Retrieval, chapter 3,
pages 73–96. Kluwer Academic Publishers, Boston, 2000.

[9] J. J. Rocchio, Jr. Relevance feedback in information retrieval.
In The SMART Retrieval System: Experiments in Automatic
Document Processing, chapter 14, pages 313–323.
Prentice-Hall, Englewood Cliffs NJ, 1971.

[10] B. Sigurbj̈ornsson, J. Kamps, and M. de Rijke. An
Element-Based Approch to XML Retrieval. InINEX 2003
Workshop Proceedings, pages 19–26, 2004.

[11] B. Sigurbj̈ornsson, J. Kamps, and M. de Rijke. Processing
content-oriented XPath queries. InProceedings of the
Thirteenth Conference on Information and Knowledge
Management (CIKM 2004), pages 371–380. ACM Press,
2004.

[12] Snowball. The Snowball string processing language, 2004.
http://snowball.tartarus.org/.

109

GPX - Gardens Point XML Information Retrieval at INEX 2004

Shlomo Geva

Centre for Information Technology Innovation

Faculty of Information Technology

Queensland University of Technology

Queensland 4001 Australia

s.geva@qut.edu.au

Abstract Traditional information retrieval (IR)

systems respond to user queries with ranked lists

of relevant documents. The separation of content

and structure in XML documents allows

individual XML elements to be selected in

isolation. Thus, users expect XML-IR systems to

return highly relevant results that are more

precise than entire documents. In this paper we

describe the implementation of a search engine

for XML document collections. The system is

keyword based and is built upon an XML

inverted file system. We describe the approach

that was adopted to meet the requirements of

Content Only (CO) and Vague Content and

Structure (VCAS) queries in INEX 2004.

Keywords Information Retrieval, XML, Search

Engine, Inverted Files

1.0 Introduction

The widespread use of Extensible Markup

Language (XML) documents in digital libraries

has lead to development of information retrieval

(IR) methods specifically designed for XML

collections. Most traditional IR systems are

limited to whole document retrieval; however,

since XML documents separate content and

structure, XML-IR systems are able to retrieve

the relevant portions of documents. This means

that users interacting with XML-IR system will

potentially receive highly relevant and highly

precise material. However, it also means that

XML-IR systems are more complex than their

traditional counterparts, and many challenges

remain unsolved. These issues were specifically

addressed at INEX 2002 and INEX 2003, with

marked improvement in performance of most

systems.

Since all systems base retrieval on

keywords, one would expect that most system

would be able to identify the same set of

documents in response to a query on several

keywords. The key difference between systems

is therefore in the ranking of these documents.

Often it is possible to identify many thousands of

elements with a given set of keywords. The trick

is to rank the elements and select the top 1500

elements. There are four important issues to be

resolved with respect to IR in an XML

collection:

1. Accurate and efficient selection of elements

that satisfy the containment constraints.

2. Accurate and efficient selection of elements

that satisfy the structural constraints.

3. The assignment of scores to matching

elements.

4. The assignment of scores to antecedents of

selected elements

Steps 1 to 3 are common to ordinary text

collection IR systems, except that the unit of

retrieval has finer granularity (XML element).

Step 4 is an additional step that is required in the

context of XML oriented IR. Rather than

identify relevant documents, the XML IR system

is required to select and score elements at

different levels of granularity.

This paper presents a system that

attempts to provide a solution to the selection

and ranking question, while at the same time

provide an effective and efficient search engine

that is based on an inverted file scheme.

First we discuss the internal storage of

the XML collection and present a database

structure that is aimed at increasing the

efficiency of the system. Then we discuss a re-

formulation of the queries as a set of sub-queries,

and describe the identification of leaf level

elements that contain keywords. We describe the

retrieval and scoring process of individual

elements. We then discuss the ranking scheme

that is used to propagate scores to antecedent

110

elements at coarser granularity. Finally we

present benchmark test results using the INEX

2003 XML collection, and the 2004 official

results assessments.

2.0 Query Interpretation

INEX provides a test collection of over 12,000

IEEE journal articles, a set of queries and a set of

evaluation metrics. Two types of queries are used

in INEX 2004: CO and VCAS. Content Only

(CO) queries ignore document structure and only

contain content stipulations. In contrast Vague

Content and Structure (VCAS) queries explicitly

express both content and structural requirements.

Both CO and CAS queries are expected to return

appropriately sized elements – not just whole

documents, and all queries are loosely

interpreted with respect to structural and

containment constraints – the overriding goal is

to satisfy the user’s information need rather than

the strict query formulation. Figures 1 and 2 are

examples of both query types.

Figure 1: CO Query

Figure 2: CAS Query

Both the description and title elements express

the user’s information needs. The description

expresses users’ need in a natural language (e.g.

English). The title expresses users’ information

need in either a list of keywords/phrases (CO) or

as a formal XPath-like language (CAS) called

Narrowed Extended XPath I (NEXI) [4].

The syntax of NEXI is similar to XPath,

however, it NEXI only uses XPath’s descendant

axis step, and extends XPath by incorporating an

‘about’ clause to provide an IR-like query.

NEXI’s syntax is //A[about(//B,C)] where A is

the context path, B is the relative path and C is

the content requirement. Conceptually each

‘about’ clause in a NEXI query represents an

individual information request. So conceptually

the query

 //A[about(//B,C)]//X[about(//Y,Z)]

 contains two requests:

 //A[about(//B,C)]

 and

 //A//X[about(//Y,Z)].

However, in NEXI only elements matching the

leaf (i.e. rightmost) ‘about’ clause, the second

request here, are flagged as of direct interest to

the user. We refer to these requests and elements

as ‘return requests' and ‘return elements’.

Elements that match the other ‘about’, clauses,

the first request here, are used to support the

return elements in ranking. We refer to these

requests and elements as ‘support requests’ and

‘support elements’. It should be noted that under

VCAS rules, the vague interpretation of queries

allows the return of elements whose XPath

signature does not strictly conform to the query

specification. The structural constraints are

regarded as retrieval hints, much in the same way

that keywords are regarded as retrieval hints.

2.2 Processing NEXI Queries

Once NEXI queries are input into the system

they are converted into an intermediate language

called the RS query language. The RS query

language converts NEXI queries to a set of

information requests:

Instruction | Retrieve_Filter | Search_Filter |

Content

Instruction: Either ‘R’ or ‘S’, corresponding to

‘return’ or ‘support’ component.

Retrieve_Filter: A logical XPath expression that

describes which elements should be retrieved by

the system. Often this correlates to context path

<inex_topic topic_id="XX" query_type="CO">

<title>

 "multi layer perceptron" "radial basis

functions" comparison

</title>

<description>

 The relationship and comparisons between

radial basis functions and multi layer

perceptrons

</description>

</inex_topic>

<inex_topic topic_id="XX"

query_type="CAS">

<title>

 //article[about(.,information

retrieval)]//sec[about(.,compression)]

</title>

<description>

 Find sections about compression in

articles about information retrieval.

</description>

</inex_topic>

111

of a NEXI query, so, in the query

//A[about(//B,C)] the retrieve filter is //A.

Search_Filter: A logical XPath expression that

describes which elements should be searched by

the system. Often this correlates to relative path

of a NEXI query, so, in the query

//A[about(//B,C)] the search filter is //A//B.

Figure 3 is an example of the queries introduced

in Figure 1 and Figure, 2 when converted to RS

queries.

Figure 3: Examples of RS Queries

3.0 XML File Inversion

In our scheme each term in an XML document is

identified by 3 elements. File path, absolute

XPath context, and term position within the

XPath context.

The file path identifies documents in the

collection; for instance:

C:/INEX/ex/2001/x0321.xml

The absolute XPath expression identifies a leaf

XML element within the document, relative to

the file’s root element:

/article[1]/bdy[1]/sec[5]/p[3]

Finally, term position identifies the ordinal

position of the term within the XPath context.

One additional modification that we

adopted allowed us to support queries on XML

tag attributes. This is not a strictly content

search feature, but rather structure oriented

search feature. For instance, it allows us to query

on the 2
nd

 named author of an article by

imposing the additional query constraint of

looking for that qualification in the attribute

element of the XML author element. The

representation of attribute values is similar to

normal text with a minor modification to the

XPath context representation – the attribute name

is appended to the absolute XPath expression.

For instance:

article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid

[1]

Here the character ‘@’ is used to flag the fact

that “rid” is not an XML tag, but rather an

attribute of the preceding tag <ref>. An inverted

list for a given term, omitting the File path and

the Term position, is depicted in figure 4.

In principle at least, a single table can hold the

entire cross reference list (our inverted file).

Suitable indexing of terms can support fast

retrieval of term inverted lists. However, it is

evident that there is extreme redundancy in the

specification of partial absolute XPath

expressions (substrings). There is also extreme

redundancy in full absolute XPath expressions

where multiple terms in the same document

share the same leaf context (e.g. all terms in a

paragraph). Furthermore, many XPath leaf

contexts exist in almost every document (e.g.

/article[1]/fm[1]/abs[1]).

We have chosen to work with certain imposed

constraints. Specifically, we aimed at

implementing the system on a PC and base it on

the Microsoft Access database engine. This is a

widely available off-the-shelf system and would

allow the system to be used on virtually any PC

running under any variant of the standard

Microsoft Windows operating system. This

choice implied a strict constraint on the size of

the database – the total size of an Access

database is limited to 2Gbyte. This constraint

implied that a flat list structure was infeasible

and we had to normalise the inverted list table to

reduce redundancy.

Context
XPath

article[1]/bdy[1]/sec[6]/p[6]/ref[1]

article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]

article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@type[1]

article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1]

article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pdt[1]/day[1]

article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1]

article[1]/bm[1]/bib[1]/bibl[1]/bb[15]

article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/@id[1]

article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/ti[1]

article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/obi[1]

Figure 4: XPath inverted list

The structure of the database used to store the

inverted lists is depicted in Figure 5. It consists

RS Query 1:

 R|//*|//*| relationship, comparisons, radial basis

functions, multi layer perceptions

RS Query 2:

R|//article//sec|//article//sec|compression

S|//article|//article| information retrieval

112

of 4 tables. The Terms table is the starting point

of a query on a given term. Two columns in this

table are indexed - The Term column and the

Term_Stem column. The Term_Stem column

holds the Porter stem of the original term. The

List_Position is a foreign key from the Terms

table into the List Table. It identifies the starting

position in the inverted list for the corresponding

term. The List_Length is the number of list

entries corresponding to that term. The List table

is (transparently) sorted by Term so that the

inverted list for any given term is contiguous.

As an aside, the maintenance of a sorted list in a

dynamic database poses some problems, but

these are not as serious as might seem at first,

and although we have solved the problem it is

outside the scope of this paper and is not

discussed any further.

A search proceeds as follows. Given a

search term we obtain a starting position within

the List table. We then retrieve the specified

number of entries by reading sequentially.

The inverted list thus obtained is Joined (SQL)

with the Document and Context tables to obtain

the complete de-normalised inverted list for the

term. The retrieval by Term_Stem is similar.

First we obtain the Porter stem of the search

term.

Figure 5: Schema for XML Inverted File.

Then we search the list by Term_Stem – usually

getting duplicate matches. All the lists for the

duplicate hits on the Terms table are then

concatenated. Phrases and other proximity

constraints can be easily evaluated by using the

Context_Position of individual terms in the List

table. With this normalization the database size

was reduced to 1.6GByte and within the

Microsoft Access limits.

4.0 Ranking Scheme

Elements are ranked according to a relevance

judgement score. In our scheme leaf and branch

elements need to be treated differently. Data

usually occurs at leaf elements, and thus, our

inverted list mostly stores information about leaf

elements. A leaf element is judged relevant if it

contains at least one query term. A branch node

is judged relevant if it contains a relevant child

element. Once an element (either leaf or bunch)

is judged relevant it relevancy judgement score is

calculated. A heuristically derived formula

(Equation 1) is used to calculate the relevance

judgment score of leaf elements. The same

equation is used for both return and support

elements. The score is determined from query

terms contained in the element. It penalises

elements with frequently occurring query terms

(frequent in the collection), and it rewards

elements with evenly distributed query term

frequencies within the elements.

Equation 1: Calculation of a Leaf Element’s

Relevance Judgement Score

∑
=

−

=

n

i i

in

f

t
NL

1

1

Here n is the number of unique query terms

contained within the leaf element, N is a small

integer (we used N=5). The term N
n-1

 scales up

the score of elements having multiple distinct

query terms. The system is not sensitive to the

value of N – we experimented with N=3 to 10

with little difference in results. The sum is over

all terms where ti is the frequency of the i
th

 query

term in the leaf element and fi is the frequency of

the i
th

 query term in the collection. This sum

rewards the repeat occurrence of query terms, but

uncommon terms contribute more than common

terms.

Once the relevance judgment scores of

leaf elements have been calculated, they can be

used to calculate the relevance judgment score of

branch elements. A naïve solution would be to

just sum the relevance judgment score of each

branch relevant children. However, these would

ultimately result in root (i.e. article) elements

accumulating at the top of the ranked list, a

scenario that offers no advantage over document-

level retrieval. Therefore, the relevance

judgement score of children elements should be

somehow decreased while being propagated up

the XML tree. A heuristically derived formula

113

(Equation 2) is used to calculate the scores of

intermediate branch elements.

Equation 2: Calculation of a Branch Element’s

Relevance Judgement Score

∑
=

=

n

i

iLnDR
1

)(

Where:

 n = the number of children elements

 D(n) = 0.49 if n = 1

 0.99 Otherwise

 Li = the i
th

 return child element

The value of the decay factor D depends on the

number of relevant children that the branch has.

If the branch has one relevant child then the

decay constant is 0.49. A branch with only one

relevant child will be ranked lower than its child.

If the branch has multiple relevant children the

decay factor is 0.99. A branch with many

relevant children will be ranked higher than its

descendants. Thus, a section with a single

relevant paragraph would be judged less relevant

than the paragraph itself, but a section with

several relevant paragraphs will be ranked higher

than any of the paragraphs.

Having computed scores for all result and

support elements, the scores of support elements

are added to the scores of the corresponding

result elements that they support. For instance,

consider the query:

//A[about(//B,C)]//X[about(//Y,Z)]

The score of a support element //A//B will be

added to all result elements //A//X//Y where the

element A is the ancestor of both X and Y.

Finally, structural constraints are only loosely

interpreted. So elements are collected regardless

of compliance with the structural stipulations of

the topic. So in the example above, ancestors or

descendents of Y may be returned, depending on

their score and final rank.

5.0 Assessment against 2003 data

We conducted experiments against the INEX

2003 query set and evaluation metrics. The

results from 2003 INEX queries were submitted

into the official INEX evaluation program that

calculated the recall/precision graphs. We tested

the system against the SCAS and against the CO

data. It should be noted that in the case of

SCAS, only results that strictly satisfy the

structural constraints are permissible. Therefore,

the test against the SCAS set was only useful in

assessing the utility of the search engine in

identifying return elements, but not in testing the

selection of antecedent elements. The CO data

however allowed us to test this approach.

 The results from the INEX 2003 data

were encouraging. We were able to obtain

results that were better than the best run in both

the CO and the SCAS track under the strict

metric, and very close to the best results under

the generalised metric. Figures 6 to 9 depict the

retrieval results of our unofficial test runs against

the 2003 data.

Figure 6: CO run evaluation

Figure 7: CO run evaluation

114

Figure 8: SCAS run evaluation

Figure 9: SCAS run evaluation

6.0 Assessment against 2004 data

The system was implemented in C# and run

under Windows XP. We tested the system in

both CO and VCAS tasks. The entire sets of

queries from each of the tasks were evaluated in

about 30 minutes on a Pentium M 1.6 MHz

processor with 1GB RAM. We have submitted 3

official runs in each of the tracks. We have used

the same 3 run strategies in both tasks as follows.

The basic run was as described in section 4. A

second run eliminated from the search any

keyword with a frequency greater than 50,000 in

the INEX collection. This almost halved the

time it took to evaluate all the queries. Our

results from tests on the 2003 data indicated that

this would have little impact on the final result

and indeed this is confirmed by the 2004 results

(see figures 10 and 11). The third run was used

to test a slightly different ranking approach. We

have changed the decay factor in Equation 2 as

follows:

D(n) = 0.25 if n = 1

 0.49 otherwise

This means that more specific elements are

preferred. It takes the accumulation of several

children before a parent element accumulates a

score higher than its children scores. Our

experiments against 2003 data revealed that this

strategy worked best against metrics that

preferred specificity over exhaustivity. We have

not used stemming, but used plural/singular

expansion of search terms.

The results of the INEX 2004 benchmark are

depicted in figures 10 to 12 (downloaded from

LIP6 web site of official INEX 2004 metrics.)

Figure 10: VCAS evaluation, stopping words

with frequency greater than 50,000 in the

collection (rank: 1)

Figure 11: VCAS run evaluation, standard

configuration (rank: 2)

115

Figure 12: VCAS run evaluation, stopping words

with frequency greater than 50,000, Decay factor

0.49 / 0.25 (rank: 3)

It can be seen that it did not make a great

difference to the overall ranking whether

stopping was used, or whether we varied the

decay factor. This is a comforting result because

it indicates that the approach is not sensitive to

the “magic numbers” that we used in Equations 1

and 2. The best result was obtained when

stopping keywords at frequency above 50K and

using the standard ranking strategy (equations 1

and 2).

The results for the CO track are depicted in

figures 13 to 15, and we observe the same

pattern.

Figure 13: CO run evaluation standard

configuration (rank: 7)

Figure 14: CO run evaluation, stopping words

with frequency greater than 50,000 in the INEX

collection (rank: 6)

Figure 15: CO run evaluation, stopping words

with frequency greater than 50,000, Decay factor

0.49 or 0.25 (rank: 12)

7.0 Unofficial submissions

Several other unofficial submissions were used

to test additional techniques. We have tested the

utility of blind feedback and of evaluating VCAS

topics as if they were CO topics.

7.1 Blind Feedback

Blind feedback was performed as follows. First

a retrieval run was performed. Then the top 10

result elements were extracted. All the words in

these elements were collected and stop words

eliminated (words occurring more than 50,000

times in the collection). Words occurring in less

than 20% of leaf elements in the results were

then eliminated. The remaining words were then

sorted by frequency count and the 5 most

frequent terms (at most) added to the topic. Then

a second retrieval run was performed. As usual,

116

the idea is to identify words that occur frequently

in highly ranked elements. The results of this

experiment are depicted in figure 16.

Figure 16: CO topics evaluated with blind

feedback using the top 10 elements

 (unofficial rank: 8)

The results are similar to those obtained without

blind feedback. We experimented with various

parameters on 2003 data, but were unable to

discover an advantageous configuration.

7.2 Evaluating VCAS as CO

CAS queries contain both structural and

containment constraints. We have tested the

significance of the structural constraints by

transforming the VCAS queries into CO queries.

This is easily done by collecting all the keywords

from all the about clauses to form a CO title

elements for the topic. One would expect

degradation in performance, but the question is

to what extent performance will degrade. Figure

17 depicts the performance of a VCAS as CO

evaluation.

Figure 17: VCAS evaluated as CO by removing

structural constraints (unofficial rank 5th)

The performance of the search engine with this

approach is surprisingly good. The average

precision is 0.09, which places the submission in

5th position overall. It seems to suggest that at

least with the current INEX collection there is

relatively little advantage to specifying structural

constraints.

8.0 Conclusion and Future Outlook

This paper presents an XML IR system responds

to user queries with relevant and appropriately

sized results in a timely manner. The approach is

based on simple inverted lists indexing and on

simple heuristics in ranking. Despite its

simplicity our system produces results that are

comparable with the best alternatives at INEX.

Future work will concentrate on improving the

ranking strategy, improving the blind feedback

implementation, the use of ontology for query

expansion, and on natural language processing.

The system had been implemented as a

massively distributed IR system and we are

looking forward to an opportunity to evaluate it

against a Terabyte size collection.

References

[1] N. Fuhr and S. Malik. Overview of the

Initiative for the Evaluation of XML

Retrieval (INEX) 2003. In INEX 2003

Workshop Proceedings, Schloss

Dagstuhl, Germany, December 15-17,

2003, pages 1-11. 2004.

[2] B. Sigurbjornsson, J. Kamps, M. de

Rijke, An Element-based Approach to

XML Retrieval, In INEX 2003 Workshop

Proceedings, Schloss Dagstuhl,

Germany, December 15-17, 2003, pages

19-26, 2004.

[3] Trotman, A. and O’Keefe, “The Simplest

Query Language That Could Possibly

Work”, In INEX 2003 Workshop

Proceedings, Schloss Dagstuhl,

Germany, December 15-17,2003, pages

167-174, 2004.

[4] A. Trotman and B. Sigurbjörnsson,

Narrowed Extended XPath I (NEXI),

http://www.cs.otago.ac.nz/postgrads/andr

ew/2004-4.pdf, 2004.

[5] R. J. Van Rijsbergen, R. J., Information

Retrieval, Butterworths, Second Edition,

1979.

117

Hierarchical Language Models for
XML Component Retrieval

Paul Ogilvie and Jamie Callan
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

pto@lti.cs.cmu.edu, callan@lti.cs.cmu.edu

ABSTRACT
Experiments using hierarchical language models for XML
component retrieval are presented in this paper. The role of
context is investigated through incorporation of the parent’s
model. We find that context can improve the effectiveness of
finding relevant components slightly. Additionally, biasing
the results toward long components through the use of com-
ponent priors improves exhaustivity but harms specificity,
so care must be taken to find an appropriate trade-off.

1. INTRODUCTION
Language modeling approaches have been applied success-
fully to retrieval of XML components in previous INEX eval-
uations [7][12][5][9][10]. In [9] and [10], the authors pre-
sented a hierarchical language model for retrieval of XML
components. These works proposed that each document
component be modeled by a language model estimated us-
ing evidence in the node and its children nodes. The work
here extends the model to include the parent node’s model
in estimation, which allows for some context and is called
shrinkage.

New experiments using this model are presented that exam-
ine the role of shrinkage introduced in this work and the use
of the prior probabilities popularized by [5] for the evalua-
tion of Content-Only queries. Our experiments show that
shrinkage provides a modest boost in performance. Prior
probabilities can have a strong effect in biasing results, par-
ticularly in improving exhaustivity (finding all relevant text)
while at the same time harming specificity (finding the best
component within the hierarchy). A prior based on the
square of the length of text contained in a component and
its children was found to be most effective.

Section 2 presents the model of documents and Section 3.1
describes how document components are ranked. Experi-
mental methodology and results are presented in Sections 4

and 5. Related work is discussed in Section 6 and Section 7
concludes the paper.

2. MODELING DOCUMENTS WITH
HIERARCHICAL STRUCTURE

Hierarchically structured documents may be represented as
a tree, where nodes in the tree correspond to components of
the document. From the content of the document, a genera-
tive distribution may be estimated for each node in the tree.
The distribution at a node may be estimated using evidence
from the text of the node, the children’s distributions, or
the parent’s distribution, and so on.

Representing hierarchically structured documents in this man-
ner is simple and flexible. In this approach we combine the
evidence from the various components in the document us-
ing the document structure as guidance. This model uses
linear interpolation to combine the evidence from the com-
ponent, its children components, and its parent component.
The model below is similar to previous work by the au-
thors [9][10], but is extended to allow for the inclusion of a
component’s context within the document.

More formally, the hierarchical structure of the document
is represented by a tree, each vertex v ∈ V in the tree cor-
responding to a document component. Directed edges in
the tree are represented as a list of vertex pairs (vi, vj) ∈ E
when vi is the parent of vj . Parent, children and descendants
functions may be defined as:

parent (vj) = vi : (vi, vj) ∈ E

children (vi) = {vj : (vi, vj) ∈ E}

descendants (vi) =

 vj : vj ∈ children (vi) or
∃vk ∈ children (vi)
s.t. vj ∈ descendants (vk)


As stated above, the generative model for a component may
be estimated using a linear interpolation of the model esti-
mated directly from the component, its children’s models,
and its parent model. Estimation of the generative models
for the components of a document is a three step process.
First, a smoothed generative model is θvi estimated from
the observations of the component in the document vi that

118

does not include evidence of children components:

P (w |θvi) =
(
1− λuvi

)
P (w |MLE (vi))

+λuviP
(
w
∣∣θtype(vi)) (1)

This model estimates a distribution directly from observed
text within the document component. The θtype(vi) model
is a collection level background model for smoothing these
estimates. The background model is sometimes referred to
as a “universal” model, hence the u in λu. The type func-
tion may be used to specify document component specific
models, as the language in titles titles may be different from
other text, or it may simply return one language model for
all components, which would provide larger amounts of text
for the estimation of the corpus model.

The next step is to estimate the intermediate θ′vi model,
from the bottom up to the top of the tree:

P
(
w
∣∣θ′vi) = λc

′
viP (w |θvi)

+
∑
vj∈children(vi)

λcvjP
(
w
∣∣∣θ′vj) ,

1 = λc
′
vi +

∑
vj∈children(vi)

λcvj

(2)

This model incorporates the evidence from the children nodes.
If the λc parameters are set proportional to the length of the
text in the node, as in

λc
′
vi = |vi|

|vi|+
∑
vk∈descendants(vi)

|vk|

λcvj =
|vj |+∑vk∈descendants(vj)

|vk|

|vi|+
∑
vk∈descendants(vi)

|vk|

(3)

where |vi| is the length in tokens of the text in node vi not
including tokens in its children, θ′vi is equivalent to a flat text
model estimated from the text in node vi interpolated with
a background model. However, this choice of parameters is
not required, and the weight placed on a child node may be
dependent on the node’s type. For example, the text in title
nodes may be more representative of queries than the body
of a document, so a higher weight on the title model may
improve retrieval performance.

After the estimation of θ′vi , the θ′′vi models used for rank-
ing the components are estimated from the root of the tree
down:

P
(
w
∣∣θ′′vi) =

(
1− λpparent(vi)

)
P
(
w
∣∣θ′vi)

+λpparent(vi)P
(
w
∣∣θ′′parent(vi)) (4)

Incorporating the parent model in this way allows the con-
text of the component within the document to influence the
language model. Incorporating a parent’s language model
in this way is referred to as shrinkage. In [8], McCallum and
Nigam introduced shrinkage to information retrieval in the
context of text classification. Classes were modeled hiearchi-
cally in this work. Class language models were estimated
from the text in the documents assigned to the class, and
all ancestor language models in the class hierarchy. The hi-
erarchical model for classes used in [8] is very similar to the

v2title

v4 quote

v1 poem

3v body

Figure 1: The tree representing document structure
for “Little Jack Horner”.

model of documents presented in this proposal. The differ-
ence in model estimation this proposal is the application of
shrinkage to document models, rather than class models.

The choice of linear interpolation parameters λ may depend
upon the task and corpus. Ideally, the choice of these pa-
rameters would be set to maximize some measure of retrieval
performance through automated learning.

A set of rankable items, document components that may
be returned by the system, R must also be defined for the
document. For the hierarchical model presented here, R
may be any subset of V.

2.1 Example
The estimation process described above may be clarified
through describing the process for an example document.
The example document is a well known children’s poem en-
coded in XML:

<poem id=‘p1’>

<title> Little Jack Horner </title>

<body>

Little Jack Horner

Sat in the corner,

Eating of Christmas pie;

He put in his thumb

And pulled out a plumb,

And cried, <quote> What a

good boy am I! </quote>

</body>

</poem>

There are four components of this document, corresponding
to the poem, title, body, and quote tags. Let us now assign
labels to these components v1 to the poem, v2 to the title
component, v3 to the body component, and v4 to the quote.
The structure of the document may be drawn, as in Figure 1
or be described as a set of vertices and edges:

G = (V, E)
V = {v1, v2, v3, v4}
E = {(v1, v2) , (v1, v3) , (v3, v4)}

Not all components of the document may be rankable items.
A set of rankable items must be defined. In our example,
perhaps only the poem and the body of the poem are con-
sidered rankable items: R = {v1, v3}.

The estimation process is illustrated in Figure 2. First,
smoothed θvi models are estimated for each vertex using

119

the text occurring in the document component correspond-
ing to the vertex. Note that “What a good boy am I!” is
not used for the estimation of θv3 , it is only used in the
estimation for the model of v3’s child node v4:

P (w |θvi) =
(
1− λuvi

)
P (w |MLE (vi))

+λuviP
(
w
∣∣θtype(vi)) (5)

Next, the θ′vi models are estimated by combination of the
θvi model and the θ′ models of vi’s children. For example,
θ′v3 is an interpolation of θv3 and θ′v4 . Similarly, θ′v1 is an
interpolation of θv1 , θ′v2 , and θ′v3 :

P (w |θ′v1) = λc
′
v1P (w |θv1) + λcv2P (w |θ′v2)

+λcv3P (w |θ′v3)

P (w |θ′v2) = P (w |θv2)

P (w |θ′v3) = λc
′
v3P (w |θv3) + λcv4P (w |θ′v4)

P (w |θ′v4) = P (w |θv4)

(6)

Finally, the θ′′vi models used in ranking are estimated by in-
terpolating the θ′vi model with the θ′′parent(vi) model. In the

example, θ′′v1 is simply taken as θ′v1 as v1 has no parent. The
other vertices do have parents, and θ′′v3 is an interpolation
of θ′v3 and θ′′v1 :

P (w |θ′′v1) = P (w |θ′v1)

P (w |θ′′v3) = (1− λpv1)P (w |θ′v3) + λpv1P (w |θ′′v1)

(7)

We can expand the equations for these rankable items to use
only θ models as follows:

P (w |θ′′v1) = λc
′
v1P (w |θv1) + λcv2P (w |θv2)

+λcv3

(
λc
′
v3P (w |θv3) + λcv4P (w |θv4)

)

P (w |θ′′v3) = (1− λpv1)
(
λc
′
v3P (w |θv3) + λcv4P (w |θv4)

)
+λpv1P (w |θ′′v1)

= (1− λpv1 + λpv1λ
c
v3)(

λc
′
v3P (w |θv3) + λcv4P (w |θv4)

)
+λpv1

(
λc
′
v1P (w |θv1) + λcv2P (w |θv2)

)
(8)

3. RANKING ITEMS FOR QUERIES
This section describes how rankable items are ordered for
queries. Ordering of items is based on the query-likelihood
model, where items are ranked by the probability of gener-
ating the query. It is also desirable to provide support for
structured queries as well, which will be discussed.

3.1 Queries
Rankable items across documents for flat text queries may
simply be ordered by P

(
Q
∣∣θ′′vi), where

P
(
Q
∣∣θ′′vi) =

∏
w∈Q

P
(
w
∣∣θ′′vi)tf(w,Q)

(9)

This is the natural adaptation of query-likelihood [11][4]
[16][13][15] to the model.

There are many cases where it is desirable to place con-
straints on where the query terms appear in the document
structure of a representation. This can be done by constrain-
ing which θvi distribution generates the terms. For example,
consider the NEXI [14] query

//poem[about(.//title, Horner)]

which requests poem components where the title component
is about ‘Horner’. The NEXI query language was developed
as a simple adaptation of XPath to information retrieval.
All example queries in this proposal will be expressed in
NEXI. For our example document with a single representa-
tion, instead of measuring P (‘Horner’ |θ′′v1), corresponding
to the probability the poem component generated the query
term ‘Horner’, P (‘Horner’ |θ′′v2) is used. P (‘Horner’ |θ′′v2)
measures the probability that the title component generated
‘Horner’.

There are cases where a structural constraint on the query
may be applicable to multiple components. Consider the
query:

//document[about(.//paragraph, plum)]

Most documents contain many paragraphs. Which distribu-
tion is chosen to generate ‘plum’? Many reasonable options
are applicable. One approach may create a new distribution
estimated as a combination of all of the θ′′vi distributions cor-
responding to paragraph components. Another approach
may take the θ′′vi distribution corresponding to paragraph
nodes that maximizes the probabity of generating ‘plum’,
which is the approach taken here.

Constraining the generating distribution in this manner is
a strict interpretation of the constraints expressed in the
query (as in previous SCAS tasks). The ranking items as
described above requires that only poems be returned as re-
sults and that they contain titles. Note that through the use
of smoothing, ‘Horner’ is not required to be present in the
title. However, if the structural constraints are intended as
hints to relevance (as in the VCAS task), then this approach
can only return a subset of relevant items. Loose interpre-
tation of structural constraints is something that remains a
challenge and will be investigated as a part of future work.

120

θ

θ θ

θ

What a good
boy am I!

Little Jack Horner
Sat in the corner,
Eating of Christmas pie;
He put in his thumb
And pulled out a plumb
And cried,

θ

θ θ

θ

θ

θ θ

θ

θ

θ θ

θ

θ

θ θ

θ

1

3

4

2

v

v v

v

’ ’

’

’

1

3

4

2

v

v v

v

1

3

4

2

v

v v

v

’’

’’

’’

’’

’ ’

’

’

1

3

4

2

v

v v

v

1

3

4

2

v

v v

v

Little Jack
Horner

2) Smooth Up Tree 3) Smooth Down Tree1) Direct Estimates &
 Smoothing with
 Background Model

Figure 2: The estimation process for “Little Jack Horner”.

3.2 Priors
Query independent information about relevant documents is
not uncommon and may be useful for ranking purposes. For
example, there may be a tendency for longer documents to
be more likely to be relevant than short documents. This in-
formation may be leveraged through the use of priors, which
are a belief independent of the query that the document may
be relevant. They are incorporated to ranking within the
generative framework using Bayes rule:

P (vi is Rel |Q, g (vi) = a)

∝ P (Q |vi is Rel, g (vi) = a)

P (vi is Rel |g (vi) = a)

≈ P
(
Q
∣∣θ′′vi)P (vi is Rel |g (vi) = a)

(10)

where g (vi) is a function of the rankable item such as the
length of vi and P

(
Q
∣∣θ′′vi) is assumed representative of

P (Q |vi is Rel, g (vi) = a). Theoretically, the prior proba-
bility P (vi is Rel |g (vi) = a) can be estimated from train-
ing data. However, in practice the prior is not a true prior
probability estimate as it is often used to correct a bias in
the ranking function at the same time as incorporating the
prior belief that vi is relevant. This makes the choice of how
P (vi is Rel |g (vi) = a) is estimated somewhat of a fine art,
rather than a theoretically driven process.

4. METHODOLOGY
All experiments use a local adaptation of the Lemur [1]
toolkit for XML retrieval. Two databases were built - one
using the Krovetz stemmer [6], and one without stemming.
A stopword list of around 400 words was used for both

databases. Our prior INEX paper [10] describes most adap-
tations to index structures and basic retrieval algorithms
used presently.

Since then, some query nodes for structured retrieval have
been added. We presently only support AND clauses, about
clauses, and path constraints. Numeric constraints are ig-
nored by the retrieval system. OR clauses are converted to
AND clauses, temporarily sidestepping the issue of how the
OR probabilities are computed. NOT clauses are dropped
from the query, as are terms with a ‘-’ in front of them. Dif-
ferent clauses of the queries are given equal weight. Phrase
constraints are dropped, but the words are kept. A ‘+’ in
front of a query term is ignored. Basically, all queries are
converted to contain only AND clauses with path constraints
and about clauses. For example, query 66 is converted from

//article[.//fm//yr < 2000]

//sec[about(., ‘search engines’)]

to

//article//sec[about(., search engines)]

The graph structures used were taken directly from the XML
structure of the document. All components were considered
rankable items. The weight placed on the collection model
λu is 0.2 and when using shrinkage, λp is set to 0.1. A single
background model estimated from all text in the collection

was used. Estimation of θ′ models use λc
′

and λc set ac-
cording to Equation 3. These parameters were chosen by
experimentation on the INEX 2003 topics.

121

The prior probabilities used in experiments are all based on
the aggregated length of a component may take the following
form:

• linear – P (vi is Rel |length (vi) = x) ∝ x

• square – P (vi is Rel |length (vi) = x) ∝ x2

• cubic – P (vi is Rel |length (vi) = x) ∝ x3

where

length (vi) = |vi|+
∑

vk∈descendants(vi)

|vk| . (11)

5. EXPERIMENTS
This section describes some experiments with variations of
the system. The discussion in this section centers on the
content-only topics. Figure 3 examines the effects of prior
probabilities on the strict measure and the specificity ori-
ented measure for content-only topics. The runs in this fig-
ure used the Krovetz stemmer and a shrinkage parameter
λp = 0.1. The use of more extreme length priors generally
resulted in noticeable improvements to the strict measure
but at a sacrifice to the specificity oriented measure. Re-
sults for more configurations and measures are presented
in Table 5. The trends in Figure 3 are confirmed in the
table. The more extreme the prior, the higher the exhaus-
tivity and the lower the specificity. Using a more extreme
prior also reduced overlap in the result lists, as these runs
had distinct biases toward long components. For the rest of
the discussion in this section, a linear prior was chosen as a
good trade-off between improved exhaustivity and harmed
specificity.

Next, some experiments using different shrinkage parame-
ters are explored. For these runs, only the system using the
Krovetz stemmer and a linear prior was explored. Figure 4
demonstrates that small values of λp boost precision mod-
estly for both strict and specificity oriented measures. A
non-zero shrinkage parameter did seem to help, and using
too large a parameter hurt precision at low recall. The bot-
tom half of Table 5 contains more evaluation measures and
parameter settings. Small settings for the shrinkage param-
eter can improve performance across all measures, but these
results may not be significant.

This section concludes with a brief discussion of the content-
and-structure runs. Our original submission had a bug which
allowed a component to be returned in the result list multi-
ple times (with different supporting components). This bug
has been fixed, and a comparison of the official runs and
the bug-fixes are in Table 5. The runs using query structure
took a strict interpretation of constraints and as such, it is
not surprising the did poorly for the VCAS task. Our best
performing run did not use any structure in the query. All
non-structural constraints were removed from the query so
that keywords present in the about clauses remained. This
was then treated as a flat text query and run using the con-
figuration for CO topics. The use of prior probabilities was
investigated, and it was found that the trade-off between
exhaustivity and specificity observed for CO held for VCAS
as well. However, there does seem to be a preference for

shorter components in the VCAS task, as the square prior
hurt performance across the board, while the linear prior
improved performance.

6. RELATED WORK
Much of the current work in XML component retrieval can
be found these proceedings and in [2][3], so only highly re-
lated works will be discussed here.

The Tijah system [7] also uses generative models for retrieval
of XML components. They do not explicitly model the hier-
archical relationship between components when estimating
language models. Instead, they estimate a language model
for each component using the text present in it and its chil-

dren. This is equivalent to our model when λp = 0 and λc
′

and λc are set according to Equation 3. They also incorpo-
rate prior probabilities using a log-normal and a linear com-
ponent length prior. To provide context in the scoring of a
component, they average the component score with the doc-
ument score. For structured queries, constraints on struc-
ture are processed similarly. However, for OR clauses, the
maximum of the scores is taken, while the minimum is taken
for AND clauses. A system configuration for vague evalua-
tion of structured queries is realized using query rewrites.

Kamps, Sigurbjörnsson, and de Rijke [5] [12] also work within
the language modeling framework. Like [7], they do not ex-
plicitly model hierarchical relationship between document
components when estimating the language model for a com-
ponent. Rather than estimating the background model us-
ing a maximum likelihood estimator, they use an estimate
based on element frequencies. They present experiments us-
ing a linear, square, and cubic component length prior, and
also experiment with a cut-off filtering out short compo-
nents. As with [7], their model is comparable to our model

when λp = 0 and λc
′

and λc are set according to Equa-
tion 3. For processing structured queries, [12] describes an
approach that combines query rewrites with strict interpre-
tation of the query.

7. CONCLUSIONS
This paper described experiments using hierarchical lan-
guage models for modeling and ranking of XML document
components. It extended previous work to incorporate con-
text through the use of shrinkage, which helps modestly for
flat text queries. A very small choice for the shrinkage pa-
rameter was found to be best for retrieval. This paper also
presented experiments using length based priors. A prior
probability proportional to the length of the component was
found to be most effective across a number of measures.

For vague content and structure queries, where structure is
intended only as a hint to the retrieval system, we found
that ignoring structure in the query was better than taking
a strict interpretation of the structural constraints. This
is much like using a flat text query. As with the content
only queries, a linear length prior was found to improve per-
formance, but the vague content and structure queries may
have a preference for shorter components than the content
only queries on average.

Future experiments will examine use of the structural con-

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Priors - CO - Strict

No Prior
Linear Prior

Square Prior
Cubic Prior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on
Recall

Priors - CO - Specificity Oriented

No Prior
Linear Prior

Square Prior
Cubic Prior

Figure 3: More extreme length priors can greatly improve performance under strict evaluation, but at a
sacrifice to specificity oriented evaluation.

Table 1: Run performance for Content-Only topics.

Official λp Stemmer Prior Strict Generalized SO s3 e321 s3 e32 e3 s321 e3 s32 Overlap Aggregate
YES1 0.0 - - 0.0640 0.0728 0.0655 0.0541 0.0494 0.0806 0.0693 66.7 0.0651
NO 0.0 - linear 0.0896 0.0770 0.0650 0.0564 0.0602 0.1234 0.0950 72.6 0.0809
NO 0.0 - square 0.1224 0.0448 0.0318 0.0236 0.0461 0.1864 0.1618 47.1 0.0881
NO 0.0 - cubic 0.0902 0.0226 0.0167 0.0130 0.0266 0.1367 0.1342 41.7 0.0629
YES2 0.1 - - 0.0675 0.0908 0.0897 0.0771 0.0685 0.0769 0.0729 74.8 0.0774
NO 0.1 - linear 0.0688 0.0829 0.0721 0.0640 0.0634 0.1055 0.0839 73.4 0.0772
NO 0.1 - square 0.1268 0.0480 0.0344 0.0262 0.0493 0.1885 0.1639 46.3 0.0910
NO 0.1 - cubic 0.0927 0.0230 0.0173 0.0139 0.0277 0.1380 0.1364 40.5 0.0641
YES3 0.1 Krovetz - 0.0667 0.0947 0.0941 0.0835 0.0728 0.0776 0.0753 73.0 0.0807
NO 0.1 Krovetz linear 0.0817 0.0882 0.0770 0.0663 0.0655 0.1191 0.0997 72.6 0.0853
NO 0.1 Krovetz square 0.1129 0.0445 0.0330 0.0252 0.0434 0.1721 0.1716 46.2 0.0861
NO 0.1 Krovetz cubic 0.0859 0.0200 0.0151 0.0117 0.0231 0.1324 0.1492 40.4 0.0625

NO 0.000 Krovetz linear 0.0745 0.0771 0.0651 0.0561 0.0537 0.1173 0.0910 72.4 0.0764
NO 0.025 Krovetz linear 0.0874 0.0867 0.0748 0.0632 0.0636 0.1315 0.1066 72.1 0.0877
NO 0.050 Krovetz linear 0.0849 0.0885 0.0765 0.0654 0.0651 0.1315 0.1050 72.3 0.0881
NO 0.075 Krovetz linear 0.0830 0.0889 0.0775 0.0667 0.0660 0.1255 0.1010 72.5 0.0869
NO 0.100 Krovetz linear 0.0817 0.0882 0.0770 0.0663 0.0655 0.1191 0.0997 72.6 0.0853
NO 0.125 Krovetz linear 0.0682 0.0840 0.0734 0.0632 0.0599 0.1076 0.0905 72.8 0.0781
NO 0.150 Krovetz linear 0.0591 0.0761 0.0670 0.0573 0.0516 0.0915 0.0769 73.0 0.0685

1Lemur CO NoStem Mix02 2Lemur CO NoStem Mix02 Shrink01 3Lemur CO KStem Mix02 Shrink01

Table 2: Run performance for Content-and-Structure topics.

Official Structure λp Prior Strict Generalized SO s3 e321 s3 e32 e3 s321 e3 s32 Overlap Aggregate
YES1 NO 0.1 - 0.0710 0.0746 0.0759 0.0834 0.0799 0.0700 0.0764 74.0 0.0759
NO NO 0.1 Linear 0.0889 0.0847 0.0804 0.0819 0.0839 0.0949 0.0904 69.9 0.0864
NO NO 0.1 Square 0.0585 0.0468 0.0377 0.0359 0.0419 0.0836 0.0576 48.3 0.0217
YES2 YES 0.0 - 0.0468 0.0180 0.0166 0.0253 0.0367 0.0419 0.0424 2.4 0.0325
NO (fix) YES 0.0 - 0.0616 0.0276 0.0309 0.0409 0.0604 0.0413 0.0590 4.6 0.0459
YES3 YES 0.1 - 0.0466 0.0199 0.0177 0.0249 0.0369 0.0457 0.0455 2.4 0.0339
NO (fix) YES 0.1 - 0.0621 0.0274 0.0302 0.0409 0.0606 0.0418 0.0591 4.8 0.0460

1Lemur CAS as CO NoStem Mix02 Shrink01 2Lemur CAS NoStem Mix02 3Lemur CAS NoStem Mix02 Shrink01

123

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Shrinkage - CO - Strict

0.00
0.05
0.10
0.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on

Recall

Shrinkage - CO - Specificity Oriented

0.00
0.05
0.10
0.15

Figure 4: Very small shrinkage parameter values boost precision moderately at mid-recall ranges for strict
evaluation and across the range for specificity oriented evaluation.

straints in the content and structure queries as hints for rel-
evance within the framework. More experimentation with
how the shrinkage parameter is set will be performed, as
well as different approaches to setting the interpolation pa-
rameters for the combination of evidence from child nodes.

8. ACKNOWLEDGMENTS
This research was sponsored by National Science Founda-
tion (NSF) grant no. CCR-0122581. The views and con-
clusions contained in this document are those of the author
and should not be interpreted as representing the official
policies, either expressed or implicit, of the NSF or the US
government.

9. REFERENCES
[1] The lemur toolkit for language modeling and

information retrieval. Technical report.
http://lemurproject.org/.

[2] N. Fuhr, N. Goevert, G. Kazai, and M. Lalmas,
editors. Proceedings of the First Workshop of the
INitiative for the Evaluation of XML Retrieval
(INEX). ERCIM, 2003.

[3] N. Fuhr, S. Maalik, and M. Lalmas, editors. Proc. of
the Second Annual Workshop of the Initiative for the
Evaluation of XML retrieval (INEX), Dagstuhl,
Germany, Dec. 2003.

[4] D. Hiemstra. Using language models for information
retrieval. PhD thesis, University of Twente, 2001.

[5] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length
normalization in xml retrieval. In Proceedings of the
Twenty-Seventh Annual International ACM SIGIR

Conference on Research and Development in
Information Retrieval, pages 80–87, 2004.

[6] R. Krovetz. Viewing morphology as an inference
process. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
191–202. ACM, 1993.

[7] J. List, V. Mihajlovic, G. Ramirez, and D. Hiemstra.
The tijah xml-ir system at inex 2003. In INEX 2003
Workshop Proceedings, pages 102–109, 2003.

[8] A. McCallum and K. Nigam. Text classification by
bootstrapping with keywords, em and shrinkage. In
Proceedings of the ACL 99 Workshop for Unsupervised
Learning in Natural Language Processing, pages
52–58, 1999.

[9] P. Ogilvie and J. Callan. Language models and
structured document retrieval. In Proceedings of the
First Workshop of the INitiative for the Evaluation of
XML Retrieval (INEX), 2003.

[10] P. Ogilvie and J. P. Callan. Using language models for
flat text queries in xml retrieval. In Proc. of the
Second Annual Workshop of the Initiative for the
Evaluation of XML retrieval (INEX), Dagstuhl,
Germany, Dec. 2003.

[11] J. Ponte and W. Croft. A language modeling approach
for information retrieval. In Proceedings of the 21st
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 275–281. ACM Press, 1998.

124

[12] B. Sigurbjörnsson, J. Kamps, and M. de Rijke.
Processing content-and-structure queries for xml
retrieval. In Proccedings of the First Twente Data
Management Workshop, pages 31–38, 2004.

[13] F. Song and W. Croft. A general language model for
information retrieval. In Proceedings of the Eighth
International Conference on Information and
Knowledge Management, 1999.

[14] A. Trotman and B. Sigurbjörnsson. Narrow Extended
XPath I. Technical report, 2004. Available at
http://inex.is.informatik.uni-duisburg.de:2004/.

[15] T. Westerveld, W. Kraaij, and D. Hiemstra.
Retrieving web pages using content, links, URLs, and
anchors. In The Tenth Text REtrieval Conf.
(TREC-10), NIST SP 500-250, pages 663–672, 2002.

[16] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems,
2(2), April 2004.

125

Ranked Retrieval of Structured Documents with the
S-Term Vector Space Model

Felix Weigel Klaus U. Schulz
Centre for Information and Language Processing

University of Munich (LMU), Germany
Oettingenstraße 67, D-80538 Munich

{weigel,schulz}@cis.uni-muenchen.de

Holger Meuss
European Southern Observatory (ESO)

Headquarter Garching, Germany
Karl-Schwarzschild-Straße 2, D-85748 Garching

hmeuss@eso.org

ABSTRACT
This paper shows how the s-term ranking model [13] is ex-
tended and combined with index structures and algorithms
for structured document retrieval to enhance both the effec-
tiveness of the model and the retrieval effiency. We explain
in detail how previous work on ranked and exact retrieval
can be integrated and optimized, and which adaptions are
necessary. Our approach is evaluated experimentally at the
INEX workshop 2004 [4]. The results are encouraging and
give rise to a number of future enhancements.

1. INTRODUCTION
The retrieval and ranking of structured text documents

has by now become an IR discipline in its own right. As
more and more documents are available in ever growing web
repositories, digital libraries, and intranet knowledge bases,
performance both in terms of the ranking effectiveness and
the retrieval efficiency is paramount. When searching the
relevant parts of millions of documents occupying hundreds
of megabytes, naive solutions often turn out to be inade-
quate. Many sophisticated ranking models for structured
documents have been proposed [2, 19, 13, 12, 15, 14], most
of which are based on the traditional tf ·idf model for “flat”
text documents [11]. Two key issues in the adaption of tf ·idf
to structured data are (1) the document boundary problem,
i.e. the question which units of the data are to be treated as
coherent pieces of information, and (2) the structural simi-
larity problem, which concerns methods for quantifying the
distance of a document to a given query. While the first
problem is intrinsic to structured documents whose hierar-
chical natureblurs the physical boundaries imposed by a file
system, the second problem arises in “flat” retrieval as well.
However, similarity measures for structured documents nec-
essarily make assumptions concerning the documents to be
ranked, hence both problems are tightly linked.

The second aspect of performance, efficiency, seems to
be a greater concern in the field of exact (i.e., unranked)
retrieval of structured documents. However, ongoing work
[18, 17, 14, 10] investigates how to integrate effective ranking
techniques with data structures and algorithms for the effi-
cient exact retrieval. In this paper, we follow the approach
adopted in [18] and integrate the s-term ranking model [13]
with the Content-Aware DataGuide (CADG) index, which
stores additional information needed for computing rele-
vance scores. As a further efficenhancement, an efficient

structural join [1] is applied during relevance computation.
To increase the effectiveness of the original s-term model,
we extend it with several IR features such as order and dis-
tance constraints on search term occurrences and Boolean
constraints on textual and structural parts of the query. We
also report on a first evaluation of the extended model in
experiments at the INEX workshop 2004 [4].

The paper proceeds as follows: Section 2 reviews the orig-
inal s-term model in a nutshell. Section 3 explains the data
structures and algorithms used in our implementation of the
s-term model, as well as the extensions to the model. Sec-
tion 4 presents and discusses the experimental results we
obtained at INEX 2004. Section 5 briefly reviews some of
the related work cited above. Section 6 concludes with a
glance at our agenda for the s-term model.

2. S-TERM VECTOR SPACE MODEL
The s-term vector space model [13] combines the vector

space model (VSM) [11] with Kilpeläinen’s tree matching
approach [5] to retrieving structured documents. The key
concepts in the VSM, document, query and term, are adapted
so as to cover both the structural and the textual dimension
of the data. To this end, documents, queries and – most
notably – terms are modelled as labelled trees in [13]. Note
that the resulting structured terms (s-terms) are in general
subtrees of queries and documents, labelled with both ele-
ment names and “flat” terms as known from traditional IR.
As a special case, an s-term representing a “flat” term con-
sists of a single labelled text node. Each s-term contained
in a query may be weighted to reflect its contribution to the
underlying information need. In [13] it is shown that with
suitable weights for query terms, the s-term vector space
model can simulate both the traditional VSM for “flat” doc-
uments and the tree matching approach.

Like in the original VSM, documents are described by
document vectors whose weight components are computed
from the distribution of s-terms in the collection, using the
tf ·idf method [11]. The definition of the inverse document
frequency idf is related to the notion of documents to be
retrieved in response to a query, and hence to the docu-
ment boundary problem (see Section 1). The s-term vector
space model addresses this issue by introducing the concept
of a logical document (as opposed to the physical documents
comprising the collection), which applies to any subtree of
the document tree. In other words, any subtree of the docu-

126

ment tree can be returned as an answer to a query, provided
its root has the same label as the query root. This way the
document boundary problem is solved at query time.

Interestingly, the s-term vector space model supports rank-
ing of partial matches to a query. Both violations to struc-
tural and textual query conditions are tolerated, although by
default the structure is regarded as a weaker criterion than
the keywords in the query. More precisely, query keywords
occurring in a structural context which does not satisfy the
query still contribute to the relevance of a document. Con-
versely, documents which lack a particular query keyword
but contain matches to other parts of the query (i.e., other
s-terms not containing the missing “flat” term) may still
be considered relevant. Adjusting the weights of individual
s-terms in the query, the user may tune the model more
towards structure or keyword matching.

Most of the concepts related to the s-term vector space
model are introduced on an informal basis in this section.
For formal definitions, see [13].

2.1 Data model
Both documents and queries are conceived as unordered

labelled trees in the s-term vector space model. Order con-
ditions are not considered, and the original s-term model
draws no distinction between the parent/child relation and
the more general ancestor/descendant relation between doc-
ument nodes (but see Section 3.1). Besides documents and
queries, [13] defines structured terms (s-terms) and the fre-
quency of their occurrences in documents. The notion of
s-terms can be viewed as a generalization of the “flat” terms
known from traditional IR, which are simply words (or word
compounds). By contrast, a structured term is an unordered
tree whose nodes are labelled with element names or “flat”
terms, as illustrated in Figure 1.

A query q contains an s-term s if s is a full subtree of q .1

For instance, the query in Figure 1 contains the six s-terms
s0 to s5 corresponding to the non-shaded parts of the insets
on the right. An s-term s is said to occur in a document d
if there is an embedding f from s to d respecting the labels
and ancestor/descendant relationships. The document node
f (root(s)) (where root(s) denotes the root of a tree or s-term
s) is called an occurrence or match of s in a document. Note
that the concept of occurrence in documents, relying on tree
embedding, is somewhat weaker than that of containment
in a query: an occurrence of an s-term in a document may
have descendants which do not match any query node. (In
particular, the same document node may be an occurrence
of different s-terms.) Any logical document in which at least
one s-term contained in q occurs is an answer to q . Note
that the occurring term need not be the root s-term (the
largest s-term contained in q , e.g., s0 in Figure 1). Intu-
itively, an answer is any subtree of the document tree which
(1) has the same label as the query root and (2) contains an
occurrence of a full query subtree (but see the discussion on
target elements in Section 3.4).

2.2 Similarity of queries and documents

1By a full subtree of a tree T we mean a subtree of T that
has one of the nodes of T as its root and contains all chil-
dren and descendants of that node as children and descen-
dants. Hence the number of full subtrees equals the number
of nodes in T .

Figure 1: Query tree consisting of six s-terms.

Computation of term weights.The two tf ·idf components
term frequency and inverse document frequency and the re-
sulting weight of a term in a document are defined as follows:

tf s,d :=
freqs,d

maxfreqd

idf t
s := log

|D t |
df s

+ 1

w t
s,d := tf s,d · idf t

s

Like in the VSM, the term frequency tf s,d indicates how
often a given s-term s occurs in a given document d . The
raw (i.e., unnormalized) term frequency freqs,d is normalized
with the maximal term frequency maxfreqd , i.e. the maximal
number of occurrences of any s-term in d . As pointed out
in [13], maxfreqd is bounded by the maximal number of oc-
currences of any element name or “flat” term in d .2 In
the second definition, D t is the set of logical documents of
type t , i.e. with the same label t as the query root. The
inverse document frequency idf t

s is defined in terms of the
number |D t | of logical documents and the number df t

s of
logical documents in D t containing the structured term s.
Thus only logical documents of a particular type specified in
the query (e.g., section in Figure 1) contribute to the inverse
document frequency. Both tf s,d and idf t

s together determine

the weight w t
s,d of a given term s in a given logical document

d of type t , as defined above.

Computation of relevance scores.Finally, each docu-
ment d of type t is conceptually described by a document
vector d consisting of term weights w t

s,d for all terms s. The
similarity % of a document d w.r.t. to a query q is deter-
mined by the dot product %d,q := d • q where q is the vector
of all query term weights (0 for s-terms not contained in q).
Note that there is no need to compute all document vectors
and store them at indexing time. Instead only those term
weights which contribute to the final result are calculated
during query evaluation (see below).

3. IMPLEMENTATION
For our experimental evaluation of the s-term vector space

model we integrated it with the retrieval system X2 [9,

2At first sight it may seem biased to normalize complex
terms with maxfreq values determined mostly by “flat”
terms with high frequencies. This obviously results in low tf
values for complex terms. But the effect is compensated for
by typically higher idf values for complex terms, which tend
to occur less frequently in the collection than “flat” terms.

127

Figure 2: Indexing a sample document collection with the IR-CADG for s-term evaluation

6]. Pursuing a tree matching approach to structured docu-
ment retrieval, X2 makes use of a Content-Aware DataGuide
(CADG) [17, 18] as path index for efficiently computing
Complete Answer Aggregates (CAA) [8, 7], a data struc-
ture for structured query results. Section 3.1 describes the
adaptions to the CADG and CAA which were necessary
for s-term evaluation and summarizes the query formalism,
as well as necessary modifications to the original ranking
model. Based on these preliminaries, Section 3.2 then dis-
cusses the bottom-up tree matching algorithm replacing the
original algorithm used by X2. Section 3.3 describes the
computation of relevance scores for logical documents. Sec-
tion 3.4 sketches further features of our implementation ex-
tending both the X2 system and the original s-term model.

3.1 Preliminaries
Tree query language.In the query formalism used by X2,
queries are trees consisting of labelled nodes. There are
structural query nodes, which are matched by document
nodes with a suitable label, and textual query nodes speci-
fying keyword constraints. A path in the query tree consists
of a sequence of structural nodes and (possibly) a single
textual leaf containing “flat” search terms. Edges between
query nodes may be either rigid or soft, corresponding to a
parent/child or ancestor/descendant relation, respectively.
Figure 1 depicts a query tree with four structural and two
textual nodes, linked by rigid edges (solid lines). The orig-
inal s-term model, which ignores the parent/child relation,
is easily adapted to the distinction of soft and rigid edges.

Structural query nodes may be labelled with any number
of alternative element names, or else a wildcard matching
any element name. Textual query nodes may specify more
than one search term in a logical disjunction or conjunction.
A conjunction is either unordered or ordered. In the latter
case, an optional minimal and maximal token distance may
be specified for any two consecutive terms. Section 3.4 de-
scribes order and distance constraints in more detail. As a
special case, the implementation of phrase search as required
by the NEXI query language [16] is built upon this feature.
To support another NEXI construct which was missing in
X2, we integrated Boolean expressions over sibling query
nodes. Allowing for partial s-term matches, this affects the
way occurrences are counted, as explained in Section 3.4.

IR-CADG index.We slightly extended the original CADG
index [17] used by X2 to obtain an Integrated Ranking CADG

(IR-CADG) for the s-term vector space modelṠimilar adap-
tions of the CADG index to other ranking models [19, 2,
15, 14] are described in previous work [18]. Figure 2 (b)
and (c) depict the data structures of the IR-CADG for the
sample document in (a), whose leaf nodes contain one or
more occurrences of different “flat” terms. The index con-
sists of an index tree (b), residing entirely in main memory,
and a Content/Annotation Table (CA Table) stored in a re-
lational database system (c). As can be seen in the figure,
a single path in the index tree – e.g., the one leading to
index node #2 in (b) – represents all identical label paths
in the documents – in this case, the two book/section/para
paths reaching the document nodes &2 and &4 in (a). (We
say that these document nodes are referenced by #2.) Com-
pared to the document tree, the index tree therefore has a
path structure which is typically extremely small and far less
redundant. This motivates its use as a compact structural
summary for schema browsing and path matching [3, 9].

Keywords are indexed in the CA Table (c), which maps a
given index node ID, representing a label path, and a “flat”
term to the list of document nodes with that same label
path which contain occurrences of that same term. Un-
like the original CADG, the IR-CADG for the s-term vector
space model also records how often the term occurs in the
document node. This node-specific occurrence count, which
we henceforth refer to as the local term frequency tf loc , is
stored with each document node ID in the CA Table (in
Figure 2 (c), the integers in curly braces). Section 3.3 ex-
plains how raw term frequencies are computed from the local
term frequencies in the CA Table. During index creation,
for each document node being indexed the maximal number
of occurrences of any element name (maxfreq label) and any
“flat” term (maxfreq term) in its subtree is calculated. The
values are needed for normalizing the raw term frequency
(see Section 3.3). Since X2 internally uses a node table for
storing document-node specific information (such as byte
offsets in XML source files etc.), we simply add columns for
maxfreq label and maxfreq term to the node table.

Complete Answer Aggregates.A Complete Answer Ag-
gregate (CAA) is a compact data structure for representing
the complete set of answers (document subtrees) retrieved

128

in response to a structured query. (Its properties are ana-
lyzed in [8], along with an algorithm for computing CAAs
in polynomial time.) As shown in Figure 3, a CAA Aq has
the same overall structure (shaded edges) as the correspond-
ing tree query q (see Figure 1), representing each structural
or textual query node by a dedicated slot containing that
query node’s matches. For instance, in Figure 3 the docu-
ment node &6 is the only match to the query node labelled
caption in Figure 1, whereas the “IR” node has two matches
(&2 and &4). Besides document nodes, the CAA temporar-
ily stores pointers to index nodes during query evaluation
(omitted in the figure).

Unlike flat lists of answer

Figure 3: CAA for the
query shown in Figure 1.

documents in traditional IR,
CAAs provide a structured
view on the matching sub-
trees in the document col-
lection. As shown e.g. in the
lower left part of Figure 3,
document nodes in different
slots are typically linked to
each other (black edges), re-
flecting (part of) the rela-
tions in their tree neighbour-
hood. In exact (non-ranked)
retrieval, from each match
in a slot of the CAA at least

one match can be reached in each of the other slots by follow-
ing these links. This is because a subtree of the document
collection which does not comprise matches to all query
nodes fails to satisfy the full set of query constraints, there-
fore being inadmissible in exact retrieval. By contrast, our
implementation of the tree matching algorithm with s-term
ranking (see Section 3.2) may produce partly filled CAAs
like the one shown in Figure 3 which contains only docu-
ment subtrees matching the smaller s-terms s1 to s5, but no
match to the root s-term s0.

In the following, the term logical document root refers to
all document nodes in the set Dt. The index nodes referenc-
ing any such document node are called logical index roots.

3.2 Tree matching algorithm
The following tree matching algorithm computes a mod-

ified CAA as described in the previous subsection. It fol-
lows a bottom-up strategy in the sense that occurrences of
smaller s-terms are obtained before those of larger s-terms.
This is preferable to a top-down strategy since occurrences
of a complex s-term invariably include occurrences of all
subterms of that s-term in the document collection. From
these subterm occurrences the occurrences of more complex
s-terms can easily be derived in a step-wise process.

The core of the s-term tree matching algorithm is given in
Listing 1. The procedure evalSTerm visits all nodes in the
query tree in a depth-first traversal, recursively processing
the subtrees of complex s-terms (lines 18 to 20). When a
query leaf is reached, recursion halts and the occurrences of
the corresponding leaf s-term in the documents are fetched
from disk (occurrence fetching, line 24), along with their re-
spective local term frequencies tf loc (see the previous subsec-
tion). The CADG allows textual leaves representing “flat”
terms and structural leaves representing element names to
be treated alike, as postulated in [13]. All fetched docu-
ment nodes are stored in the CAA slot corresponding to the

query leaf, together with pointers to (1) their referencing
index node and (2) the lowest of their logical index roots (as
defined above; there may be multiple logical document and
index roots in case of a recursive document collection). The
logical document and index roots are fetched once before the
recursive matching procedure is called.

1 // evalSTerm: recursively evaluates an s-term

2 // → r : the root query node of the s-term to be evaluated

3 // → i : the IR-CADG to be used for evaluation

4 // � A: the CAA holding the query result

5 proc evalSTerm (r : QueryNode, i : IR-CADG,A: CAA)
6
7 // get hold of the parent query node and slot

8 rp := the parent of r
9 ap := the slot corresponding to sp in A

10
11 // create a new slot for r in A

12 a := a new slot corresponding to r in A
13 a.parent := ap

14
15 // recursively process inner s-terms

16 C := r .children
17 if C = ,/ then

� 18 for all rc ∈ C do
19 call evalSTerm (rc, i , A)�

20 end for
21
22 // recursion anchor: process leaf s-terms

23 else
→ 24 call i .fetchOccurrences (r , a)

25 end if
26
27 // trigger path matching or joining

28 if r is the leftmost child of rp then
→ 29 call matchPath (rp , ap , r , a, i , A)

30 else
→ 31 call joinPath (rp , ap , r , a, i , A)

32 end if
33
34 end proc

Listing 1: Recursive s-term evaluation

At this point the occurrences of the current s-term need
to be propagated upwards along the query path in order to
collect a set of candidate occurrences for the parent query
node (path matching, line 29), or else to verify existing ones
(path joining, line 31). In the following we assume that
query nodes are processed in preorder. Different query plans
(based e.g. on the selectivity of terms or labels associated
with the query nodes) are ignores for the sake of simplicity.

Path matching.If the current query node r is the leftmost
child of its parent rp , no candidate occurrences for rp have
been collected yet. Obviously any occurrence of the parent
s-term (the s-term rooted at rp) physically includes occur-
rences of all child s-terms below rp . These child occurrences,
some of which are already known in the incarnation for r ,
hint at possible parent occurrences yet to be confirmed (so-
called occurrence candidates). Candidates are all matches
to the parent query node which are ancestors (in case of a
soft edge, or parents for a rigid edge) of a child occurrence in

129

the same logical document. The label and level constraints
involved are first checked in the index (remember each child
occurrence comes with its referencing index node and lowest
logical index root). Only for ancestor (parent) index nodes
which are descendants of the lowest logical index root and
match the parent query node, the corresponding ancestor
(parent) document nodes are determined and passed back to
the calling incarnation. If the ancestor (parent) document
nodes must be fetched from disk, this may save many need-
less I/O operations for nodes which do not match the parent
query node. Along with the referencing index nodes, the oc-
currence candidates for the parent query node are stored in
the CAA before undergoing path joining and further up-
ward propagation and finally producing the occurrences of
the root s-term s0.

Path joining. When visiting child nodes other than the left-
most one, a previous path matching step has already col-
lected candidate occurrences for the parent query node rp ,
some of which may not contain occurrences of the current
child r ′. Ruling out these false occurrence candidates is the
aim of the path joining step (unless Boolean child constraints
are enabled, see Section 3.4). The candidates for rp to be
kept are those which have at least one descendant (in case of
a soft edge, or child for a rigid edge) among the occurrences
of r ′. Again, this condition is checked for the correspond-
ing index nodes first, which may save the manipulation and
comparison of huge sets of document nodes. Only if an index
node referencing occurrence candidates of the parent s-term
has a descendant (child) among the index nodes referencing
occurrences of the current child s-term, the corresponding
occurrence candidate sets are compared to rule out some of
the parent candidates. When the last child query node has
been processed, the remaining parent candidates are con-
firmed as occurrences of the parent s-term, ready to enter a
new propagation phase until the query root is reached.

3.3 Relevance computation
When tree matching is over, the computed CAA contains

the occurrences of all s-terms in the query, as mentioned in
Section 3.1. Each occurrence e of a “flat” s-term s ′ comes
with its local term frequency tf loc

s′,e as defined in Section 3.1.

For s-terms s ′′ involving node labels, tf loc
s′′,e is fixed to 1 in

the original model since any such s-term can occur only once
in the same document node (the occurrence being defined
as the document node itself, see Section 2.1). A modified
definition of tf loc

s′′,e for the use with Boolean child constraints
is given in Section 3.4. Note that the root slot of the CAA
contains only those logical document roots which are occur-
rences of the root s-term (i.e. the whole query tree). This
is a subset of the set of logical document roots Dt fetched
for tree matching. However, relevance scores are computed
for all members of Dt since logical documents containing oc-
currences only of smaller s-terms are also part of the query
result, even though their roots are missing in the CAA.

According to Section 2.2, to compute the weight w t
s,d

quantifying the relevance of an s-term s w.r.t. a logical doc-
ument d of type t , we need to calculate the following four

frequencies:

freqs,d : number of occurrences of s in d

maxfreqd : max. number of occurrences of any term in d

|D t | : number of logical documents of type t

df s : number of logical documents of type t

containing occurrences of s

While |Dt| is immediately available, determining the value
of maxfreqd = max(maxfreq term

d ,maxfreq label
d) requires ac-

cess to the node table, but only for those logical document
roots d ′ with freqs,d′ > 0. The raw term frequencies freq are
computed in a linear ancestor/descendant join of all logical
document roots and all s-term occurrences from the CAA
(see below). An array F of frequency vectors iteratively ac-
cumulates the freq values for all terms and documents during
the join. Let Fs denote the frequency vector for term s and
Fs,d its component for the logical document root d . For
each pair 〈d , e〉 joining d with a descendant e of d contain-
ing an occurrence of the s-term s, the term frequency Fs,d is
incremented by tf loc

s,e. After the join, F contains a raw term
frequency freqs,d for each s-term s and each document d it
occurs in. The document frequency df s equals the length of
the frequency vector Fs .

3.4 Further features
The following features extend both the X2 system and the

original s-term model as described in Sections 2 and 3.

Linear ancestor/descendant join.As explained in Sec-
tion 3.3, the computation of term weights involves a join of
logical document roots and s-term occurrences. We imple-
mented a |q |-way join, where |q | is the number of s-terms
in the query q , with an ancestor stack similar to the stack-
tree join proposed in [1]. The stack serves to keep track of
“active” members of the list of potential ancestors, whose
subtree may contain some of the potential descendants to
be checked next. This technique guarantees that the join is
performed in time linear in the number of potential ances-
tor and descendant nodes involved, i.e. O(|Dt|+|Aq |) where
|Aq | is the number of occurrences stored in the aggregate Aq .

Target elements.In Section 2.1, the set of answers to a
structured query q is defined as a subset of the set of logical
documents induced by the label of root(q). In some cases,
however, it may be more useful to retrieve specific parts of
logical documents while keeping the query-specific document
concept intact. In our implementation, we extended the
original s-term model by introducing the notion of a target
element, which specifies which kind of document nodes are
to be retrieved as answers to a given query q . This is done by
marking a single node in the query tree for q as being the
target element target(q) of q . As a consequence, matches
to the target element are either logical document roots or
descendants of a logical document root. Note that the use
of target elements typically makes the query result more
specific; e.g., the user may be given individual paragraphs
in response to a query which otherwise returns only articles.

As a special case, the query root root(q) and the target
element target(q) may be identical, such that entire logi-
cal document are retrieved as described before. Otherwise
the query is evaluated as follows. First the subtree qtarget

of q rooted at target(q) is evaluated in isolation, i.e. with

130

target(q) as root node specifying “logical subdocuments” to
be retrieved in response to this part of the original query q .
Ranking of the matches to target(q) takes place as described
in Section 3.3. In a second step, the remaining part qroot of
q (i.e., the entire query tree except the subtree rooted at
target(q)) is evaluated in the same way. During evaluation,
each match e to target(q) is associated with the set Re of
roots of logical documents containing e. As mentioned in
the previous paragraph, Re 6= ,/ for all such occurrences
of the target element. Finally, the relevances score of any
given match e to target(q) computed in the first step is bi-
ased with the relevance scores of all elements in Re, in or-
der to capture both the relevance of e w.r.t. qtarget and the
relevance of the containing logical document(s) w.r.t. qroot .
Many biasing methods are conceivable; currently we simply
calculate the relevance of an occurrence e of target(q) w.r.t.
q as %e,q := %e,qtarget ·

P
e′∈Re

%e′,qroot .
The effectiveness of this extension to the original s-term

model depends largely on the choice of suitable target ele-
ments, an issue which we have not yet examined in detail.

Boolean constraints on child query nodes.Any inner
query node may be constrained by an arbitrarily nested
Boolean expression involving (1) atoms representing the query
subtrees rooted at its child nodes and (2) the Boolean oper-
ators {∧,∨,¬}. Replacing the default conjunctive interpre-
tation of child query nodes in tree matching, the Boolean
constraints allow individual subtrees to be treated as op-
tional, alternative, or negated. For instance, if the root of
the query tree in Figure 1 is constrained by the expression
(s1∨s2), the s-term s0 is matched by any subtree of the doc-
ument tree in Figure 2 (a) where either s1 or s2 occurs (or
both). The root slot of the CAA in Figure 3 then contains
two occurrences of s0, namely &1 and &3.

The semantics of Boolean child constraints entails mod-
ifications of both the ranking model (see next paragraph)
and the tree matching algorithm described in Section 3.2.
During evaluation of an s-term s, the path join procedure
joinPath is only called when the child constraint βs asso-
ciated with s is a simple conjunction of child atoms (the
default tree matching behaviour, see line 31 in Listing 1).
Otherwise matches to all child subtrees below s are stored
in the CAA by repeated calls to matchPath, as in line 29
of Listing 1. The child constraint βs is evaluated after all
children of s have been processed, i.e. immediately below
line 20 in the incarnation for r = s, unless (1) βs is a simple
conjunction of child atoms, which is catered for by the calls
to joinPath, or (2) βs is a simple disjunction of child atoms,
in which case all (even partial) occurrences stored in the slot
a corresponding to r trivially match s. If none of these con-
ditions holds, βs is evaluated recursively for each occurrence
in a. Subexpression involving a Boolean operator are inter-
preted recursively in the obvious way. As recursion anchor,
an atom representing a child s-term sc of s evaluates to >
iff the current occurrence of s in a is linked to one or more
occurrences of sc in the corresponding child slot of a.

As mentioned in Section 3.3, if an s-term s involving node
labels occurs in a document node e, its local term frequency
tf loc

s,e is fixed to 1 in the original s-term model. By contrast,
when using Boolean child constraints we would like to quan-
tify how close a – possibly partial – occurrence matches s. To
this end, we redefine the local term frequency tf loc

s,e to be ei-
ther 1 (see above) or equal to the number of atoms in βs eval-

uating to > for e, whatever value is greater. For instance,
consider two occurrences e, e′ of s and βs = (s1∨s2) for child
terms s1, s2 of s. Assuming that only the subtree rooted at e
contains occurrences of both s1 and s2, tf loc

s,e > tf loc
s,e′ accord-

ing to the new definition, which accounts for the fact that e
satisfies more (non-Boolean) constraints specified by s. As a
special case, all full occurrences of s (i.e., those which would
satisfy a Boolean constraint of the form (s1 ∧ . . .∧ sj) where
j is the number of children of s) have the same local term
frequency. In this sense, our adaption of the s-term model
to Boolean child constraints generalizes the original model.

Order/distance constraints on keyword conjunctions.
We extended the query language of the X2 system to support
order and distance constraints on binary conjunctions of
“flat” terms specified in a textual query node. For instance,
the expression "XML [1,3] node" requires matching docu-
ment nodes to contain an occurrence of the keyword “XML”,
followed by an occurrence of the keyword “node”, such that
both occurrences are separated by at most two tokens. Ei-
ther value in the [min,max] pair may be omitted; as spe-
cial cases, "XML [,] node" specifies an ordered conjunction
without distance constraints, and "XML node" is a short-
hand for "XML [1,1] node" (i.e., a simple phrase search for
directly adjacent tokens). Note that distance constraints in
X2 queries imply that the conjunction of terms is ordered.
By contrast "XML , node" specifies an unordered conjunction
of both terms (with arbitrary distance). Expressions of ei-
ther type (i.e., "s1 [min,max] s2" and "s1 , s2") may be
chained together, implicitly forming a left-associative nested
conjunction. The expression "XML [,3] node , IR [5,] rank",
e.g., selects document nodes containing (1) occurrences of
“XML” and “node” in that order, separated by at most
two tokens, and (2) an occurrence of “IR” anywhere in the
textual content (possibly even between the former two oc-
currences), and (3) an occurrence of “rank” at least four
tokens after the rightmost of the former three occurrences.

Since order and distance constraints apply only to term
occurrences within the same document node, they are easily
integrated with the index procedure fetchOccurrences. To
this end, each occurrence of a “flat” term s in a document
node e is associated with a list of token position offsets in
the CA Table, omitted in Figure 2 (c), which indicate the
number of tokens preceding the first occurrence of s in e as
well as the number of tokens between any two consecutive
occurrences of s in e. As an example, consider a leaf node
whose textual content is “to be or not to be”. The respec-
tive lists of token position offsets of all keywords are: “to”
〈1, 4〉, “be” 〈2, 4〉, “or” 〈3〉, and “not” 〈4〉. (For the sake
of the example, assume these terms are not treated as stop-
words.) If a term occurs directly after a stop-word (which
is not stored in the CA Table) or after a child node (in case
of mixed content), the token position of that occurrence is
incremented by one to avoid erroneous phrase matching.3

When matching a binary conjunction of the “flat” terms
s1 and s2, two CA Table entries are intersected to identify
all nodes containing co-occurrences of both terms. Order
and distance constraints are checked on the two lists of to-
ken position offsets associated with any document node in

3For instance, the expression "XML node" is matched neither
by “XML and node” nor by “XML < i>root</i> node”.
Obviously, phrase matching across mixed content may be
desirable in cases such as “XML
 node”.

131

Figure 4: VCAS performance of the s-term model
(left: avg. over all quantisations; right: best case).

the intersection. Those nodes satisfying the constraints for
s1 and s2 keep only the list of token position offsets for the
second term, reduced to the occurrences which justify the
match. Thus in a nested expression involving a third term
s3, the constraint check for the subsequent binary conjunc-
tion operates on (1) a list of token position offsets repre-
senting matches to the conjunction of s1 and s2 and (2)
a list of token position offsets for s3. This corresponds to
the aforementioned left-associative interpretation of chained
term conjunctions.

4. EXPERIMENTS AND EVALUATION
We evaluated our implementation of the s-term vector

space model at the third workshop of the Initiative for the
Evaluation of XML Retrieval (INEX) [4] in 2004. Queries in
both in the Vague Content And Structure (VCAS) and Con-
tent Only (CO) tracks were submitted to X2 after automatic
translation into the system’s query language. As general re-
sults, we observe that (1) the model performs reasonably
well for structured queries (VCAS), occupying a position 26
among the 52 participants (position 12 in the best case),
and (2) there is considerable room for optimizations which
have not been considered yet. The plots in Figure 4 show
the recall/precision graph4 for the s-term vector space model
(black line) and all other participating approaches (shaded
lines). The values in the left plot are averaged over all quan-
tisation methods applied at INEX 2004, whereas the right
plot shows only the quantisation for which the s-term model
performs best (RPng with overlap and strict quantisation).

Fixed vs. flexible target element.Among the features
presented in Section 3.4, the parameter with the greatest
impact on ranking performance is the choice of the target
element. In the course of this work we tested two simple
strategies: either the target element is fixed to be identi-
cal with the query root (fixed target element), or the tar-
get element is determined in an XPath-style as the lowest
structural query node outside predicates (semi-flexible tar-
get element). Figure 5 illustrates how performance degra-
dates when only logical documents are returned as answers
to VCAS queries (left column), compared to a semi-flexible
choice of the target element (right column). While in the
average over all quantisation methods the difference is nine
positions, the impact is even higher (16 positions) for the
s3e32 quantisation which favours answers with high speci-
ficity (not shown in the figure). As could be expected, an-

4All plots are based on data provided by the Laboratoire
d’Informatique de Paris 6 at inex.lip6.fr/2004/metrics/.

Figure 5: Fixed vs. flexible target element (VCAS).

Figure 6: Structured (VCAS) vs. flat (CO) retrieval.

swers which are constantly at the article level are often fairly
unspecific, including many irrelevant nodes.

Structured vs. flat retrieval.Finally, the plots in Figure 6
compare the performance of the s-term vector space model in
the VCAS and CO tracks. Note that both plots are based on
results for fixed target elements only, which explains the low
overall precision of the s-term results. For CO queries, the
target element was fixed to an article node containing the ac-
tual “flat” query. As can be seen in the right plot, the s-term
model performs worse than almost 75% of all participants
of the CO track, whereas in structured document retrieval
(VCAS) it is closer to two thirds even without a flexible
target element. This is not astounding given that the core
concept of the model, the s-term, relies on the structure
of the query. Obviously, when running “flat” text queries
against structured documents the choice of the target ele-
ment needs dedicated strategies since the query contains no
structural hints as to which elements the user expects. Since
the implementation of the s-term model as described in this
work addresses this issue in a very naive way, we believe
that there is considerable room for optimization here.

5. RELATED WORK
Previous work [18] describes in detail how to adapt the

CADG index to four models for structured documents [19,
2, 15, 14]. In Section 3.1 of this work the CADG is modified
along these lines in order to obtain an IR-CADG for the
s-term model. In terms of the Path/Term/Node (PTN) hi-
erarchy proposed in [18], which specifies how an index struc-
ture stores information for relevance ranking, the IR-CADG
described in Section 3.1 contains only Path/Term/Node-
specific information (local term frequencies in the CA Table).

As observed in [18], ranking models have different con-
cepts of idf for structured documents. This issue is related
to the document boundary problem mentioned in Section 1.
In [18], two different types of idf are distinguished: struc-
tured idf counts only document satisfying structural and

132

textual query conditions, whereas flat idf is strictly term-
specific. The s-term model, with its query-dependend notion
of logical documents, features a structured idf . In [18] it is
argued that under certain circumstances, this may help to
match the user’s information need more closely.

6. CONCLUSION AND FUTURE WORK
In this work, we extended the s-term vector space model

[13] for ranked retrieval of structured documents, with a
number of useful features such as Boolean constraints on
tree queries, order and distance constraints on search terms
(including phrase search), and the specification of target el-
ements. We also described data structures and algorithms
for the retrieval and ranking of structured documents us-
ing the s-term model in combination with the IR-CADG
index [18, 17] and showed how the adaption of state-of-the-
art techniques for exact retrieval can complement our work,
thus integrating effective ranking with efficient retrieval. Fi-
nally, we evaluated the ranking performance of our s-term
implementation at the third INEX workshop 2004 [4]. The
results show that while the model performs reasonably well
for Vague Content And Structure (VCAS) queries in these
first tests, there is also a fair potential for optimization, es-
pecially for Content Only (CO) queries. Future work on the
model and the implementation may include:

• in the CO track, tests against the INEX collection
where an unlabelled node instead of an article node
is the fixed target element
• a truly flexible target element definition which dynam-

ically determines document nodes to be retrieved as
query results, even when no hints are given in the
query (as in the CO case)
• more sophisticated biasing method for combining rele-

vance scores of matches to logical document roots and
target elements
• a substantial simplification of the s-term model in or-

der to reduce the computational effort needed for rel-
evance ranking

While the first three issues target the effectiveness of the
model, the last point is motivated by the observation that
during the computation of relevance scores possibly huge
sets of s-term matches are joined with all logical document
roots. We will examine how the number of nodes to be joined
can be reduced without reducing the ranking effectiveness.

7. REFERENCES
[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,

D. Srivastava, and Y. Wu. Structural Joins: A
Primitive for Efficient XML Query Pattern Matching.
In Proc. 18th IEEE Int. Conf. on Data Engin., 2002.

[2] N. Fuhr and K. Großjohann. XIRQL: A Query
Language for Information Retrieval in XML
Documents. In Research and Development in
Information Retrieval, 2001.

[3] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In Proc. 23rd Int. Conf. on
Very Large Data Bases, 1997.

[4] Initiative for the Evaluation of XML Retrieval
(INEX), 2004. Organised by the DELOS Network of
Excellence for Digital Libraries.

[5] P. Kilpeläinen. Tree Matching Problems with
Applications to Structured Text Databases. PhD thesis,
University of Helsinki, 1992.

[6] H. Meuss. Logical Tree Matching with Complete
Answer Aggregates for Retrieving Structured
Documents. PhD thesis, University of Munich, 2000.

[7] H. Meuss, K. Schulz, and F. Bry. Towards Aggregated
Answers for Semistructured Data. In Proc. 8th Int.
Conf. on Database Theory, 2001.

[8] H. Meuss and K. U. Schulz. Complete Answer
Aggregates for Tree-like Databases: A Novel
Approach to Combine Querying and Navigation. ACM
Transactions on Information Systems, 19(2), 2001.

[9] H. Meuss, K. U. Schulz, F. Weigel, S. Leonardi, and
F. Bry. Visual Exploration and Retrieval of XML
Document Collections with the Generic System X2.
Journal of Digital Libraries, Special Issue on
Information Visualization Interfaces, 2004.

[10] R. Sacks-Davis, T. Arnold-Moore, and J. Zobel.
Database Systems for Structured Documents. In Proc.
Int. Symposium on Advanced Database Technologies
and Their Integration, 1994.

[11] G. Salton. The SMART Retrieval System –
Experiments in Automatic Document Processing.
Prentice Hall Inc., Englewood Cliffs, NJ., 1971.

[12] T. Schlieder. Similarity Search in XML Data using
Cost-Based Query Transformations. In Proc. 4th
Intern. Workshop on the Web and Databases, 2001.

[13] T. Schlieder and H. Meuss. Querying and Ranking
XML Documents. Special Topic Issue Journal
American Society for Informations Systems on XML
and Information Retrieval, 53(6), 2002.

[14] D. Shin, H. Jang, and H. Jin. BUS: An Effective
Indexing and Retrieval Scheme in Structured
Documents. In Proc. 3rd ACM Int. Conf. on Digital
Libraries, 1998.

[15] A. Theobald and G. Weikum. The Index-Based XXL
Search Engine for Querying XML Data with
Relevance Ranking. In Proc. 8th Internation Conf. on
Extending Database Technology, 2002.

[16] A. Trotman and B. Sigurbjörnsson. Narrowed
Extended XPath I. Available at
inex.is.informatik.uni-duisburg.de:2004.

[17] F. Weigel, H. Meuss, F. Bry, and K. U. Schulz.
Content-Aware DataGuides: Interleaving IR and DB
Indexing Techniques for Efficient Retrieval of Textual
XML Data. In Proc. 26th European Conf. on
Information Retrieval, 2004.

[18] F. Weigel, H. Meuss, K. U. Schulz, and F. Bry.
Content and Structure in Indexing and Ranking XML.
In Proc. 7th Int. Workshop on the Web and
Databases, 2004.

[19] J. E. Wolff, H. Flörke, and A. B. Cremers. Searching
and Browsing Collections of Structural Information.
In Proc. IEEE Forum on Research and Technology
Advances in Digital Libraries, 2000.

133

Component ranking and Automatic Query Refinement
for XML Retrieval

Yosi Mass, Matan Mandelbrod

IBM Research Lab
Haifa 31905, Israel

{yosimass, matan}@il.ibm.com

Abstract
Queries over XML documents challenge search engines to
return the most relevant XML components that satisfy the
query concepts. In a previous work[6] we described an
algorithm to retrieve the most relevant XML components
that performed relatively well in INEX'03. In this paper we
show an improvement to that algorithm by introducing a
document pivot that compensates for missing terms
statistics in small components. Using this new algorithm we
achieved improvements of 30%-50% in the Mean Average
Precision over the previous algorithm. We then describe a
general mechanism to apply existing Automatic Query
Refinement (AQR) methods on top of our XML retrieval
algorithm and demonstrate a particular such method that
achieved top results in INEX'04.

Keywords
XML Search, Information Retrieval, Vector Space Model,
Automatic Query Refinement.
1 Introduction
While in traditional IR we are used to get back entire
documents for queries, the challenge in XML retrieval is to
return the most relevant components that satisfy the query
concepts. The INEX initiative[4] sub classified this task
into two sub tasks; Content only (CO) topics and Content
and Structure (CAS) topics. In a CO task the user specifies
queries in free text and the search engine is supposed to
return the most relevant XML components that satisfy the
query concepts. In a CAS task the user can limit query
concepts to particular XML tags and to define the desired
component to be returned using XPath[10] extended with
an about() predicate.
In order to realize the problem in ranking XML components
we first examine a typical class of IR engines that use tf-idf
[8] to perform document ranking. Those engines maintain
an inverted index in which they keep for each term among
other things the number of documents in which it appear
(df) and its number of occurrences in each document in the
collection (tf). Then this statistics is used to estimate the
relevance of a document to the query by measuring some
distance between the two.
To be able to return a component instead of a full document
search engines should modify their data structures to keep

statistics such as tf-idf at the component level instead of at
the document level. This is not a straight forward extension
since components in XML are nested and the problem is
how to keep statistics at the component level such that it
handles components nesting correctly.
In INEX'03 we described a method for component ranking
by creating separate indices for the most informative
component types in the collection as described in [6]. For
example we created an index for full articles, an index for
all sections, for all paragraphs etc. This approach solved the
problem of statistics of nested components since in each
index we have now components from same granularity so
they are not nested.
While this approach solved the problem of nested
components it introduced a deficiency that could distort
index statistics. The problem is that the fine grained indices
lack data that is outside their scope which is not indexed at
all. For example the articles index contains 42,578,569
tokens while the paragraphs index contains only
31,988,622 tokens. This means that in the paragraphs
index ~25% of the possible statistics is missing so for
example a term with a low df based on the indexed tokens
may actually be quite frequent outside the paragraphs so its
actual df should be higher.

In this paper we describe a method to compensate for this
deficiency using document pivot. Using this method we got
a consistent improvement of 30%-50% in the mean average
precision (MAP) for both INEX'03 and INEX'04 CO
topics.
On top of this improvement we achieved further
improvement by applying Automatic Query Refinement
(AQR) on our XML component retrieval system. AQR was
studied in [7] in the context of traditional IR engines. The
idea there is to run the query in two rounds where highly
ranked results from the first round are used to add new
query terms and to reweigh the original query terms for the
second round. We show how to adopt such AQR algorithms
on top of our XML component ranking algorithm.

The paper is organized as follows – in section 2 we
describe the document pivot concept and in section 3 we
describe how to adopt AQR methods from traditional IR to
XML retrieval systems. In section 4 we describe our

134

inverted index and our CO and VCAS runs. We conclude in
section 5 with discussion of the approaches and with future
directions.

2 Component ranking with Document Pivot
We start by briefing our component ranking approach from
INEX'03 as described in [6] and then we show how it was
improved using the document pivot concept.
As discussed above the problem in XML component
ranking is how to keep statistics at the component level
such that it handles components nesting correctly.
In [6] we solved that problem by creating different indices
for the most informative component types. We created an
index for articles, index for sections, index for sub sections
and index for paragraphs. For simplicity we discuss now
our approach for CO topics.
For a given CO topic we run the query in parallel on the set
of indices and get back a sorted result set from each index
with components of that index. So we get a sorted list of
articles, a sorted list of section and so on.
We then described a method for comparing the different
result sets so that we can merge the sets into a single sorted
list of all component types. Why do we get different scores
in each result set? Our scoring method is based on the
vector space model where both the query Q and each
document d are mapped to vectors in the terms space and
the relevance of d to Q is measured as the cosine between
them using the tf-idf statistics as described in Figure 1
below -

)
)(#

#log()(

)log(
))(log()(

)log(
))(log(

)(

)(*)()(
),(

tontainingDocumentsC
tionntheCollecDocumentsItidf

AvgTF
tTFtw

AvgTF
tTF

tw

dQ

tidftwtw
dQscore

d

d
D

Q

Q
Q

ii
dQt

i d
i

Q

=

==

∗

∗

=

∑
∈ ∩

Figure 1 – Document scoring function

TFQ(t) is the number of occurrences of t in Q and TFd(t) is
the number of occurrences of t in d.
AvgTFQ is the average number of occurrence of all query
terms in Q and AvgTFd is the average number of occurrence
of all terms in d.
||Q|| is the number of unique terms in Q and ||d|| is the
number of unique terms in d, both scaled by the average
document length in the collection.
It can be seen that while scores of components in each
index are comparable to each other, scores in different
indices are at a different scale. For example the articles

index has 12,107 components so the idf of a relatively rare
term is not very large compared to its idf in the paragraphs
index which has 646,216 components. In addition the
average document length in the articles index is 900 while
the average document length in the paragraphs index is 37.
Since ||d|| and ||Q|| are scaled by the average document
length then the denominator of scores in the paragraphs
index is much lower than in the articles index. Combining
the idf difference and the length normalization difference
shows why scores of components in the paragraphs index
are relatively higher than scores of components in the
articles index.

In order to compare the scores in different result sets we
described in [6] a normalization formula that ensures
absolute numbers that are index independent. This is
achieved by each index computing score(Q,Q) which is the
score of the query itself as if it was a document in the
collection. Since the score measures the cosine between
vectors, then the max value is expected between two
identical vectors. Each index therefore normalizes all its
scores to its computed score(Q,Q). The normalized results
are then merged into a single ranked list consisting of
components of all granularities.

While the approach of creating independent indices solved
the problem of overlapping data it introduced another
deficiency of missing data. The fine grained indices lack
data that is outside their scope which is not indexed. For
example the articles index contains 42,578,569 tokens
while the paragraphs index contains only 31,988,622
tokens. The missing data in the fine grained indices can
distorts the idf statistics of the collection and therefore may
affect the quality of the results.
To fix that problem we use this year a concept first
mentioned in [9] which uses a document pivot (DocPivot)
factor to scale the final component score by the score of its
containing article. The final score of a component with
original score Sc and with its full article score Sa is then

DocPivot * Sa + (1 – DocPivot) * Sc.

Assuming that the full articles index is the first index then
the overall algorithm to return a result set for a given query
Q is given in Figure 2 below. Step 3 is the new step
introduced by the DocPivot.

135

Figure 2 - Component ranking algorithm

We experimented with several values of DocPivot on the
2003 CO topics using the inex_eval with strict metric and
got the graph marked as 2003 in Figure 3 below.

Doc pivot

0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pivot value

R/
P 2003

2004

Figure 3 - Doc pivot on 2003/2004 data

The MAP with DocPivot = 0 is the result we achieved in
our 2003 official submission. We can see that with
DocPivot=0.5 we get improvements of 31% over the base
2003 run so we used that value for our 2004 runs.
Later when the 2004 assessments were available we tried
those values on the 2004 CO topics using the aggregate
metric and got the best MAP for DocPivot = 0.7 (the 2004
graph in Figure 3) which is 52% improvements over the
base run with no DocPivot.

3 Automatic Query Refinement for XML
In this section we describe how to apply Automatic Query
Refinement (AQR) on top of our XML ranking algorithm.
AQR was studied in [7] in the context of traditional IR
engines. The idea is to run the query in two rounds where
highly ranked results from the first round are used to add
new query terms and to reweigh the original query terms for
the second round. We show now a method to adopt such
AQR algorithms on top of our XML component ranking
algorithm.
Assume we have an AQR algorithm that can be used to
refine query results. Since we have separate indices for
different component granularities we can run the AQR
algorithm on each index separately. The modified XML
component ranking algorithm is described in Figure-4.

 Figure 4 -Component ranking with AQR
We add step 2 which is the query refinement step and the
rest of the algorithm continuous as in the simple case by
normalizing and scaling scores in each index and finally
merging the result sets.
We describe now a specific AQR algorithm that we used in
INEX'04 and discuss some variants of its usage in our XML
component ranking algorithm.
The AQR algorithm we used is described in [2]. The idea
there is to add Lexical Affinity (LA) terms to the query
where a Lexical Affinity is a pair of terms that appear close
to each other in some relevant documents such that exactly
one of the terms appears in the query.
The AQR is based on the information gain (IG) obtained by
adding lexical affinities to the query. The IG of a lexical
affinity L on a set of documents D with respect to a query Q
denotes how much L separates the relevant documents in D
from the non relevant documents for the query Q. IG is
defined as:














+−= −

−

+

+

)()()()(, DH
D
D

DH
D
D

DHLIG QQQDQ

Figure 5 - Information Gain of a Lexical Affinity

where)(DHQ is the entropy (or degree of disorder) of a

set of documents D, DD ⊆
+ is the set of documents

containing L and DD ⊆
− is the set of documents not

containing L.)(DHQ is defined as

))(1log())(1())(log()()(DpDpDpDpDH QQQQQ −−−−=

Figure 6 - Entropy of a group

where PQ(D) is the probability of a document chosen

randomly from D to be relevant to Q and is equal to
D
R

where DR ⊆ is the subset of relevant documents. Since
we don't have the relevant documents R we use the scoring

For each index i
1. Compute the result set Ri of running Q on index i
2. Normalize scores in Ri to [0,1] by normalizing to

score(Q,Q)
3. Scale each score by its containing article score from

R0
Merge all Ri's to a single result set R composed of all
components sorted by their score

For each index i
1. Compute the result set Ri of running Q on index i
2. Apply AQR algorithm on Ri
3. Normalize scores in Ri to [0,1] by normalizing to

score(Q,Q)
4. Scale each score by its containing article score from

R0
Merge all Ri's to a single result set R composed of all
components sorted by their score

136

function as an approximation for PQ(D+) by taking sum of
scores of documents in D+ divided by (100*number of docs
in D+). We do the same estimation for PQ(D-)
The AQR procedure works as follows: It gets the result set
obtained by running the search engine on the query Q
(algorithm step 1 in Figure-4) and additional 4 parameters
(M, N, K, α) that are explained below. The AQR first
constructs a list of candidate LAs that appear in the top M
highly ranked documents from the result set. Then it takes
D to be the set of the top N (N >> M) highly rank
documents and finds the K LAs with the highest IG on that
set D.
Those LAs are used to re rank each document d in the result
set by adding their tf-idf contribution to score(Q, d) as
given by Figure 1. Since they don't actually appear in the
query Q we take their TFQ(L) to be the given parameter α.
We can have several variants for using the above AQR
algorithm in the XML component ranking algorithm -

1. The AQR procedure can be applied on each index
separately using same (M, N, K, α) parameters or
index specific (M, N, K, α) parameters. In this
variant different LAs are added to the query for
each index.

2. We can apply the first part of the AQR using (M,
N, K) on the full articles index to find the best
LAs. Then apply the last part of the AQR that
does the re ranking (with the parameter α) on each
index. using the LAs that were extracted from the
articles index.

The motivation for the 2nd variant is that most informative
LAs can be obtained on the full articles index since it has
the full collection data. In section 4 we describe the (M, N,
K, α) parameters used in our runs.

4 Runs description
4.1 Index description
Similar to last year we have created six inverted indices for
the most informative components which are {article, sec,
ss1, ss2, {p+ip1}, abs}. We removed XML tags from all
indices except from the {article} index where they were
used for checking VCAS topic constraints. Content was
stemmed using a Porter stemmer and components with
content smaller than 15 tokens were not indexed in their
corresponding index.

4.2 CO topics
Each CO topic has 4 parts : <title>, <description>,
<narrative> and <keywords>. This year we could use only
the <title> for formulating the query to our search engine.
Due to the loosely interpretation of topics as appear in [5]
we ignored '+' on terms and we ignored phrase boundaries
and use the phrase's terms as regular terms. We still treated

'-' terms strictly namely components with '-' terms were
never returned.
For example topic 166

<title>+"tree edit distance" + XML - image </title>
is executed as

tree edit distance XML -image

We submitted three runs where two of them were ranked 1st
and 2nd among the official INEX CO runs. See table 1
below-

TASK:CO

ra
nk Institute avg overlap(%)

1. IBM Haifa Research Lab(CO-0.5-
LAREFIENMENT) 0.1437 80.89

2. IBM Haifa Research Lab(CO-0.5) 0.1340 81.46

3. University of Waterloo(Waterloo-
Baseline) 0.1267 76.32

4. University of Amsterdam(UAms-
CO-T-FBack) 0.1174 81.85

5. University of Waterloo(Waterloo-
Expanded) 0.1173 75.62

6.
Queensland University of
Technology(CO_PS_Stop50K_099_
049)

0.1073 75.89

7. Queensland University of
Technology(CO_PS_099_049) 0.1072 76.81

8. IBM Haifa Research Lab(CO-0.5-
Clustering) 0.1043 81.10

9. University of Amsterdam(UAms-
CO-T) 0.1030 71.96

10. LIP6(simple) 0.0921 64.29

Table 1 - CO results

4.2.1 Doc Pivot run
In the run titled CO-0.5 we implemented the Component
ranking algorithm as described in Figure-2 using
DocPivot=0.5. This run was ranked 2nd in the aggregate
metric.

4.2.2 AQR run
In the run titled CO-0.5-LAREFIENMENT we
implemented our AQR algorithm from Figure-4 using M=
20, N = 100, K = 5 and α = 0.9 on all indices. We have
implemented the first algorithm variant where each index
computes its own LAs to add. This run was ranked 1st using
the CO aggregate metric. We leave for future work

137

experiments with more parameter settings with the two
algorithm variants.
Some example LAs that were added to queries:
For topic 162:
Text and Index Compression Algorithms
We got LA pairs (compress, huffman), (compress,
gigabyte), (index, loss)
For topic 169:
+"Query expansion" +"relevance feedback" +web
We got (query, search), (relevance, search), (query, user),
(query, result)

4.3 VCAS topics
We applied an automatic translation from XPath[10] to
XML Fragments[1] which is the query language used in our
JuruXML search engine. XML Fragments are well-formed
XML segments enhanced with

• '+/-' on XML tags and on content
• Phrases on content (" ")
• Parametric search on XML tag's value
• An empty tag (<>) that is used as parenthesis.

We can view any XML Fragment query as a tree1 with the
semantics that at each query node, '+' children must appear,
'-' children should not appear and others are optional and
only contribute to ranking. If a node doesn't have '+'
children then at least one of its other (non '-') children must
appear.

For example the query
<article>
 <abs>classification</abs>
 <sec>experiment compare</sec>
</article>
will return articles with classification under <abs> or with
experiment or compare under <sec>. Note that the default
semantics in XML Fragments is OR unless there are '+'s.

The same query with '+' on the tags -
<article>
 +<abs>classification</abs>
 +<sec>experiment compare</sec>
</article>
will return articles with classification under <abs> and
with experiment or compare under <sec>.

Finally the query
<article>

1 For a query given as several disjoint fragments we add a dummy

root node to make the all query a valid XML data.

 +<abs>classification</abs>
 <sec>experiment compare</sec>
</article>
will return only articles with classification under <abs>.
Articles with experiment or compare under <sec> will be
returned with higher ranking since the child
<sec>experiment compare</sec> is optional.

The empty tag is used as a kind of parenthesis so the query

<title>
 <>+network +security</>
 <>+database +attributes</>
</title>
will return documents with network and security or with
database and attributes under the <title> while the query

<title>
 +<>network security</>
 +<>database attributes</>
</title>
will return documents with network or security and with
database or attributes under its <title>.
The automatic transformation from an XPath expression of
the form
//path1[path1Predicates]//path2[path2Predicates]
to XML Fragments works as follows: It first creates a query
node <path1> with two children: The first is a mandatory
empty tag (+<>) surrounding path1Predicates and the
second is the node <path2> prefixed with a '+'. The path1
and path2 Predicates are translated to nodes where 'about'
predicates for the current node ('about(,. "text")') are
transformed to just text and about predicates for sibling
nodes ('about(//path, "text")') are transformed to
<path>text</path>. For example the INEX CAS topic 131
<title>//article[about(.//au,"Jiawei Han")]//abs[about(.,"data
 mining")]</title>
is translated to the following XML Fragments query -
+<article>
 +<>
 <au>"jiawei han"</au>
 </>
 +<abs>
 +<>
 "data mining"
 "</>
 </abs>
</article>

Figure 7 - Automatic translation to XML Fragments
To support AND/OR between XPath predicates we use the
empty tag where predicates that are ANDed are transformed
to XML Fragments under '+<>' tag and predicates that are
ORed are transformed to XML Fragments under <> with no
prefix. For example topic 134 -
<title>//article[(about(.,"phrase search") OR about(.,"proximity
search") OR about(., "string matching")) AND (about(.,tries) OR

138

about(.,"suffix trees") OR about(.,"PAT
arrays"))]//sec[about(.,algorithm)]</title>
is transformed to
<article>
 +<>
 +<>
 <>"phrase search"</>
 <>"proximity search"</>
 <>"string matching"</>
 </>
 +<>
 <>"tries"</>
 <>"suffix trees"</>
 <>"pat arrays"</>
 </>
 </>
 +<sec>
 +<>algorithm</>
 </sec>
</article>

Figure 8 -Translation of AND and OR
For the INEX VCAS topics and to support the INEX
guideline for vagueness as appear in [5] we ignored the '+'
on tags and similar to the CO case we ignored '+' on content
and phrase boundaries. Ignoring '+' changes everything to
OR semantics therefore the empty tags have no meaning
and can be ignored. For example the above topic 131 is
then equivalent to -
<article>
 <au>jiawei han</au>
 <abs>data mining</abs>
</article>

Figure 9 - The query as run by our system
We still keep the XML Fragments semantics that nodes
with a single child must have that child so the above query
will return only results which have jiawei or han under
<au> or that have data or mining under the <abs>.
To decide which element to return we followed the XPath
target element semantics that defines the last element in the
XPath expression as the element to be returned up to the
equivalent tags as defined in [5]. We run the VCAS topics
using a minor modification of step 1 in the algorithm in
Figure-2 above: The articles index in addition to creating
its result set also check the query constraints and mark valid
components to be returned. The other indices then return in
their results set only components that were marked valid by
the articles index.
Obeying the target element constraint resulted in a low 38%
overlap and as a result with low MAP of 0.065 in the
aggregate inex_eval. It seems like assessors ignored the
target elements as for example in the above topic 131 full
articles were assessed as most exhaustive and most specific
for that topic.

4.4 NLP runs
We submitted one CO run and one VCAS run. For the CO
run we used the topic's <description> part and just applied
the algorithm from Figure-2 with DocPivot=0.5. This run
got MAP of 0.1286 using the aggregate inex_eval. For the
VCAS run we similarly used the topic's <description> with
same DocPivot but ignored the XPath target element as if it
was a CO topic. This run got MAP of 0.05.

5 Discussion
We have presented two extensions to our last year XML
component ranking algorithm. The first extension
introduces a document pivot that scales scores of
components by the score of their containing article. This
method achieved improvements of 31% over our base CO
run in INEX'03 and 52% over our base CO run in INEX'04.
We then described an algorithm to apply existing AQR
algorithms on top of our XML component ranking
algorithm and demonstrated an example such AQR method
using Lexical Affinities with Maximal Information Gain.
Our two runs that implemented those extensions were
ranked 1st and 2nd in the CO track. The space of possible
AQR parameter combinations and the variants for their
usage in XML is quite large and we still have to explore the
best combination that would give best results.
6 Acknowledgment
We would like to thank the INEX organizers for the
assessment tool and for the inex_eval tool they have
supplied.
7 References
[1] A. Z. Broder, Y. Maarek, M. Mandelbrod and Y. Mass

(2004), “Using XML to Query XML – From Theory to
Practice”. In proceedings of RIAO'04, Avignon France, Apr ,
2004.

[2] D. Carmel, E. Farchi, Y.Petruschka, A. Soffer,
Automatic Query Refinement using Lexical Affinities
with Maximal Information Gain. Proceedings of the
25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
2002.

[3] D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, A.
Soffer, Searching XML Documents via XML
Fragments, SIGIR 2003, Toronto, Canada, Aug. 2003

[4] INEX, Initiative for the Evaluation of XML Retrieval,
http://inex.is.informatik.uni-duisburg.de

[5] INEX'04 Guidelines for Topic Development,
http://inex.is.informatik.uni-
duisburg.de:2004/internal/pdf/INEX04TopicDevGuide
.pdf

[6] Y. Mass, M. Mandelbrod, Retrieving the most relevant
XML Component, Proceedings of the Second
Workshop of the Initiative for The Evaluation of XML

139

Retrieval (INEX), 15-17 December 2003, Schloss
Dagstuhl, Germany, pg 53-58

[7] I. Ruthven and M. Lalmas. A survey on the use of
relevance feedback for information access systems,
Knowledge Engineering Review, 18(1):2003.

[8] G. Salton, Automatic Text Processing – The
Transformation, Analysis and Retrieval of Information
by Computer, Addison Wesley Publishing Company,
Reading, MA, 1989.

[9] B. Sigurbjornsson, J. Kamps, M. Rijke, An element
based approach to XML Retrieval, Proceedings of the
Second Workshop of the Initiative for The Evaluation
of XML Retrieval (INEX), 15-17 December 2003,
Schloss Dagstuhl, Germany, pg 19-26.

[10] XPath – XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20/

140

TIJAH at INEX 2004
Modeling Phrases and Relevance Feedback

Vojkan Mihajlović1 Georgina Ramı́rez2 Arjen P. de Vries2 Djoerd Hiemstra1

Henk Ernst Blok1

1CTIT
P.O. Box 217

7500 AE Enschede
The Netherlands

{v.mihajlovic, d.hiemstra,
h.e.blok}@utwente.nl

2CWI
P.O. Box 94079

1090GB Amsterdam
The Netherlands

{georgina, arjen}@cwi.nl

ABSTRACT
This paper discusses our participation in INEX using the
TIJAH XML-IR system. We have enriched the TIJAH sys-
tem with several new features. An extensible conceptual
level processing unit has been added to the system, follow-
ing a standard layered database architecture. The algebra
on the logical level and the implementation on the physi-
cal level have been extended to support phrase search and
structural relevance feedback. The conceptual processing
unit is capable of rewriting NEXI content-only and content-
and-structure queries into the internal form, based on the
retrieval model parameter specification, that are either pre-
defined or based on a relevance feedback. Relevance feed-
back parameters are produced based on the data fusion of
result element score values and sizes, and relevance assess-
ments. The introduction of new operators supporting phrase
search in score region algebra on logical level is discussed in
the paper, as well as their implementation on physical level
using the pre-post numbering scheme. The framework for
structural relevance feedback is also explained in the paper.
We conclude with a preliminary analysis of the system per-
formance based on INEX 2004 runs.

1. INTRODUCTION
In our research for INEX 2004 we extended our TIJAH sys-
tem to support more advanced IR techniques, namely phrase
search and relevance feedback. The TIJAH system follows a
layered database architecture, consisting of a conceptual, a
logical and a physical level. Each level has been built upon
a different data model and has its own operators. The top
level is based on the NEXI query language. A NEXI query
is first translated (at the conceptual level) into an internal
query representation that resembles the NEXI query lan-
guage closely, but enriched with some additional operators.
The translation process is based on the retrieval model spec-
ification. The conceptual query is then transformed into a
score region algebra (SRA) query plan [8] on the logical level
of the TIJAH system. SRA views XML as a collection of
regions and not as a tree-like structure, and operators in the
SRA are based on the region containment relation and on
region frequency counts for supporting vague containment
conditions. The logical query plan is transformed into the
physical plan (via Monet interpreter language - MIL) which
is executed in the MonetDB database kernel [2].

The TIJAH system that we use for INEX 2004 is an ex-
tended version of the TIJAH system used in 2003 [7]. Each
level of the TIJAH database system is extended to support
phrase search and relevance feedback. Thus, the conceptual
level is capable of handling phrases and supports relevance
feedback specification. New operators are introduced into
the score region algebra to support phrase modeling and
relevance feedback specification and the physical level is en-
riched with new functions that implement phrase search.
Furthermore, a fully automatic query rewriting unit is devel-
oped at the conceptual level capable of transforming original
NEXI queries into proper conceptual queries based either on
the retrieval model specification or on the relevance feedback
data.

The retrieval model used for the NEXI about function is
essentially the same as that used for INEX 2003 [7]. We cal-
culate the relevance of a document component (i.e., XML
element), following the idea of independence between the
probability of relevance on exhaustivity and the probability
of relevance on specificity. The relevance on exhaustivity is
estimated using the language modeling approach to infor-
mation retrieval [5]. The phrase model is kept orthogonal
to the unigram language model for single terms, similarly to
[10], and we used variants of the n-gram (n > 1) language
model to see if and in what degree phrases can contribute
to the TIJAH system performance. The relevance on speci-
ficity is assumed to be related to the component length (e.g.,
following a log-normal distribution).

This paper presents our approaches for two out of four tracks
defined for INEX 2004, namely ad-hoc track and relevance
feedback track. For the ad-hoc track, we developed ap-
proaches for both content-only (CO) and vague content-and-
structure (VCAS) subtasks. Different models have been im-
plemented in the TIJAH system for these subtasks. More-
over, the TIJAH system supports the specification of rele-
vance feedback parameters and a simple model for relevance
feedback on structure is implemented in our system.

The following section gives a global overview of the TIJAH
system architecture. Section 3 describes the capabilities of
a conceptual level of our system performing different NEXI
query rewriting and expansions. Section 4 specifies an exten-

141

sion of score region algebra for phrase handling and explains
how these expressions are mapped into efficient operations
on physical level. Section 5 describes the incorporation of
relevance feedback on structure in our system. The paper
concludes with a discussion of the experiments performed
with the TIJAH system for the two INEX ad-hoc search
tasks (CO and CAS) and for INEX relevance-feedback task.

2. TIJAH SYSTEM ARCHITECTURE
The TIJAH XML-IR system follows a traditional three-level
database architecture consisting of conceptual, logical and
physical level. Although the concept has been well known in
the database field for more than thirty years, we introduced
some modifications in the architecture to bridge the gap
between the traditional DBMS systems and IR systems.

2.1 Conceptual level
As a base for the conceptual level we used the Narrowed Ex-
tended XPath (NEXI) query language [11] as proposed by
the INEX Initiative in 2003. NEXI query language supports
only a subset of XPath syntax and extends XPath with a
special about function that ranks XML elements by their es-
timated relevance to a textual query. As such, the invocation
of the about function can be regarded as the instantiation of
a retrieval model.

Throughout the paper we will use two NEXI examples, one
taken from the INEX CAS topic 149:

//article[about(.//(abs|kwd), "genetic algorithm")]

//bdy//sec[about(.,simulated annealing)]

and the other from INEX CO topic 166:

+"tree edit distance" +XML -image

During the conceptual query processing a NEXI query lan-
guage expression is encoded into an internal representation
which is much like the original query, and all the manipula-
tions are done on this internal representation. As a result of
the processing on the conceptual level we obtain a concep-
tual query plan (see Figure 1).

2.2 Logical level
The difference on the logical level of traditional DBMSs and
our system is in that we enhanced it with an algebra that
takes into account the specific structure of the modeled data,
i.e., XML in our case, to enable high level reasoning about
the query specification and algebraic optimization. Since
the algebra supports region score manipulation and ranked
retrieval we named it score region algebra (SRA). As already
stated in [7], considering XML as a sequence of tokens, mod-
eling it in region algebra is straightforward. Furthermore,
the exact retrieval model does not have to be completely
specified, as the structural and semantic aware framework
of score region algebra can be kept abstract regarding the
exact retrieval model used. Finally, the properties of SRA
operators can be used for query optimization as can be seen
in [8].

The basic score region algebra operators that involve score
manipulations are depicted in Table 11. We assume that the

1We used a slightly different notation than in [7]. For more ex-
tensive coverage of score region algebra we refer to [8].

default value for score attribute is 1. Note that the prob-
abilistic containment operators =p, 6=p, I and J produce
all regions from the first operand (R1) as a result, i.e., the
region start, end, type and name attribute values are copied
from the left operand region set to the result region set,
while the score attribute of the result set (p) gets its value
based on the containment relation among regions in the left
and regions in the right operand as well as their respective
score values. The definitions of the probabilistic set-like op-
erators (up and tp) are similar to the definitions of basic set
intersection and set union operators, i.e., the result region
start, end, type and name are obtained the same way as for
set intersection and union operators, except that the result
score value for regions is defined based on the score values
of regions in the left and right operand region set.

In the definition of score operators we introduced four com-
plex scoring functions: f=, f6=, fI and fJ, as well as two
abstract operators: ⊗ and ⊕, that define the retrieval model.
For the⊕ operator we assume that there exist a default value
for the score (denoted with d), and in case the region r1 is
not present in the region set R2 the score is computed as
p = p1 ⊕ d and in case the region r2 is not present in the
region set R1 the score is computed as p = d⊕ p2.

The functions f=, f6=, fI and fJ, applied to a region r1 and
a region set R2, result in the numeric value that takes into
account the score values of all regions r2 (∈ R2) and the
numeric value that reflects the structural relation between
the region r1 and the region set R2. The abstract ⊗ opera-
tor specifies how scores are combined in an and expression,
while the ⊕ operator defines the score combination in an or

expression inside the NEXI predicate. The exact instatiaton
of these functions and operators is done on the physical level
as can be seen in the next section.

2.3 Physical level
The SRA algebra is defined as a XML specific logical algebra
and can be easily implemented with relational operators [7,
12, 3]. Since we used the MonetDB on the physical level
the last step on logical level of the TIJAH system was a
translation to Monet Interpreter Language (MIL). The MIL
query plan is executed using MIL primitives that define the
manipulation over Monet binary tables (BATs) [2].

Here we explain the implementation of the logical opera-
tors on the physical level based on a language modeling ap-
proach. The physical level is based on a pre-post numbering
scheme [4] and the containment join operators (1= and 1<)
introduced in [7]. The context region in which we perform
frequency counts is denoted by r, while the set R specifies
the set of term regions.

In the specification of our retrieval model we first introduce
three auxiliary functions at the physical level. These func-
tions are used to compute the term frequency - tf (r ,R), the
collection frequency - cf (R) and the length prior - lp(r).
Variable λ represents the smoothing parameter for the in-
clusion of background statistics, µ is the mean value (i.e., of
the logarithm distribution of the desired size for the element)
and ρ is the variance (in our case set to 1) for the log-normal
prior. These auxiliary functions can be implemented using
two physical operators: a size operator size(r) that returns

142

Table 1: Region algebra operators for score manipulation.
Operator Operator definition

σt=type,n=name(R) {r|r ∈ R ∧ t = type ∧ n = name}
R1 =p R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f=(r1, R2)}
R1 6=p R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f 6=(r1, R2)}
R1 I R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × fI(r1, R2)}
R1 J R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × fJ(r1, R2)}
R1 up R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1, t1) = (s2, e2, n2, t1) ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 ⊗ p2}
R1 tp R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ ((s, e, n, t) := (s1, e1, n1, t1) ∨ (s, e, n, t) := (s2, e2, n2, t2)) ∧ p := p1 ⊕ p2}

the size of a selected region r, and a count operator |R| that
returns the number of regions in a region set R.

Function tf (r ,R) computes the term frequency for terms in
R. The term frequency of a region set R (i.e., a set of term
positions) is computed as:

tf (r ,R) =
|R 1< r |
size(r)

Function cf (R) computes the collection frequency of a term
as follows:

cf (R) =
|σt=term(W)|

size(Root)
,

where term is the name of a region r ∈ R, and Root repre-
sents the region that is not contained by any other region
in the collection (i.e., the root region of the entire XML
collection).

To define the length prior of the region r we used either the
size of the element: lp(r) = size(r), the standard element
prior: lp(r) = log(size(r)), or the log-normal distribution:

lp(r) =
e−((log(size(r))−µ)2/2ρ2)

size(r)ρ
√

2π

Although in our framework arbitrary implementations of
complex functions can be introduced on the physical level,
for INEX 2004 we followed the language model [5] and the
conclusion drawn from numerous experiments last year [7].
The complex scoring functions defined in our region algebra,
f=(r,R) and f6=(r,R), implement the about function speci-
fied in NEXI, while fI(r,R) and fI(r,R) specify the score
propagation in nested regions.

f=(r, R) = λtf(r, R) + (1− λ)cf(R)

f 6=(r, R) = 1− tf(r, R)

fI(r, R) =

P
ri∈r1=R

(size(ri) ∗ pi)P
ri∈r1=R

size(ri)

fJ(r, R) =
X

ri∈r1<R

pi

In this paper we take the simple approach for the score com-
bination operators where ⊗ is implemented as a product of
two score values, while ⊕ is the sum of scores (with the
default value d = 1), as it shows good behavior for retrieval.

3. QUERY REWRITING
Upgrading the TIJAH system used previous year for INEX
[7], we developed a fully automatic approach for translat-
ing NEXI queries first into internal conceptual representa-
tion, and later into logical algebra. The structure of the
conceptual query translator is depicted in Figure 1. The
conceptual level of the TIJAH consists of three processing

− modifier modeling
− phrase modeling

Query preprocessor
retrievel model

repository

repository
relevance feedback

repository
equivalence classes

Query processor
− stop word removal
− stemming

Query rewriter
CO query
expansion

CAS query
expansion

Conceptual query plan

NEXI query

Logical level Physical level

U
ser m

odeling unit

User/Administrator

Figure 1: The conceptual level of the TIJAH system.

units, namely query preprocessor, query processor and query
rewriter, and the user modeling unit encompassing three
repositories: retrieval model repository, relevance feedback
repository and equivalence classes repository2. Query pre-
processor and processor units are responsible for supporting
the traditional IR system query processing (see e.g., Intro-
duction in [1]), while the conceptual query rewriter extends
the query according to the user specification and based on
the content of repository files. Each conceptual unit is ex-
plained below.

The retrieval model repository and relevance feedback repos-
itory form the input to the preprocessing unit. How the data
from the repository is interpreted depends on a specification
in the user modeling unit. The retrieval model repository in
the TIJAH system currently only stores the parameters of
a retrieval model, i.e., smoothing parameter λ for the lan-
guage model used for retrieval, and the desired size of the
retrieved element for estimating the relevance on specificity.

3.1 Handling phrases and modifiers
The query preprocessing unit rewrites NEXI queries based
on a user specification on handling phrases and modifiers.
Thus, users can specify whether phrases should be consid-
ered as phrases or as a set of terms in the query, and whether

2The equivalence classes repository represents a repository that
should support the heterogeneous collections retrieval and is still
not fully supported in the TIJAH system.

143

CAS queries:
1. ROOT//article[ABOUT(.//(abs|kwd), genetic algorithm "genetic algorithm")]//bdy//sec[ABOUT(.,simulated annealing)]
2. ROOT//article[ABOUT(.//(abs|kwd), genet algorithm "genet algorithm")]//bdy//sec[ABOUT(.,simul anneal)]
3. ROOT//article[ABOUT(.//(abs|kwd), genet algorithm "genet algorithm")

AND ABOUT(., genet algorithm "genet algorithm")]//bdy//sec[ABOUT(., simul anneal)]
4. ROOT//article[ABOUT(.//(abs|kwd), genet algorithm "genet algorithm")

AND ABOUT(.,genet algorithm "genet algorithm") AND ABOUT(., simul anneal)]
//bdy//sec[ABOUT(., simul anneal) AND ABOUT(., genet algorithm "genet algorithm")]

CO queries:
1. ROOT//article//*[ABOUT(., +tree +edit +distance +"tree edit distance" +XML -image)]PRIOR
2. ROOT//article[ABOUT(., +tree +edit +distance +"tree edit distance" +XML -image)]

//*[ABOUT(., +tree +edit +distance +"tree edit distance" +XML -image)]PRIOR
3. ROOT//journal[MATCH(tp,0.34)]//*[MATCH(sec,0.22) or MATCH(p,0.18)]

[ABOUT(., +tree +edit +distance +"tree edit distance" +XML -image)]PRIOR(856)

Figure 2: The conceptual query plans generated from the NEXI CAS and CO queries.

term and phrase modifiers (’+’, and ’-’) should be considered
during the query execution and in what way. Modifiers can
be interpreted as strict containment conditions or as vague
query conditions, stating that some terms or phrases are
more important than the others for ’+’, and that fragments
containing some terms or phrases should be ”punished” for
’-’. The result of the example CAS query processing where
we used phrases can be seen in Figure 2 as CAS query 1.

3.2 Stop word removal and stemming
The standard IR query processing consisting of query stop
word removal and stemming is done by processing unit. We
used the standard Porter stemmer and a publicly available
stop word list consisting of 429 stop words. Stemming and
stop word removal are applied based on a user specification
(in the user modeling unit). In Figure 2 CAS query 2 depicts
the outcome of the processing unit in case stemming would
have been performed.

3.3 Query expansion
The last step in conceptual query processing is query rewrit-
ing and expansion. The conceptual query rewriting unit
distinguishes between NEXI content-only (CO) and content-
and-structure (CAS) queries.

CO query expansion. NEXI CO queries are transformed
into CAS queries according to the user specification. For
instance, CO query can be translated in two ways:

• we are looking for any relevant XML element in any
of the articles in the collection, including the articles
themselves, as depicted in CO query 1 in Figure 23, or

• we are looking for any relevant element in an article
(including article elements themselves) that is about
the topic specified, as depicted in CO query 2 in Fig-
ure 2.

The PRIOR in the conceptual query plan denotes that we
use the relevance on specificity (i.e., result element size) in
computing the final score of XML elements. The default is
a length prior while for the log-normal prior the mean size
should be specified (see CO example 3 in Figure 2).

3Although we used the same abbreviation as for the XPath
descendant:node step, i.e. //*, in TIJAH system it is treated
as descendant or self::node.

CAS query expansion. Since NEXI CAS queries spec-
ify the element that should be retrieved as a result, query
rewriting can only be about structural constraints in the
about clause and about term distribution in different about
clauses. Therefore, we applied to simple rules to enable ele-
mentary CAS query rewriting:

• relaxing the constraint that terms or phrases must be
contained by the XML elements specified in the struc-
tural part of the about clause, as depicted in CAS
query 34 in Figure 2;

• further relaxing the structural constraints and allow-
ing that terms or phrases in each subquery are also
added to the other subquery (similarly as we had in
the TIJAH 2003 approach [7]), as shown in Figure 2,
CAS query 4.

4. PHRASE MODELING
For phrase modeling we follow the ideas introduced by Song
and Croft [10], where the authors individualized unigram
and bigram language models and combined them in an in-
dependent way. Thus, for a two-word phrase consisting of
terms t1 and t2 the score value for a phrase can be computed
as:

P (t1, t2|d) = α1P1(t1|d) op α2P2(t1, t2|d)

where α1 and α2 are parameters that define the relative
influence of a unigram and bigram language model in the
total score in case op is ’+’. Operator op defines the nature
of the combination of these models. We slightly modified
the approach and used two interpretations:

• combination of n-gram LMs is modeled as an equally
weighted sum: P (t1, .., tn−1, tn|e) = P1(t1|e) + P2(t1, t2|e) +
... + Pn(t1, t2, ..., tn|e), and

• combination of n-gram LMs is modeled as a prod-
uct: P (t1, .., tn−1, tn|e) = P1(t1|e) × P2(t1, t2|e) × ... ×
Pn(t1, t2, ..., tn|e).

In our approach the expression Pi(t1, t2, ..., ti|e) gives the
probability that the XML element e contains the phrase “t1
t2 ... ti”.

4Note that the stemming has been applied in the query process-
ing.

144

To be able to model phrases in region algebra we had to
extend SRA to support phrase specification and more ad-
vanced score manipulation operators. For such a purpose
we introduced two complex selection operators and two ad-
ditional containment operators that are defined in Table 2.

The first selection operator makes a union of regions of the
same type that have different name attribute. The opera-
tor is aimed at modeling search on multiple terms in the
same region set. Therefore, it can be viewed as a shorthand
notation for a logical expression consisting of a sequence of
union operators applied on a selected region sets with the
same type and different name attributes. The second oper-
ator makes a union of all adjacent sub-regions in the region
set that have the same type attribute. The name attributes
of these new regions take the names of the regions from the
second operand, while their type is now changed to adj.

Following this approach and using xp as a shorthand for
arbitrary SRA expression formed during the NEXI to SRA
query translation, phrase ’’tree edit distance’’ can be
transformed into one of the following logical expressions:

xp =⊗ σt=term,n=′tree′ adj n=′edit′ adj n=′distance′ (R)

xp =⊕ σt=term,n=′tree′ adj n=′edit′ adj n=′distance′ (R)

Here, xp denotes arbitrary SRA expression formed during
the NEXI to SRA query translation.

The =⊗ and =⊗ operators define how relevance scores from
regions with distinct region name attributes (i.e., regions
with adjacent terms of different length) are combined to
form the resulting score value for regions in the left operand
(r1 ∈ R1). The exact definition of functions f=⊗ and f=⊕ is
similar to the definition of function f= except that they treat
adjacent regions with different name attributes in isolation
and combine them based on the specification of operators ⊗
and ⊕, i.e., multiplying or summing them, respectively.

Furthermore, the scaling operator (~) is introduced in the
SRA to model terms with and without modifier ’+’. The
operator definition is as follows: R1 ~ num = {r|r1 ∈ R1 ∧
(s, e, n, t) := (s1, e1, n1, t1)∧p := (p1∗num)}. This operator
scales down the terms (regions) that are not marked with
’+’ and, therefore, considered not so important, and scales
up terms (regions) marked with ’+’ which are important
terms. In our approach important terms are scaled with a
num value that is double the num value for not so important
terms. For example, in a query consisting of 6 terms of which
2 are marked as important (with ’+’), important terms are
scaled with num = 0.25 and not so important terms are
scaled with num = 0.125.

Based on the defined operators we can now translate the
conceptual query plan into the logical query plan. For ex-
ample, the logical query plan for the CAS query 2 given
in Figure 2 looks as given in Figure 3. In the Figure 3 we
used capital (representing region names) instead of a selec-
tion operator on name and type attributes for brevity and
to increase the readability of the query plan. For example,
we use ABS instead of σt=entity,n=′abs′ and GENET ALGORITHM

instead of σt=term,n=′genet′ adj n=′algorithm′ .

The query plan subtree denoted with dashed lines in Fig-
ure 3 can also be expressed using a complex selection oper-
ator, and consequently this subexpression would look like:

σt=entity,n=′abs′ or n=′kwd′ (C)

Although this query plan subtree, as well as subtrees bounded
with dash-dot lines, repeat themselves in the logical query
plan they are executed only once on the physical level.

p

p

p

p

p

p

ABS KWD

p

ALGORITHM

p

p

p

p

p

*

0.5

ARTICLE

ABS KWD

*

0.5

BDY

SEC

p

*

0.5

*

0.5

ARTICLE

ABS KWD

*

0.5

BDY

SEC

p

*

0.5

GENET GENET

ABS KWD

p

GENET_ALGORITHM

ABS KWD

p

ABS KWD

p

ALGORITHM

GENET_ALGORITHM

SIMUL ANNEAL

Figure 3: The SRA query plan for the topic 149.

For the phrase modeling on the physical level we imple-
mented two functions as defined below:

f=⊗ (r, R) =
Y
Ri

ηtf(r, Ri) + (1− η)cf(Ri)

f=⊗ (r, R) =
X
Ri

ηtf(r, Ri) + (1− η)cf(Ri)

Here, Ri is a set of regions (ri) that have the same region
name attribute (ni). The sum and the product is defined
over all sets Ri with different region names in R. Parameter
η is used to specify the influence of foreground and back-
ground statistics for different adjacent regions in the region
set.

5. RELEVANCE FEEDBACK
Our approach for the relevance feedback track is based on
the idea that knowledge of relevant components provides
implicit structural hints that may help improve the perfor-
mance of the content-oriented queries. We use a two-step
procedure to implement this idea:

• First, we extract the structural relevance of the top-
ranked elements according to the relevance assessments;

• Second, the content-oriented query is rewritten into a
structured one and the priors of the system are tuned
based on the relevance feedback information. Then,
the new structured query is evaluated in the TIJAH
system.

In the following subsections, we define these two steps and
explain their implementation in the TIJAH XML-IR system.

145

Table 2: Complex selection and containment operators.
Operators and operator definitions

σt=type,n=name1 or n=name2 or ... or n=namen (R) =
{r|r ∈ R ∧ (t = type ∧ n = name1) ∨ (t = type ∧ n = name2) ∨ ... ∨ (t = type ∧ n = namen)}

σt=type,n=name1 adj n=name2 adj ... adj n=namen (R) =
{r|(r1 ∈ R ∧ r2 ∈ R ∧ t2 = t1 = type ∧ n1 = name1 ∧ n2 = name2 ∧ e1 = s2 − 1 ∧ (s, e, n, t, p) := (s1, e2, n2, adj, p2))
∨... ∨ (r1 ∈ R ∧ r2 ∈ R ∧ ... ∧ rn ∈ R ∧ tn = ... = t2 = t1 = type ∧ n1 = name1 ∧ n2 = name2 ∧ ... nn = namen

∧e1 = s2 − 1 ∧ e2 = s3 − 1 ∧ ... ∧ en−1 = sn − 1 ∧ (s, e, n, t, p) := (s1, en, nn, adj, pn))}
R1 =⊗ R2 = {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f=⊗ (r1, R2)}
R1 =⊕ R2 = {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f=⊕ (r1, R2)}

5.1 Extracting structural information
How to extract the structural relevance from the top rele-
vant elements is a difficult problem. The semantics of the
relevance assessments should be analyzed in depth to decide
which kind of structural hints should be extracted from the
different relevant components and to define what is the best
interpretation for the different relevance combinations.

In our first attempt to model the structural relevance of a
query, we use the journal and the XML tag name informa-
tion from the top-ranked elements as well as their relevance
values. We also use the size of these elements to update the
length prior for the next iteration in the relevance feedback
cycle. We believe that with a good combination of these
hints we can considerably improve the performance of the
content oriented results. In Section 6 we give a preliminary
analysis of the results of this approach.

The reminder of this section details how the structural infor-
mation from the top-ranked elements and the results from
relevance assessments on exhaustivity and specificity are
used to rewrite the query for the next iteration in the rele-
vance feedback cycle.

5.1.1 Journal name
The content of the INEX collection consists of eighteen dif-
ferent journals. Each of these journals contains articles dis-
cussing a different computer science related field. We believe
that when a component is assessed as relevant for a given
topic, the journal it belongs to will contain elements with
a similar content information. Therefore, we want to use
this information to give a prior to the elements that are
contained in that journal.

As an example, consider the relevance assessments for this
year. If we consider only highly exhaustive and highly spe-
cific elements, marked with (3,3), we find that most of the
topics have less than 3 relevant journals. That means, that
likely, these are the journals that discuss the topic. There-
fore, it is easy to imagine that other elements from these
journals will also contain relevant information for that spe-
cific topic.

We decided to model the journal prior information accord-
ing to the following formula:

P (J) = a + b ·
P
r∈top20vJ Er

3 · |{r ∈ top20|Er > 0}|
+ (1− a− b) ·

|J w top20|
20

,

where Er is the exhaustivity value of the relevant top 20
components (r ∈ top20) that belong (v and w, respectively)

to the journal J and a and b are weighting parameters used
to tune the importance of this information.

Note that we only use the exhaustivity information to get
a prior for the journal. We argue that if a component is
somewhat exhaustive, it means that the journal is likely to
be about, i.e., to contain the desired information specified in
the query (whatever the specificity for that component is).
We also reward the journals that have a higher number of
elements in the top 20 ranked elements (see the third part
of the sum in the equation).

5.1.2 XML tag names
The goal of using the element names for relevance feedback
is to push up in the ranked result list the kind of elements
we already know can be relevant for the topic (”make sense
to be retrieved”) and to push down the ones that not.

For modeling the information on the XML tag names ex-
tracted from the top-ranked elements (e), we use a similar
approach as for the journals:

P (e) = a+b ·
P
r∈top20ve Er + Sr

3 · |{r ∈ top20|Er · Sr > 0}|
+(1−a−b) ·

|e ∈ top20|
20

In this case, we also take into account the specificity scale
(Sr) as it gives information on the size of the element: i.e,
if the element was large enough or too small for the infor-
mation need.

5.1.3 Size
We use the size information to tune the length prior of our
retrieval model for the next iteration. We believe that el-
ements similar in length to those that are assessed as rele-
vant have a higher likelihood to be the ones that the user
is looking for. Nevertheless, it is not easy to combine the
sizes of the top components to estimate a desired size to be
retrieved.

We decided to use the following formula to define the desired
size given the elements (r) in the top 20:

DesiredSize =

P
r∈top20 size(r)× SizeModifierrP
r∈top20 sgn(SizeModifierr)

where SizeModifierr is defined as:

SizeModifierr =

8>>><>>>:
1 if (Er, Sr) ∈ {(2, 2), (3, 3)}

0 if (Er, Sr) ∈ {(1, 1), (0, 0)}

3−Er+Sr
3

otherwise

146

We based this formula on the assumption that very specific
components that are not very exhaustive (i.e., Sr > Er) are
likely to be too small to answer the information need and,
on the other hand, highly exhaustive components that are
not very specific (i.e., Er > Sr) are likely to be too large as
an answer. In case there are no relevant elements in the 20
top-ranked elements, or the relevant elements are marginally
exhaustive and marginally specific, i.e., marked with (1,1),
we use the default value for desired size.

5.2 Rewriting and evaluating the query
After the information extraction on the structural informa-
tion of the relevant elements and its fusion with the relevance
assessments on exhaustivity and specificity, in the first step,
the information is stored in the relevance feedback reposi-
tory5. The information is used to rewrite the CO query and
evaluate it in the TIJAH system. Assuming that in the rel-
evance feedback repository for topic 166 the journal name
specification is tp with a relevance prior 0.34, element names
are sec and p with relevance prior values 0.22 and 0.18, re-
spectively, and estimated element size is 856, the conceptual
query after rewriting will look like the query given in Fig-
ure 2 as CO query plan 3. The MATCH(e name,imp) is used
to denote that the elements in the e name have the higher
probability to be relevant answers to a query than other el-
ements, and the value imp gives their respective relevance
prior.

The MATCH expression in the conceptual query plan is trans-
lated into a combination of a selection and scaling operators
on the logical level. For example, query excerpt:

xp[MATCH(sec,0.22) or MATCH(p,0.18)]

is expressed on logical level as:

xp up ((σn=′sec′,t=entity(C)~1.22)t(σn=′p′,t=entity(C)~1.18))

where C is the collection of all regions (all XML elements in
the collection). These operators are further translated into
physical query plan as defined in previous sections.

6. EXPERIMENTS
In this section we give an overview of the experiments we
did with the TIJAH XML-IR system. We present our pre-
liminary results (official and additional runs) for the ad-hoc
retrieval task (CO and CAS) and the relevance feedback
task.

6.1 INEX ad-hoc track
As this year we used a completely new implementation on
the physical level of our system, we design different exper-
iments to evaluate which would be the best parameters for
the retrieval model as well as to check if the scenarios used
in previous years would produce the same performance on
the new implementation.

6.1.1 CO queries
For the CO task we design two main experiments: The first
one evaluates the effect of supporting phrases in the TI-
JAH XML-IR system as explained throughout the paper.

5Currently the computation and specification of these values are
not completely integrated into the TIJAH system.

Table 3: CO experimentation runs: basic language
model without length prior. Effects of supporting
phrases. The ’n-gram’ column indicates the kind of
combination for the n-gram LMs and the ’R’ col-
umn indicates the way the scores within a region
are combined for a final score.

Run λ n-gram R avg. MAP overlap

Rcompnophr 0.35 - - 0.0446 49.4%
Rcompphr1 0.35 product ⊗ 0.0437 51.1%
Rcompnophr 0.5 - - 0.0496 52.3%
Rcompphr2 0.5 product ⊕ 0.0502 82.8%
Rcompphr3 0.5 weighted sum ⊕ 0.0470 82.1%

Table 4: Additional CO experimentation runs:
Length priors

Run length prior Avg MAP overlap

Rcomp05 none 0.0496 52.3%
Rcompcut5 res > 5 0.0534 51.8%
Rcompcut10 res > 10 0.0578 53.2%
Rcompcut25 res > 25 0.0635 55.4%
Rcompcut50 res > 50 0.0645 57%
Rcomplogn lognormal 0.0526 51.1%
Rcomplogs logstandard 0.0985 73.6%

Results of this runs are shown in Table 3. The differ-
ent columns show the different approaches used to model
the phrase search (see section 4 for details). According
to the results, supporting phrase search improved the re-
trieval performance in only one of the runs. Note that this
improvement is partially positive as the overlap increased
considerably too.

The second experiment was designed to evaluate the effect of
including a length prior in the retrieval model. We defined
several priors and applied them to the best of our runs. The
results are shown in Table 4. In the first four runs, the
length prior consists on removing from the result list the
elements smaller than a certain treshold. The last two runs
use a lognormal and a logstandard distribution to model
the length prior. We can see that, whatever the prior is, the
performance of the original run improves. As we saw already
in previous years, a logstandard distribution works best in
our case, reaching a MAP of 1.4 in one of the metrics.

6.1.2 VCAS task
For the VCAS task, we designed three different scenarios:
The first one, Rstrict treats the structural constraints of a
query strictly and all the result components must exactly
match these structural constraints. The second and the
third one, Rrelax and Rall, implement the relaxations of
the structural constraints explained in Section 3, queries 3
and 4 in Figure 2. The results of this runs are shown in
Table 5. Even if the improvement for the first relaxation
(second row) is not significant, we can see in the precision
and recall graphs that the relaxation of the structural con-

147

Table 5: Official VCAS experimentation runs. Note
that results in Rall have been modified due to an
implementation error in the submitted ones

Run Avg MAP overlap

Rstrict 0.0624 22.8%
Rrelax 0.0694 24.3%
Rall 0.0588 23.9%

straints leads to better precision for this run. Contrary to
last year, the second relaxation by using all the terms in all
the about clauses did not performed as expected. Further
analysis should determine if this is just an effect of the dif-
ferent topics for this year or if, in general, the relaxation is
not appropiate for our purposes.

6.2 INEX relevance-feedback track
To see the performance of our approach using structural
feedback, we designed different runs to try to identify which
combination of the different structural and size information
would work better. Unfortunately, at the moment of writing
this paper, we do not know the exact way the results will
be officially evaluated. Nevertheless, an analysis of the pre-
liminary results shows that none of the combinations used
improves significantly the performance of the retrieval sys-
tem. Further experimentation will be required to see wether
different values for the parameters of the formulas presented
will give a better performance or some other interpretation
of the relevance assessments should be done.

7. CONCLUSIONS AND FUTURE WORK
Our participation in INEX is characterized by applying a
fully systematic approach able to support different retrieval
tasks identified as ad-hoc task (CO and CAS) with simple
user modeling and relevance feedback task. We investigated
the influence of phrases in retrieval model with respect to
the retrieval performance. Furthermore, we experimented
with straightforward approaches to (blind) structural rele-
vance feedback. Future research includes more extensive
experimentation in the area of phrase search and relevance
feedback, applying new models for incorporating different
aspects of relevance feedback information, and taking more
advanced methods for phrase search, by adapting IR ap-
proaches such as classifier-thing bigrams [6], by using the
WWW as N-gram training data [13], by using vocabulary
clustering [9], etc., to XML phrase modeling. Finally, we
aim to improve the efficiency of the system on, both mem-
ory and CPU wise, using rewriting and optimization rules on
the logical level as well as by applying horizontal fragmen-
tation and encoding of data into more compact structures
on physical level.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. ACM Press, 1999.

[2] P. Boncz. Monet: a Next Generation Database Kernel for
Query Intensive Applications. PhD thesis, CWI, 2002.

[3] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts.
In Proceedings of the 30th Int’l Conference on Very Large
Data Bases (VLDB), 2004.

[4] T. Grust and M. van Keulen. Tree Awareness for Relational
DBMS Kernels: Staircase Join. In H. M. Blanken,
T. Grabs, H.-J. Schek, R. Schenkel, and G. Weikum,
editors, Intelligent Search on XML, volume 2818 of Lecture
Notes in Computer Science/Lecture Notes in Artificial
Intelligence (LNCS/LNAI), pages 179–192.
Springer-Verlag, Berlin, New York, etc., August 2003.

[5] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, Twente, The
Netherlands, 2001.

[6] M. Jiang, E. Jensen, S. Beitzel, and S. Argamon. Choosing
the Right Bigrams for Information Retrieval. In Proceeding
of the Meeting of the International Federation of
Classification Societies, 2004.

[7] J. List, V. Mihajlović, A. de Vries, G. Ramirez, and
D. Hiemstra. The TIJAH XML-IR System at INEX 2003.
In Proceedings of the 2nd Initiative on the Evaluation of
XML Retrieval (INEX 2003), ERCIM Workshop
Proceedings, 2004.

[8] V. Mihajlović, D. Hiemstra, H. E. Blok, and P. M. G.
Apers. An XML-IR-DB Sandwich: Is it Better with an
Algebra in Between? In Proceedings of the SIGIR workshop
on Information Retrieval and Databases (WIRD’04), pages
39–46, 2004.

[9] R. Rosenfeld. Two Decades of Statistical Language
Modeling: Where do we go from here? In Proceedings of
the IEEE, 2000.

[10] F. Song and W. B. Croft. A General Language Model for
Information Retrieval. In Proceedings of the eighth
international Conference on Information and Knowledge
Management, pages 316–321, 1999.

[11] A. Trotman and R. A. O’Keefe. The Simplest Query
Language That Could Possibly Work. In N. Fuhr,
M. Lalmas, and S. Malik, editors, Proceedings of the
Second Workshop of the INitiative for the Evaluation of
XML retrieval (INEX), ERCIM Publications, 2004.

[12] M. van Keulen. Relational Approach to Logical Query
Optimization of XPath. In Proceedings of the 1st Twente
Data Management Workshop (TDM’04) on XML
Databases and Information Retrieval, pages 52–58, 2004.

[13] X. Zhu and R. Rosenfeld. Improving Trigram Language
Modeling With the World Wide Web. In Proceedings of the
International Conference on Acoustics, Speech, and Signal
Processing, pages 533–536, 2001.

148

Flexible XML Retrieval Based on the Extended Vector Model
Carolyn J. Crouch

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Aniruddha Mahajan
Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

Archana Bellamkonda
Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ABSTRACT
This paper describes the current state of our system for
structured retrieval. It is based on an extension of the
vector space model initially proposed by Fox [5]. The basic
functions are performed using the Smart experimental
retrieval system [11]. The major advance achieved this
year is the inclusion of a flexible capability, which allows
the system to retrieve at a desired level of granularity (i.e.,
at the element level). The quality of the resultant statistics
is largely dependent on issues (in particular, ranking)
which have yet to be resolved.

1. INTRODUCTION
Our original goal when we began our work with INEX in
2002 was to confirm the utility of Salton’s vector space
model [12] in its extended form for XML retrieval.
Familiarity with Smart [11] and faith in its capabilities led
us to believe that it might prove useful in this environment.
Early results [2, 3] led us to believe that such a system
could be utilized for XML retrieval if particular problems
(e.g., flexible retrieval, ranking issues) could be solved.
During 2002, much effort was spent on the translation of
documents and topics from XML to internal Smart format
and then back again into INEX reporting format. In 2003,
we produced an operational system, but it did not include a
flexible component (that is, it could only retrieve at the
document level). During 2004, query formulation (for both
CO and CAS queries) was completely automated. CAS
queries received special attention to insure that all
conditions of the query were met [1]. Our major
improvement was the design and implementation of a
flexible capability which allows the system to retrieve
elements at various degrees of granularity [10].
Investigations with respect to relevance feedback in a
structured environment were initiated.
We now have a system which, we believe, has the potential
to function well in the XML environment. Significant
issues, which stand to impact results markedly, remain
open to investigation. These include, in particular, ranking
and length normalization.

2. BACKGROUND
One of the basic models in information retrieval is the
vector space model, wherein documents and queries are
represented as weighted term vectors. The weight assigned

to a term is indicative of the contribution of that term to the
meaning of the document. Very commonly, tf-idf weights
[13] or some variation thereof [14] are used. The similarity
between vectors (e.g., document and query) is represented
by the mathematical similarity of the corresponding term
vectors.
In 1983, Fox [5] proposed an extension of the vector space
model—the so-called extended vector space model—to
allow for the incorporation of objective identifiers with
content identifiers in the representation of a document. An
extended vector can include different classes of
information about a document, such as author name, date
of publication, etc., along with content terms. In this
model, a document vector consists of a set of subvectors,
where each subvector represents a different class of
information. Our current representation of an XML
document/query consists of 18 subvectors (i.e., abs, ack,
article_au_fnm, article_au_snm, atl, au_aff, bdy, bibl_atl,
bibl_au_fnm, bibl_au_snm,, bibl_ti, ed_aff, ed_intro, kwd,
pub_yr, reviewer_name, ti, vt) as defined in INEX
guidelines. (These subvectors represent the properties of
the document or article. Of the 18, eight are subjective,
that is, contain content-bearing terms: abs, ack, atl, bdy,
bibl_atl, bibl_ti, ed_intro, kwd.) Similarity between
extended vectors in this case is calculated as a linear
combination of the similarities of the corresponding
subjective subvectors. (The objective subvectors serve
here only as filters on the result set returned by CAS
queries. That is, when a ranked set of elements is retrieved
in response to a query, the objective subvectors are used as
filters to guarantee that only elements meeting the specified
criteria are returned to the user.)
Use of the extended vector model for document retrieval
normally raises at least two issues: the construction of the
extended search request [4, 6] and the selection of the
coefficients for combining subvector similarities. For
XML retrieval, of course, the query is posed in a form that
is easily translated into an extended vector. The second
problem—the weighting of the subvectors themselves—
requires some experimentation. Experiments performed
with the 2003 INEX topic set identified the following
subjective subvectors as being particularly useful for
retrieval: abs, atl, bdy, bibl_atl, kwd. We found our best
results were obtained with subvector weights of 1, 1, 2, 2,
and 1, respectively, and these same subvector weights were

149

applied to our 2004 topic set. (The 3 remaining subjective
subvectors received 0 weights.) More investigation is
required in this area with respect to the 2004 topics.
 Another issue of interest here is the weighting of terms
within subjective subvectors. Experiments indicated that
the best results were achieved for the 2003 topics with the
respect to both article and paragraph indexings when
Lnu.ltu term weighting [15] was used. Our 2004 results
are based on Lnu.ltu term weighting.

3. SYSTEM DESCRIPTION
Our system handles the processing of XML text as follows:
3.1 Parsing

The documents are parsed using a simple XML parser
available on the web.

3.2 Translation to Extended Vector Format
The documents and queries are translated into Smart
format and indexed by Smart as extended vectors. We
selected the paragraph as our basic indexing unit in the
early stages. Other indexing units were later added to
include section titles, tables, figure captions, abstracts,
and lists. (Thus, thinking in terms of documents, a
document is represented in this system by a set of
extended vectors—one representing its abstract, the
rest representing its paragraphs, section titles, tables,
figure captions, and lists.) Lnu-ltu term weighting is
applied to all subjective subvectors.

3.3 Initial Retrieval
Retrieval takes place by running the queries against the
indexed collection using Smart. The result is a list of
elements ordered by decreasing similarity to the query.
Consider all the elements in this list with a non-zero
correlation with the query. Each such element
represents a terminal node (e.g., paragraph) in the
body of a document with some relationship to the
query.

3.4 Flexible Retrieval
A basic requirement of INEX is that the retrieval
method must return to the user components of
documents or elements (i.e., abstract, paragraphs, sub-
sections, sections, bodies, articles, figure titles, section
titles, and introductory paragraphs) rather than just the
document itself. The object is to return the most
relevant element(s) in response to a query. Thus a
good flexible system should return a mixture of
document components (elements) to the user. These
elements should be returned in rank order. The
method to determine rank should incorporate both
exhaustivity (relevance) and specificity (coverage).
Our flexible retrieval module (which we call Flex), is
designed as follows. It takes as input a list of elements

(e.g., paragraphs), rank-ordered by similarity to the
query as determined by Smart in the initial retrieval
stage. These elements represent the leaves of the trees
of articles in the document collection.
Consider Figure 1, which represents the tree structure
of a typical XML article. The root of the tree is the
article itself, whereas the leaf nodes are the
paragraphs. Flexible retrieval should return relevant
document components (e.g., <sec>, <ss1>, <ss2>, <p>,
<bdy>, <article>, <ip1>, <abs>) as shown in Figure 1.
In order to determine which components or elements
of a tree to return, the system must first build the tree
structure and then populate the tree by assigning a
value to each non-terminal node in the tree. (The
value in this case represents a function of exhaustivity
and specificity.)

Figure 1. Tree Structure of a Typical XML Document

Flex takes a bottom-up approach. All leaf elements
having non-zero correlations with the query have
already been assigned similarity values by Smart.
Consider the set of all such leaf elements which
belong to the same tree. For a particular query, trees
are constructed for all articles with leaves in this list.
To construct the trees (and deal with the issue of
specificity [coverage]), at each level of the tree, the
number of siblings of a node must be known. The
process is straight-forward. Suppose for example in
Figure 1 that p1, p2, and p7 were retrieved as leaf
elements of the same tree. Flex would then build the
tree represented in Figure 2. Any node on a path
between a terminal node and the root node (article) is a
valid candidate (element) for retrieval.

sec1

ss11

bm

article

bdy

p1

fm

sec2

ss12

p5 p3 p4 p2

p7 p8 p6

150

Figure 2. Tree of Relevant Elements

Building the tree is simple; populating it is not. We
have weights (similarity values) associated with all
terminal nodes. We consider each such value
representative of that node’s exhaustivity (e-value)
with respect to the query. A question that arises at
this point is how to produce a corresponding value
representing specificity (s-value) for this node. Our
current approach assigns an s-value equal to the e-
value for that node. Since all the elements in question
here (i.e., the terminal nodes) are relatively small in
terms of the number of word types contained therein,
this appears to be a reasonable initial approach.
Now that all the terminal nodes of the document tree
have associated e-values and s-values, populating the
tree (i.e., assigning e- and s-values to the rest of the
nodes) begins. For every leaf node, we find its parent
and determine the e- and s-values for that parent. The
values of a parent are dependent on those of its
children (i.e., relevance is propagated up the tree,
whereas coverage may diminish as a function of the
total number of children [relevant and non-relevant] of
a node). The process continues until all the nodes on
a path from a leaf to the root (the article node) have
been assigned e- and s-values.
Our current methods for populating the tree (or
propagating the e- and s-values upwards to the root)
are primitive. A parent’s e-value is set equal to the
sum of the e-values of all its children, and its s-value is
set equal to the average of the s-values of its children.
After all trees have been populated (and we have e-
and s-values associated with each node of each tree),
one major problem remains. How can we produce a

from these populated trees? We need a method which
ranks the document components on the basis of e- and
s-value. We considered a number of approaches. Our
current method uses the product of e- and s-value to
produce a single value for ranking. This is clearly
inadequate. Ranking along with the propagation of e-
and s-values will be the focus of much attention during
the coming year.
Once a rank-order

rank-ordered list of elements (document components)

ed list is produced, the elements are

4. EXPERIMENTS
, we describe the experiments

4.1 Using CO Topics
sing flexible retrieval were

Table 1. CO Processing (2003 Topic Set)

Indexing Weight Type Desc -
strict

P-

article

bdy

sec1 sec2

reported for INEX evaluation. (The description given
here presents the logical view of Flex; see [10] for a
detailed view of Flex implementation.) ss11

p7
In the following sections
performed with respect to the processing of the CO and
CAS topics, respectively. In all cases, we use only the
topic title as search words in query construction. As
reported in Section 2, only five of the eight subjective
subvectors (i.e., abs, atl, bdy, bibl_atl, and kwd with
corresponding subvector weights 1, 1, 2, 2, and 1), were
used for searching. Term weighting was Lnu.ltu in all
cases. All indexing is done at the paragraph (basic
indexing unit) level unless otherwise specified.

p1 p2

Our initial experiments u
performed using the 2003 topic set. We used several
simple methods for calculating e- and s-values and
propagating these values up the tree. Table 1 presents the
results of these experiments based on the P-strict and P-gen
measures produced by inex-eval. The table shows the type
of indexing (article or paragraph), type of retrieval (either
conventional or flexible retrieval applied after Smart
retrieval), the method by which e- and s-values are
calculated and propagated, and the final ranking obtained.

P
gen

0.0648

para Lnu-ltu flexible ad) d(e 0.0717 0.0332

add(e)
*

article Lnu-ltu Document e 0.0251

para Lnu-ltu flexible
avg(s)

0.0847 0.0376

try in the table gives the result when the The first en

indexing is performed at the article or document level (i.e.,
without flexible retrieval). Results are returned in rank
order based on correlation with the query. The second
entry represents flexible retrieval wherein only e-values
were propagated up the tree, the e-value of a parent is the
sum of the e-values of all its children, and the results are

151

sorted on e-value. Specificity was not utilized in this case.
The third entry in the table uses both e- and s-value; e-
value of a node is calculated as the sum of the e-values of
its children whereas its s-value is the average of the s-
values of its children. Final ranking of a node is based on
the product of its e-value and s-value.
The results, as seen in this table, indicate that flexible

uch the same fashion as CO

be divided into

experiments involving

Table 2. CAS Processing (2003 Topic Set)

Indexin P-strict

retrieval produces an improvement over document retrieval
for the 2003 topic set. The approach producing the best
result (third line of Table 1) was subsequently applied to
the 2004 topic set. The result is reported in Section 4.3.

4.2 Using CAS Topics
We process CAS topics in m
topics, with some important exceptions. During pre-
processing of the CAS queries, the subjective and objective
portions of the query and the element to be returned (e.g.,
abstract, section, paragraph) are identified.
 Depending on its syntax, a CAS query can
parts, which can be divided into subparts depending on the
number of search fields. Further subdivision, depending on
the presence of plus or minus signs (representing terms that
should or should not be present) preceding a search term, is
also possible. CAS preprocessing splits the query into the
required number of parts, each of which is processed as a
separate Smart query. For example, suppose the query
specifies that a search term is to be searched for in field 1.
If the field to be searched is an objective subvector, the
search term is distributed in that subvector. If the search
field specifies a specific subjective subvector, the search
term is distributed in that subvector, otherwise the search
takes place in the paragraph subvector. The result in this
last case is a set of elements (terminal nodes) returned by
the Smart search which is used as input to Flex. Flex
produces a ranked set of elements (terminal, intermediate,
and/or root nodes) as the final output of this small search.
After all subsearches associated with the query are
complete, the final result set is produced (i.e., the original
query is resolved). The element specified for return in the
original query is then returned from each element in the
result set. See [1] for more details.
Table 2 shows the results of three
the 2003 CAS topic set. The first entry in the table shows
CAS retrieval based on an article indexing of the
collection. The second entry represents the results of
flexible retrieval on a paragraph indexing. The last entry in
the table represents a hybrid approach, which uses
conventional retrieval for queries which return articles and
flexible retrieval for all other queries. This result shows a
substantial increase in precision at the cost of requiring two
separate indexings.

g Weight Type Desc

article Lnu-ltu document e 0.1658

para Lnu-ltu flexible add(e) *
avg(s) 0.1121

para Lnu-ltu hybrid e) 0.2224 or add(e
* avg(s)

he method represented by the second entry in Table 2

r work centered on two important aspects

Table 3. CO and CAS Processing (2004 Topic Set)
T

T
(i.e., CAS processing using flexible retrieval based on a
paragraph indexing) was subsequently applied using the
2004 CAS topic set. The result is reported below.

4.3 Results
During 2004, ou
of the INEX ad hoc task: retrieving at the element level
(i.e., flexible retrieval) and insuring that the result returned
from a CAS search met the search requirements. The
results, based on 2004 metrics, are shown in Table 3.

ask Average of RP measures Generalized Recall

CO 0.05 34.94

CAS 0.04 27.99

e note that our results this year are not competitive,

ce Feedback in INEX
 feedback in

thin the constraints of our system, the first

exhaustivity and a corresponding set of values for

W
whereas last year we placed in the top group several times.
In 2003, we were only able to retrieve documents. This
year, with flexible retrieval based on a paragraph indexing,
our current ranking scheme favors the return of smaller
elements rather than larger ones. Yet as Kamps, et.al. [8]
clearly show, in 2003 the probability of relevance increased
with element length. Our method of propagating values
and ranking of elements needs to take this into
consideration.

4.4 Relevan
The importance and value of relevance
conventional information retrieval have long been
recognized. Incorporating relevance feedback techniques
within the domain of structured retrieval is an interesting
challenge.
Working wi
question which arises is how to translate the exhaustivity
and specificity values associated with each INEX element
into an appropriate measure of relevance in our system.
Conventional retrieval views relevance assessment as
binary. In INEX, we have a range of values for

152

specificity. There are many possibilities to consider when
mapping these values to relevance.
As an initial approach, we decided simply to recognize as
relevant those elements with e-values of 3. In other words,

Our system, as a result of work done in the past year, is
ent level, i.e., retrieving at

 techniques to structured retrieval. There are

CES
[1] Bellamkonda, A. Automation of Content-and-

essing. Master’s Thesis, Dept. of

 [2] C., Apte, S., and Bapat, H. Using the
c of

[3]
d retrieval based on the extended vector

[4]
queries. In Proc. of

[5]
ieval with p-norm queries

[6]
g concept classes in a collection. In Proc. of

[7]
documents.

[8]
roc of the

 [9]
etrieval. In Proc of

[10]
ept. of Computer

[11]
8).

8, 11

[13]
al. In IP&M 24, 5 (1988),

[14]
Conf (TREC-6), NIST SP 500-240 (1998),

[15]
ength normalization. In Proc. of the 19th

we recognize as relevant to the query all elements that are
highly exhaustive (disregarding all other combinations).
We were interested in determining the feasibility of this
approach, which depends strongly on having enough of
these elements available in the top ranks of retrieved
elements. Our early experiments in this area are still being
formulated; our results are too preliminary to report.

5. CONCLUSIONS

now returning results at the elem
the desired level of granularity. The incorporation of a
flexible retrieval facility is required before meaningful
INEX experiments can take place. However, there are a
number of problems still to be solved with this system,
including in particular the propagation of e- and s-values
upwards through the document hierarchy and the ranking
of elements based on those values. Various approaches
have been suggested [7, 9]. Much of our work in the
coming year will focus on this issue. A good working
result is important, since regardless of how well it does
everything else, in the end all results depend on the
system’s ability to retrieve good elements. We believe that
the initial retrieval through Smart produces valid terminal
nodes with meaningful e-values. How well we build on
this foundation will determine the final utility of the
system.
A second area of interest is the extension of relevance
feedback
many interesting questions to be addressed in this area in
the coming year.

6. REFEREN

Structure query proc
Computer Science, University of Minnesota Duluth
(2004).
http://www.d.umn.edu/cs/thesis/bellamkonda.pdf

 Crouch,
extended vector model for XML retrieval. In Pro
the First Workshop of the Initiative for the Evaluation
of XML Retrieval (INEX), (Schloss Dagstuhl, 2002),
99-104.
Crouch, C., Apte, S. and Bapat, H. An approach to
structure
model. In In Proc of the Second Workshop of the
Initiative for the Evaluation of XML Retrieval (INEX),
(Schloss Dagstuhl, 2003), 87-93.

Crouch, C., Crouch, D. and Nareddy, K. The
automatic generation of extended
the 13th Annual International ACM SIGIR Conference,
(Brussels, 1990), 369-383.
Fox, E. A. Extending the Boolean and vector space
models of information retr
and multiple concept types. Ph.D. Dissertation,
Department of Computer Science, Cornell University
(1983).
Fox, E., Nunn, G. and Lee, W. Coefficients for
combinin
the 11th Annual International ACM SIGIR
Conference, (Grenoble, 1988), 291-307.
Fuhr, N. , and GrossJohann, K. XIRQL: A query
language for information retrieval in XML
In Proc of the 24th Annual International ACM SIGIR
Conference, (New Orleans, 2001), 172-180.
Kamps, J., de Rijke, M., and Sigurbjornsson, B.
Length normalization in XML retrieval. In P
27th Annual International ACM SIGIR Conference
(Sheffield, England, 2004), 80-87.

 Liu, S., Zou, Q., and Chu, W. Configurable indexing
and ranking for XML information r
the 27th Annual International ACM SIGIR Conference
(Sheffield, England, 2004), 88-95.
 Mahajan, Aniruddha. Flexible retrieval in a structured
environment. Master’s Thesis, D
Science, University of Minnesota Duluth (2004).
http://www.d.umn.edu/cs/thesis/mahajan.pdf
 Salton, G. Automatic information organization and
retrieval. Addison-Wesley, Reading PA (196

[12] Salton, G., Wong, A., and Yang, C. S. A vector space
model for automatic indexing. Comm. ACM 1
(1975), 613-620.
 Salton, G. and Buckley, C. Term weighting approaches
in automatic text retriev
513-523.
 Singhal, A. AT&T at TREC-6. In The Sixth Text
REtrieval
215-225.
Singhal, A., Buckley, C., and Mitra, M. Pivoted
document l
Annual International ACM SIGIR Conference,
(Zurich,1996), 21-19.

153

Relevance Feedback for XML Retrieval

Yosi Mass, Matan Mandelbrod
IBM Research Lab
Haifa 31905, Israel
+972-3-6401627

{yosimass, matan}@il.ibm.com

Abstract
Relevance Feedback (RF) techniques were studied in the
context of traditional IR systems where the returned unit is
an entire document. In this paper we describe an XML
retrieval system that is capable of ranking XML
components and we show how to apply existing RF
algorithms on top of it to achieve Relevance Feedback for
XML. We then demonstrate two example RF algorithms
and show results of applying them on our XML retrieval
system for the INEX'04 RF Track.

Keywords
XML Search, Information Retrieval, Vector space model,
Relevance Feedback, Automatic Query Refinement.

1. Introduction
Relevance Feedback (RF) was studied e.g. in [6, 7] in the
context of traditional IR engines that return full documents
for a user query. The idea is to have an iterative process
where results returned by the search engine are marked as
relevants or not relevants by the user and this info is then
fed back to the search engine to refine the query. RF
algorithms can be also used for Automatic Query
Refinement (AQR) by replacing the user with an automatic
process that marks the highly ranked results returned by the
search engine as relevants for use by subsequent iterations.
In [5] we described an algorithm for XML component
ranking and showed how to apply existing AQR algorithms
to run on top of it. Our Component ranking algorithm is
based on detecting the most informative component types in
the collection and creating separate indices for each such
type. For example in the INEX[3] collection the most
informative components are articles, sections and
paragraphs. Given a query Q we run the query on each
index separately and results from the different indices are
merged into a single sorted result set with all component
types.
We showed then in [5] that we can take advantage on this
architecture of separate indices and apply existing AQR
methods from traditional IR on each index separately
without any modification to the AQR algorithm.
In this paper we show how to further exploit the separate
indices architecture to achieve Relevance Feedback for
XML by applying RF algorithms with real user feedback on

our base XML component ranking algorithm. The paper is
organized as follows: In section 2 we describe a general
method to apply existing RF algorithms on top of our
component ranking algorithm. Then is section 3 we discuss
two specific RF algorithms and demonstrate their usage on
our XML retrieval using the method from section 2. In
section 4 we report experiments with those algorithms for
the INEX RF track and we conclude in section 5 with
summary and future directions.

2. Relevance Feedback for XML Retrieval
In [5] we described an algorithm for XML component
ranking and showed how to apply existing AQR algorithms
on top of it. The base algorithm is described in Figure-1
below

 Figure 1 - XML component ranking
We brief here the algorithm steps while full details can be
found in [5]. In step 1 we run the given query on each index
separately (step i) and then normalize result scores in each
index to be able to compare scores from different indices
(step ii). We then apply a DocPivot scaling (step iii) and
finally in step 2 we merge the results to a single sorted
result set of all components.
Since we have separate indices for different component
granularities we showed that we can run the AQR algorithm
on each index separately between steps i and ii in the above
algorithm without modification of the original AQR
algorithm.
Applying real user feedback is somewhat more complicated
since the feedback is given on the merged result set and not
on results from each index separately. A typical RF
algorithm is an iterative process where top N results

1. For each index i
i. Compute the result set Resi of running Q on

index i
ii. Normalize scores in Resi to [0,1] by

normalizing to score(Q,Q)
iii. Scale each score by its containing article score

from Res0
2. Merge all Resi to a single result set Res composed

of all components sorted by their score

154

returned by the search engine are marked as relevants or not
relevants by the user and this info is then fed back to the
search engine to refine the query. We still want to use
existing RF algorithms on top of our component ranking
algorithm without modifying the RF algorithms. We do this
by applying the base component ranking algorithm as in
Figure 1 above and then continue with the algorithm in
Figure 2 below.
The algorithm in Figure 2 describes a single iteration of
applying an RF algorithm on our component ranking
algorithm. The algorithm works as follows; In step 3 we use
the top N results from the merged results and base on the
user feedback we select the subset of relevant (R) and non
relevants (NR) components. Note that in a traditional RF
algorithm the R and NR components are of the same type as
the collection namely full documents while here they come
from different component types so for each index some of
them may be of different granularities than components in
that index. We claim that the fact that a component is
relevant or not relevant for the query can be used in a
typical RF algorithm regardless to its granularity. In next
section we demonstrate two specific RF algorithms and
show that at least for them the above claim holds.

Figure 2 - XML component ranking with RF

So in step 4 we just apply the existing RF algorithm on each
of our indices separately where we give it the R and NR
components as if they came from that index. The result is a
refined query Q' (step i) and then similar to the AQR case
the new query is used to generate a new result set Resi for
each index.
Results are then scaled by the DocPivot as described in [5]
and finally the different result sets are merged (step 5) to a
single result set of all component types.

To be able to measure the contribution of an RF iteration
over the original query we take in step 6 the seen top N
components and put them back as the top N in the final
merged result. We then remove them from rest of Res' if
they appear there again. In the next section we demonstrate
two example RF algorithms that we applied on our XML
component ranking using the algorithm from Figure 2
above.

3. Examples usage of RF algorithms for XML
3.1 Rocchio for XML
The Rocchio algorithm [6] is the first RF algorithm that was
proposed for the Vector Space Model[8]. The idea in the
Vector Space model is that both the documents and the
query are represented as vectors in the space generated by
all tokens in the collection (assuming any two tokens are
independent). The similarity of a document to a query is
then measured as some distance between the two vectors
usually as the cosine of the angle between the two.
The Rocchio formula tries to find the optimal query; one
that maximises the difference between the average of the
relevant documents and the average of the non-relevant
documents wrt the query. The Rocchio equation is given in
Figure 3 below

∑∑
==

−+=

211

1211
'

n

i
i

n

i
i NRnRnQQ γβ

α

Figure 3 - The Rocchio equation
Q is the initial query, Q' is the resulted refined query,
{R1,…Rn1} are the set of relevant documents and {NR1, …,
NRn2} are the non-relevant documents. Since Q, {Ri}, and
{NRi} are all vectors then the above equation generates a
new vector Q' that is close to the average of the relevant
documents and far from the average of the non-relevant
documents. The ✍, ✎, ✏ are tuning parameters that can be
used to weight the effect of the original query and the effect
of the relevant and the non-relevant documents. The
Rocchio algorithm gets an additional parameter k which is
the number of new query terms to add to the query.
Note that step 4.i in Figure 2 above is composed in the
Rocchio case from two sub steps; In the first sub step new
terms are added to the query and then the original query
terms are reweighed. We can therefore apply for the
Rocchio case two embedding variants into our XML
component ranking -
1. Compute the new query terms only in the main index1

and use them for other indices as well.
2. Compute a different set of new terms to add for each

index separately.

1 We always assume the the first index contains the full

documents

3. Take the top N results from Res and given their
assessments extract R (Relevants) and the NR (Not
relevants) from the top N.

4. For each index i

i. Apply the RF algorithm on (R, NR, Resi) with
any other needed RF specific params and refine
Q to Q'

ii. Compute the result set Res'i of running Q' on
index i

iii. Normalize scores in Res'i to [0,1] by
normalizing to score(Q',Q')

iv. Scale each score by its containing article score
from Res'0

5. Merge all Res'i to a single result set Res' composed of all
components sorted by their score

6. Freeze the original top N from Res as the top N in Res'

155

In section 4 we report experiments we did with the Rocchio
algorithm in our XML component ranking algorithm.

3.2 LA query refinement for XML
In [5] we described a general method to modify our
component ranking algorithm with Automatic Query
Refinement and described results for a specific such AQR
algorithm based on [1]. The idea there is to add to the query
Lexical Affinity (LA) terms that best separate the relevant
from the non relevant documents with respect to a query Q.
A Lexical Affinity is a pair of terms that appear close to
each other in some relevant documents such that exactly
one of the terms appears in the query.
This AQR algorithm can be used with real user feedback
and can be plugged as a RF module in our component
ranking algorithm as in Figure 2 above. In section 4 we
describe experiments we did with that algorithm for XML
retrieval.

4. The RF Track Runs description
4.1 Rocchio for XML
As discussed above the Rocchio algorithm is based on the
Vector Space scoring model. Since our component ranking
algorithm is also based on that model then we could easily
plug the Rocchio algorithm into our component ranking as
in Figure 2 above. In our implementation a document d and
the query Q are represented as vectors as in Figure 4 below

)(*)()()),(),...,((
)(*)()()),(),...,((

1

1

iiQiQn

iididn

tidfttftwtwtwQ
tidfttftwtwtwd

QQ

dd

==

==

Figure 4 - Document and Query vectors
Where tfQ(t) is a function of the number of occurrences of t
in Q, tfd(t) is a function of the number of occurrences of t in
d and idf(t) is a function of the inverse document frequency
of t in the index (exact functions details are described in
[5]).
Given ✍, ✎, ✏ we define the Gain of a token t as

∑∑
==

−=

211

1211
)()()(

n

i
NR

n

i
R twntwntG

ii

γβ

Figure 5 - Gain of a token

where)(tw
iR ,)(tw

iNR are the weights of t in each
relevant component Ri, non-relevant component NRi
respectively as defined in Figure 4. It is easy to see that
tokens with the highest Gain are the ones that maximize the
optimal query Q' as defined by the Rocchio equation in
Figure 3 above.

Rocchio for XML

0.08

0.085

0.09

0.095

0.1

0.105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gamma

M
AP

beta = 0.1
beta = 0.2
beta = 0.3
beta = 0.4
beta = 0.5
beta = 0.6
beta = 0.7
beta = 0.8
beta = 0.9

Figure 6 - Rocchio for XML

So in the RF step (4.i) in Figure 2 above we compute G(t)
for each new token t in the top N components that is not
already in Q. We then select the k tokens with the maximal
Gain as the terms to be added to the query Q.

We tried a single Rocchio iteration with N = 20, ✍ = 1, ✎ =
{0.1, …, 0.9},  = {0.1, …, 0.9} and k = 3 on our base CO
algorithm. The Mean Average Precision (MAP) values we
got using the inex_eval aggregate metric for 100 results are
summarized in Figure 6.

The Figure shows graphs for the different ✎ values. The
value for Gamma = 0 is the value of the base algorithm with
no RF round. We can see that the value for  = 0.1 gives
best results for all ✎ values. The best MAP was achieved at
✎ = 0.8 which is what we sent for the RF track.

We see that we get very minor improvement (~5%) over the
base run. A possible reason can be the Freezing method of
the top N results which leave many possible Non-relevant
components in the top N so the effect of RF is only for
components at rank N+1 and lower.

4.2 LA refinement for XML
We tried several parameter combinations but at the time
this paper is written we don't have consistent results so we
don’t report them yet.

5. Summary and Discussion
We have presented an XML retrieval system and showed
how to run RF algorithms on top of it to achieve relevance
feedback for XML. We then demonstrated two example RF
algorithms and reported their usage for the XML RF track.
We got relatively small improvements in the Mean Average
Precision (MAP) with those algorithms and we still need to
explore if it's an algorithm limitations or a possible problem
in the metrics used to calculate the MAP.

6. References
[1] D. Carmel, E. Farchi, Y.Petruschka, A. Soffer,

Automatic Query Refinement using Lexical Affinities
with Maximal Information Gain. Proceedings of the
25th Annual International ACM SIGIR Conference on

156

Research and Development in Information Retrieval,
2002.

[2] D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, A.
Soffer, Searching XML Documents via XML
Fragments, SIGIR 2003, Toronto, Canada, Aug. 2003

[3] INEX, Initiative for the Evaluation of XML Retrieval,
http://inex.is.informatik.uni-duisburg.de

[4] Y. Mass, M. Mandelbrod, Retrieving the most relevant
XML Component, Proceedings of the Second
Workshop of the Initiative for The Evaluation of XML
Retrieval (INEX), 15-17 December 2003, Schloss
Dagstuhl, Germany, pg 53-58

[5] Y. Mass, M. Mandelbrod, Component Ranking and
Automatic Query Refinement for XML retrieval, to

appear in the Proceedings of the Third Workshop of
the Initiative for The Evaluation of XML Retrieval
(INEX), 6-8 December 2004, Schloss Dagstuhl,
Germany

[6] J. J. Rocchio, Relevance Feedback in information
retrieval The SMART retrieval system – experiements
in automatic document processing, (G. Salton ed.)
Chapter 14 pg 313-323, 1971.

[7] I. Ruthven and M. Lalmas. A survey on the use of
relevance feedback for information access systems,
Knowledge Engineering Review, 18(1):2003.

[8] G. Salton, Automatic Text Processing – The
Transformation, Analysis and Retrieval of Information
by Computer, Addison Wesley Publishing Company,
Reading, MA, 1989.

157

A Universal Model For XML Information Retrieval

Maria Izabel M. Azevedo

Departament of Computer Sciense

State University of Montes Claros
Montes Claros, Brazil

Izabel@dcc.ufmg.br

Lucas Pantuza Amorim
Departament of Computer Sciense

 State University of Montes Claros
Montes Claros, Brazil

lucaspantuza@yahoo.com.br

 Nivio Ziviani

Departament of Computer Sciense

Federal University of Minas Gerais
Belo Horizonte, Brazil

nivio@dcc.ufmg.br

ABSTRACT

In this paper we describe an adaptation of the vector space model

for information retrieval on XML documents. This adaptation

explores the semantic richness of XML markups and its nested

structure. We compare results with the standard vector space model

applied to the same collection and queries. We demonstrate how it

can be applied to non XML documents, to homogeneous

collections and to heterogeneous collections, to answer

unstructured (CO - content only) and structured (CAS – content

and structured) queries.

Keywords
XML Information Retrieval, INEX, Vector Space Model.

1. INTRODUCTION
Studying XML documents structure we can observe two special

aspects on information organization: its hierarchical structure

corresponding to the nesting of elements in a tree and the presence

of markups that describes its content [1]. The first one is important

for information retrieval because words on different levels may

have different importance for expressing the information content in

the whole tree. More over, if markup describes its content, it must

have being defined semantically related to the information it

delimits, making the second aspect especially important.

Another important aspect on XML documents is that it introduces

a new division of information. We do not have only documents and

collections anymore, now we have elements that can be inside of

another element and also contain many others. Consequently, the

unit of information to be returned to users can vary. If one element

satisfies a query then its ancestor or descendent may also satisfy.

Besides, with XML documents, the user can propose queries that

explore specific elements. There will be two types of queries, those

with structural constraints, called CAS (Content and Structure),

and those without constraints called CO (Content Only) [2].

In this paper we propose an adaptation of the vector space model

that considers both aspects (nested structure and markup that

describes content) of XML structure in order to improve the vector

space model performance, for CO e CAS queries, dealing with

varying length units of information.

Although this model has being conceived to explore the semantic

link of XML markup with its content, we demonstrate that it can

be applied to non XML documents, preserving the vector space

model performance and can also be applied to homogeneous

collections, where homogeneous DTDs will not always allow

appropriate semantic link between markups and information.

2. UNIT OF INFORMATION
The first challenge we face when studying XML Information

Retrieval is what will be the ideal unit of information to be

returned to the user, the one that best solve his information need.

In one XML document, there are many possibilities: we can return

a whole document or any of its sub-elements. But, what is the best

one? It depends on the user query and each element content. So we

need to evaluate each possibility in front of each query.

Figure 1 – Units of Information

To make it possible we should index all components as an

information unit. In the example of Figure 1, our original

collection will be expanded from 1 document and 10 sub-elements

to 11 units of information, each one with an entry in the inverted

list. Each element statistic will consider all text inside of its sub-

elements.

158

3. STATISTICS MEASURES
From the vector space model, we have that the relevance of

document D to query Q, ρ(Q,D), is given by the cosine measure.

D*Q

(ti)w*(ti)w
DQtiD)ρ(Q,

DQ

∑ ∩∈=

Formula 1

Where,

)idf(ti)*log(N*)log(tf(ti) (ti)wD =

Formula 2

To adapt this model to XML documents we introduce changes that

express their characteristics, as follows.

First, we will consider each element as a new division of

information and tf(ti) and idf(ti) are taking for each of them,

becoming tf(ti,e) and idf(ti,e), so:

� tf(ti,e) = number of occurrences of a term ti in a element e

� idf(ti,e) = inverse of the number of elements that contain ti

� N = total number of elements in the collection

Now, we consider the nested structure of XML document. One

term will be counted for elements where it appears in textual

content and for the ancestor elements of e, as showed bellow in

figure 2:

� tf(january, payment id =”P1”) = 1

� tf(january, payment id =”P2”) = 1

� tf(januay, payments) = 2

� idf(january)= 1/3

<customer id="C1"/>

 <name> JOHN DOE </name>

 <account id="A1"> 1894654</account>

 <porders>

 <porder id="PO1" acct="A1">

 <items>

 <item id ="I1"> shoes </item>

 </items>

 <payments>

 <payment id="P1"> due january 15 </payment>

 <payment id="P2"> due january 20 </payment>

 <payment id="P3"> due february 15 </payment>

 </payments>

 </porders>

</customer>

Figure 2 – One XML document

But it will imply that ρ(january,payments) will be greater than

ρ(january,payment). This statistic will favor upwards information

units as their content include sub-elements content, and tf(ti,e) will

increase. This subject has been treated by Fuhr [3] using the

concept of augmentation. We will apply this idea, using a factor

(fnh) that will down weight terms contribution depending on its

position on XML tree as explained later on.

4. THE MODEL
At this point, we have already defined how the standard vector

space model statistics will be calculated, just adapting them to the

element division of information, present on XML documents. On

the next paragraphs, we will describe one new factor (fxml), which

will explore XML characteristics, attributing different weights for

each term contribution, depending on its occurrence on the tree

that represents each document, resulting in Formula 3.

D*Q

e)fxml(ti,*e) (ti,w*(ti)w
DQtiD)ρ(Q,

DQ

∑ ∩∈=

Formula 3

where

),(*),(*),(etifocretifstretifnhe)fxml(ti, =

Formula 4

The Nesting Factor, denoted by fnh, expresses the relevance of

terms considering its position on the XML tree, and is given by:

)1/(1 nle)fnh(ti, +=

Formula 5

where

� nl = number of levels from element e to its sub-element

containing term ti

The nesting factor can vary between the following two values:

� fnh(ti,e) = 1, for terms directly in element e, to

� fnh(ti,e) = 1/nd, nd being the depth of the XML tree

This factor will reduce the term contribution for distant elements

(upwards) in XML tree.

The Structure Factor, denoted by fstr, expresses how the query

structural constraints are satisfied by the context1 of an element and

is given by:

)1_/()1_(++= qmarkupsnrmarkupscommone)fstr(ti,

Formula 6

1
 Context is the complete path from the root to the element

containing the textual content.

159

where,

� common_markups = number of markups common in the

query structural constraints and in the context of element e

that contains ti.

� nr_qmarkups = number of markups in the query structural

constraints.

It can vary from:

� fstr(ti,e) = 1/(nr_qmarkups+1), when no query’s constraints

appears in the context of ti, to

� fstr(ti,e) = 1, when all query’s structural constraints markups

appears in the context of ti.

This factor will valorize a context that better satisfies structural

constraints present in the query. It is important on the CAS query,

where users express elements that will better fit its information

need. For CO queries it will be equal to 1, and will not influence

the relevance equation.

The last factor, Co-occurrence Factor, denoted by focr, expresses

the semantic link between markups and its content, and is given by:

)(**)(*),(eicfNtiidfeticfe) focr(ti, =

Formula 7

where,

� cf(ti,e) = number of times the markup of element e, denoted

by m, delimits a textual content containing term ti. In other

words, number of co-occurrences of term ti and markup m in

the collection.

� idf(ti,e) = inverse of the number of elements e that contain

ti.

Then,

� cf(ti,e)*idf(ti,e), is the reason between the number of times

term ti appears with m for the numbers of elements contain ti

in the collection;

� icf(e) = inverse of the number of times markup m appears in

the collection.

� N = total number of elements in the collection

Finally, icf(e)*N, express the popularity of markup m in the

collection.

The co-occurrence factor valorizes co-occurrence of terms and

markups, considering the popularity of markups.

With this factor, we intend to explore a XML characteristic,

originated from its conception: the presence of markups that

describes its content [1].

Concluding, XML factor (fxml) explores XML characteristics

looking for the semantic of terms, looking for information behind

words.

5. NON-XML DOCUMENTS
Considering that a real world collection may contain XML

documents and non_XML documents, we will demonstrate that the

same model can be applied on those documents, preserving the

vector space model performance.

Examining Formula 3, we conclude that to satisfy this condition,

XML factor must be equal to 1. Then:

� 1),(*),(*),(== etifocretifstretifnhe)fxml(ti,

Here we will consider that the whole content of a non-XML

document will be delimited by one special markup, for example

<article>and </article>.

Analyzing each of the fxml factors:

�)1/(1 nle)fnh(ti, +=

In one non-XML document exists only one level where all textual

content is, so nl = 0 and fnh(ti,e) will be equal to 1.

�)1_/()1_(++= qmarkupsnrmarkupscommone)fstr(ti,

For a non-XML document, the numerator will be equal 1 because

it has no markup. Denominator will depend on the query type:

� For CO → q_markups = 0 and fstru(ti,e) = 1

� For CAS → nr_qmarkups may vary depending on the

number of structural constraints in the query.

One non-XML document will never satisfy CAS query structural

constraints because it is not structured, then its relevance will be

decreased compared with those that can satisfy query constraints.

�)(**)(*),(eicfNtiidfeticfe) focr(ti, =

For one non-XML:

� cf(ti,e) , the number of times ti appears with markup m, will

be the number of times ti appears in the collections because

all documents have the same special markup <article> and only

this markup. So cf(ti,e) is the inverse of idf(ti), making

cf(ti,e)*idf(ti) = 1.

� icf(e), the inverse number of times markup m appears in the

collection, will be equal 1/N, the number of documents in the

collection, because all documents in the collection will have

the same special markup <article>. So N*icf(e) will be equal 1,

making focr(ti,e) =1.

Non-XML documents are a special case and the model will

converge to vector space model.

6. HOMOGENEOUS COLLECTIONS
An homogeneous collection is defined as a collection where all

documents have the same DTD. In this section we will analyze the

implications it has over our model.

Examining Formula 4 let us discuss each equation term.

� Fstr(ti,e)

This factor will be analyzed only for CAS queries because for CO

queries it will be always 1, as stated in Section 4.

As all documents have the same DTD, all of then will have the

same elements and fstr(ti,e) will not favor anyone. Any document

will have the same probability to have an element return to user.

160

Within one document, those elements with more similarity with the

query structural constraints will have greater relevance and will

have better chance to be return to the user.

� Focr(ti,e)

As will be the same DTD in all documents, no document will have

its elements favor by this factor. But within a document, those

elements which markups appear more times with a term will be

favor, reinforcing the fact that markups describes its content.

7. HETEROGENEOUS COLLECTION
An heterogeneous collection is defined as a collection where

documents may have different DTD. Our Model does not use any

information that comes from DTD. It just indexes elements, terms

and markups, collecting statistics that measure the relation between

them, so we do not need to make any change for dealing with

heterogeneous collections. But it is important to analyze how the

heterogeneity of markups will influence the relevance ranking of

our model.

� Fstr(ti,e)

As stated before, this factor is always 1 for CO query. So let us

analyze CAS queries. CAS queries impose a structural constraint,

and will have greater relevance those elements that satisfy then. So,

documents with DTDs similar to query’s DTDs will be ranked first.

Comes from this that if a user asks:

//article[about(.//author, Jonh Smith)]

One document with an element:

<author> Jonh Smith </author>

 Or even

<author>

 <first name> Jonh</first name>

 <last name> Smith</last name>

</author>

Will be better ranked then one contenting

 <title> Jonh Smith Biography </title>

coming across information need of the user.

One document with a markup <author> will be better ranked then

one with <writer> on its DTD, maybe not returning one important

document for the information need of the user. But the user

chooses the query constraints and it can make it more flexible

using an OR operator including <writer>, for example.

� Focr(ti,e)

This factor tries to explore the fact that markups describe its

content. Considering that in an heterogeneous collection different

DTD will allow better link between each document structure and

its content, it will help to explore different meaning of the same

words in different contexts.

But here appears the following language problem: which markup is
semantically closer to Jonh Smith, <author> or <writer>?
<author> or <autor> ?

Factor focr also ponders the frequency of markups in the collection

by N*icf(e). So if <author> is more wide spread than <writer> and
<autor> it will have more chance to appear with Jonh Smith , but
it will be compensated by icf(e), in a similar way that common

terms in one collection will be reduced by idf(t) in standard vector

space model.

8. RESULTS
The proposed model was ran over the homogeneous and

heterogeneous INEX collections. For the homogeneous collection,

the effect of each term of Fxml factor was observed.

Quantization: Average of All RPs

topics: CO - Fxml(fstr=1)

0

0,1

0,2

0,3

0,4

0 0,2 0,4 0,6 0,8 1

Fxml (fnh,focr,fstr)

fnh only

Vector Space Model

Figure 3 – Recall/Precision Curves comparing Vector Space

Model and Adapted Model

The Fnh factor improves considerably the vector space model

performance (Figure 3), as expected. Upwards elements

accumulate all sub-elements contribution and without this

consideration many of them would have been ranked first than

more important sub-elements.

We also compared different values of Fnh, concluding that when it

changes for elements in different level of XML tree precision

improves a little bit.

Subsequently, we introduced the Focr factor and observed a small

improvement (Figure 4), which can be attributed to the fact that in

homogeneous collection this factor will not vary much, because all

documents have the same structure.

Quantization: Average of All RPs

topics: CO - focr

0

0,1

0,2

0,3

0,4

0 0,2 0,4 0,6 0,8 1

Fxml with focr

Fxml without focr

Figure 4 – Recall/Precision Curves changes with Focr

161

For CAS queries the factor Fstr was introduced and also caused

some improvement (Figure 5).

Quantization: Average of All RPs

topics:CAS - Fxml(fstr != 0)

0

0,1

0,2

0,3

0,4

0 0,2 0,4 0,6 0,8 1

Fxml(fnh,focr,fstr)

fnh only

Figure 5 – Recall/Precision Curves changes with Fstr

We submitted runs to the heterogeneous collection, but as its

assessments were not concluded, we have no Recall/Precision

Curves. It follows a sample of an answer to a query showing results

from many sub-collections confirming that the present model can

deal with different DTDs.

For query:

//article[about(.//author, Nivio Ziviani)]

We get the following answer:

<topic topic-id="2"> ...

<result>

<subcollection name="ieee" />

<file>co/2000/ry037</file>

<path>/article[1]/fm[1]/au[1]</path>

<rank> 3</rank>

</result> ...

<result>

<subcollection name="dblp" />

<file>dblp</file>

<path>/dblp[1]/article[177271]/author[4]</path>

<rank> 6</rank>

</result> ...

<result>

<subcollection name="CompuScience" />

<file>exp-dxf1.xml.UTF-8</file>

<path>/bibliography[1]/article[23957]/author[1]/person[1]

</path>

<rank> 30</rank>

</result> ...

<result>

<subcollection name="hcibib" />

<file>hcibib</file>

<path>/file[1]/entry[22966]/article[1]/author[1]</path>

<rank> 139</rank>

</result>

9. CONCLUSION AND FUTURE WORK
We have shown a universal model for dealing with information

retrieval on XML documents. It can be applied to non-XML

documents, homogeneous and heterogeneous collections, to

answer structured (CAS – content and structured) and no-

structured (CO – content only) queries. The major contribution of

this work is its universality, achieved in a completely automatic

process.

Although all introduced factors behave as expected, the overall

result was not good. The average precision stays around 0.05 and

needs to be improved, demanding futher investigation. Fstr factor

should be better adjust to query constraints and, for an

appropriated assessment of Focr factor it would be better to have a

real heterogeneous collection, with documents from different

knowledge areas. The inverted index will increase to about tree

times the standard vetor space model index demanding a specific

research.

10. REFERENCES
[1] S. Abiteboul, P. Buneman and D. Suciu. Data on the Web –

From Relations to Semistructured Data in XML. Mogan

Kaufmann Publishers, San Francisco, California, 2000.

[2] G. Kazai, M. Lalmas and S. Malik. INEX’03 Guidelines for

Topic Development. In INEX 2003 Workshop Proceedings,

pages 153-154.

[3] K. Grobjohann, M. Abolhassani and N. Fuhr, Fröhlich.

Content-oriented XML Retrieval with HyREX. In INEX 2002

Workshop Proceedings.

[4] M. Mandelbrod and Y. Mass. Retrieving the most relevant

XML Components. INEX’02. In INEX 2003 Workshop

Proceedings.

162

Cheshire II at INEX ’04: Fusion and Feedback for the
Adhoc and Heterogeneous Tracks

Ray R. Larson
School of Information Management and Systems

University of California, Berkeley
Berkeley, California, USA, 94720-4600

ray@sherlock.berkeley.edu

ABSTRACT
This paper describes the retrieval approach used by UC
Berkeley in the adhoc and heterogeneous tracks for the 2004
INEX evaluation. As in previous INEX evaluations, the
main technique we are testing is the fusion of multiple prob-
abilistic searches against different XML components using
both Logistic Regression (LR) algorithms and a version of
the Okapi BM-25 algorithm in conjunction with Boolean
constraints for some elements. This year we also re-estimated
the LR parameters for different components of the document
collection using relevance judgements from the INEX 2003
evaluation. All of our runs were fully automatic with no
manual editing or interactive submission of queries, and all
used only the title element of the INEX topics.

Keywords
Information Retrieval, IR Evaluation, XML Retrieval

1. INTRODUCTION
Following the 2003 INEX evaluation[7] we continued to ex-
periment with fusion approaches to XML retrieval, culmi-
nating in some quite respectable results that are reported
in the forthcoming special INEX issue of the Journal of In-
formation Retrieval[9]. The best performing of those ap-
proaches where used in this year’s INEX adhoc task with no
modification, as well as some additional experiments using
blind feedback and applying Logistic regression alone using
re-estimated parameters based on the relevance judgements
from INEX 2003. In addition, element and collection fusion
were used for the heterogeneous track (results are still be-
ing evaluated). In this paper we will describe the techniques
used in these tracks for INEX 2004 and discuss their relative
performance.

The basic approach taken in this and previous INEX evalua-
tion is based on some early work done in TREC, where it was
found that fusion of multiple retrieval algorithms provided
an improvement over a single search algorithm[13, 2]. Later
analyses of these fusion approaches[10, 1] indicated that the
greatest effectiveness improvements appeared to occur be-
tween relatively ineffective individual methods, and the fu-
sion of ineffective techniques, while often approaching the ef-
fectiveness of the best single IR algorithms, seldom exceeded
them for individual queries and never exceeded their average
performance. In our analysis of fusion approaches for XML
retrieval[9], based on runs conducted after the 2003 INEX
meeting, we conducted analyses of the overlap between re-

sult sets across algorithm and also examined the contribu-
tions of different XML document components to the results.

In this paper we will first discuss the algorithms and fu-
sion operators used in our official INEX 2004 adhoc runs
(as well as the not-quite-official runs submitted a bit late to
the heterogeneous track). Then we will look at how these
algorithms and operators were used in the various submis-
sions for the adhoc and heterogeneous tracks, and finally
we will examine the results and discuss possible problems in
implementation, and directions for future research.

2. THE RETRIEVAL ALGORITHMS AND
FUSION OPERATORS

In [9] we conducted an analysis of the overlap between the
result lists retrieved by our Logistic Regression algorithm
and the Okapi BM-25 algorithm. We found that on aver-
age, over half of the result lists retrieved by each algorithm
in these overlap tests were both non-relevant and unique
to that algorithm, fulfilling the main criteria for effective
algorithm combination suggested by Lee[10]: that the algo-
rithms have similar sets of relevant documents and different
sets of non-relevant. This section is largely a repetition of
the material presented in [9] with additional discussion of
the re-estimation of the LR parameters for different XML
components and indexes used in the INEX 2004 tests.

In the remainder of this section we describe the Logistic
Regression and Okapi BM-25 algorithms that were used for
the evaluation and we also discuss the methods used to com-
bine the results of the different algorithms. The algorithms
and combination methods are implemented as part of the
Cheshire II XML/SGML search engine [7, 8, 6] which also
supports a number of other algorithms for distributed search
and operators for merging result lists from ranked or Bool-
ean sub-queries. Finally, we will discuss the re-estimation of
the LR parameters for a variety of XML components of the
INEX test collection.

2.1 Logistic Regression Algorithm
The basic form and variables of the Logistic Regression (LR)
algorithm used was originally developed by Cooper, et al.
[4]. It provided good full-text retrieval performance in the
TREC ad hoc task and in TREC interactive tasks [5] and for
distributed IR [6]. As originally formulated, the LR model of
probabilistic IR attempts to estimate the probability of rel-

163

evance for each document based on a set of statistics about
a document collection and a set of queries in combination
with a set of weighting coefficients for those statistics. The
statistics to be used and the values of the coefficients are
obtained from regression analysis of a sample of a collec-
tion (or similar test collection) for some set of queries where
relevance and non-relevance has been determined. More for-
mally, given a particular query and a particular document
in a collection P (R | Q, D) is calculated and the documents
or components are presented to the user ranked in order of
decreasing values of that probability. To avoid invalid prob-
ability values, the usual calculation of P (R | Q, D) uses the
“log odds” of relevance given a set of S statistics, si, derived
from the query and database, such that:

log O(R | Q,D) = b0 +
S

X

i=1

bisi (1)

where b0 is the intercept term and the bi are the coeffi-
cients obtained from the regression analysis of the sample
collection and relevance judgements. The final ranking is
determined by the conversion of the log odds form to prob-
abilities:

P (R | Q,D) =
elog O(R|Q,D)

1 + elog O(R|Q,D)
(2)

Based on the structure of XML documents as a tree of XML
elements, we define a “document component” as an XML
subtree that may include zero or more subordinate XML el-
ements or subtrees with text as the leaf nodes of the tree. For
example, in the XML Document Type Definition (DTD) for
the INEX test collection defines an article (marked by XML
tag <article>) that contains front matter (<fm>), a body
(<bdy>) and optional back matter (<bm>). The front mat-
ter (<fm>), in turn, can contain a header <hdr> and may
include editor information (<edinfo>), author information
(<au>), a title group (<tig>), abstract (<abs>) and other
elements. A title group can contain elements including arti-
cle title (<atl>) the page range for the article (<pn>), and
these in turn may contain other elements, down to the level
of individual formatted words or characters. Thus, a compo-
nent might be defined using any of these tagged elements.
However, not all possible components are likely to be use-

ful in content-oriented retrieval (e.g., tags indicating that a
word in the title should be in italic type, or the page number
range) therefore we defined the retrievable components selec-
tively, including document sections and paragraphs from the
article body, and bibliography entries from the back matter
(see Table 3).

Naturally, a full XML document may also be considered a
“document component”. As discussed below, the indexing
and retrieval methods used in this research take into account
a selected set of document components for generating the
statistics used in the search process and for extraction of the
parts of a document to be returned in response to a query.
Because we are dealing with not only full documents, but
also document components (such as sections and paragraphs

or similar structures) derived from the documents, we will
use C to represent document components in place of D.
Therefore, the full equation describing the LR algorithm
used in these experiments is:

log O(R | Q, C) =

b0 +

0

@b1 ·

0

@

1

|Qc|

|Qc|
X

j=1

log qtfj

1

A

1

A

+
“

b2 ·
p

|Q|
”

+

0

@b3 ·

0

@

1

|Qc|

|Qc|
X

j=1

log tfj

1

A

1

A (3)

+
“

b4 ·
√

cl
”

+

0

@b5 ·

0

@

1

|Qc|

|Qc|
X

j=1

log
N − ntj

ntj

1

A

1

A

+ (b6 · log |Qd|)

Where:

Q is a query containing terms T ,

|Q| is the total number of terms in Q,

|Qc| is the number of terms in Q that also occur in the
document component,

tfj is the frequency of the jth term in a specific document
component,

qtfj is the frequency of the jth term in Q,

ntj
is the number of components (of a given type) contain-
ing the jth term,

cl is the document component length measured in bytes.

N is the number of components of a given type in the col-
lection.

bi are the coefficients obtained though the regression anal-
ysis.

This equation, used in estimating the probability of rele-
vance in this research, is essentially the same as that used
in [3]. The bi coefficients in the “Base” version of this algo-
rithm were estimated using relevance judgements and statis-
tics from the TREC/TIPSTER test collection. In INEX
2004 we used both this Base version and a version where
the coeffients for each of the major document components
were estimated separately and combined through compo-
nent fusion. The coefficients for the Base version were b0 =
−3.70, b1 = 1.269, b2 = −0.310, b3 = 0.679, b4 = −0.021, b5 =
0.223 and b6 = 4.01. We will discuss the re-estimated co-
efficients for the various document components and indexes
later in this section.

164

2.2 Okapi BM-25 Algorithm
The version of the Okapi BM-25 algorithm used in these
experiments is based on the description of the algorithm in
Robertson [11], and in TREC notebook proceedings [12]. As
with the LR algorithm, we have adapted the Okapi BM-25
algorithm to deal with document components :

|Qc|
X

j=1

w(1) (k1 + 1)tfj

K + tfj

(k3 + 1)qtfj

k3 + qtfj

(4)

Where (in addition to the variables already defined):

K is k1((1 − b) + b · dl/avcl)

k1, b and k3 are parameters (1.5, 0.45 and 500, respectively,
were used),

avcl is the average component length measured in bytes

w(1) is the Robertson-Sparck Jones weight:

w(1) = log
(r+0.5

R−r+0.5
)

(
ntj

−r+0.5

N−ntj
−R−r+0.5

)

r is the number of relevant components of a given type that
contain a given term,

R is the total number of relevant components of a given
type for the query.

Our current implementation uses only the a priori version
(i.e., without relevance information) of the Robertson-Sparck

Jones weights, and therefore the w(1) value is effectively just
an IDF weighting. The results of searches using our imple-
mentation of Okapi BM-25 and the LR algorithm seemed
sufficiently different to offer the kind of conditions where
data fusion has been shown to be be most effective [10], and
our overlap analysis of results for each algorithm (described
in the evaluation and discussion section) has confirmed this
difference and the fit to the conditions for effective fusion of
results.

2.3 Boolean Operators
The system used supports searches combining probabilis-
tic and (strict) Boolean elements, as well as operators to
support various merging operations for both types of in-
termediate result sets. Although strict Boolean operators
and probabilistic searches are implemented within a single
process, using the same inverted file structures, they really
function as two parallel logical search engines. Each logical
search engine produces a set of retrieved documents. When
a only one type of search strategy is used then the result is
either a probabilistically ranked set or an unranked Boolean
result set. When both are used within in a single query,
combined probabilistic and Boolean search results are eval-
uated using the assumption that the Boolean retrieved set
has an estimated P (R | Qbool, C) = 1.0 for each document
component in the set, and 0 for the rest of the collection.

The final estimate for the probability of relevance used for
ranking the results of a search combining strict Boolean and
probabilistic strategies is simply:

P (R | Q,C) = P (R | Qbool, C)P (R | Qprob, C)

where P (R | Qprob, C) is the probability of relevance esti-
mate from the probabilistic part of the search, and P (R |
Qbool, C) is the Boolean. In practice the combination of
strict Boolean “AND” and the probablistic approaches has
the effect of restricting the results to those items that match
the Boolean part, with ranking based on the probabilistic
part. Boolean “NOT” provides a similar restriction of the
probabilistic set by removing those document components
that match the Boolean specification. When Boolean “OR”
is used the probabilistic and Boolean results are merged
(however, items that only occur in the Boolean result, and
not both, are reweighted as in the “fuzzy” and merger op-
erations described below.

A special case of Boolean operators in Cheshire II is that
of proximity and phrase matching operations. In proximity
and phrase matching the matching terms must also satisfy
proximity constraints (both term order and adjacency in the
case of phrases). Thus, proximity operations also result in
Boolean intermediate result sets.

2.4 Result Combination Operators
The Cheshire II system used in this evaluation provides a
number of operators to combine the intermediate results of
a search from different components or indexes. With these
operators we have available an entire spectrum of combi-
nation methods ranging from strict Boolean operations to
fuzzy Boolean and normalized score combinations for proba-
bilistic and Boolean results. These operators are the means
available for performing fusion operations between the re-
sults for different retrieval algorithms and the search results
from different different components of a document. We will
only describe one of these operators here, because it was the
only type used in the evaluation reported in this paper.

The MERGE CMBZ operator is based on the “CombMNZ”
fusion algorithm developed by Shaw and Fox [13] and used
by Lee [10]. In our version we take the normalized scores,
but then further enhance scores for components appearing
in both lists (doubling them) and penalize normalized scores
appearing low in a single result list, while using the unmod-
ified normalized score for higher ranking items in a single
list.

2.5 Recalculation of LR coefficients for com-
ponent indexes

Using LR coefficients derived from relevance analysis of TREC
data for INEX is unlikely to provide the most effective per-
formance given the differences in tasks, queries and their
structure, and relevance scales.

In order to begin to remedy this we have re-estimated the
coefficients of the Logistic regression algorithm based on the
INEX 2003 relevance assessments. In fact, separate formu-
lae were derived for each of the major components of the

165

INEX XML document structure, providing a different for-
mula for each index/component of the collection. These
formulae were used in only one of the official ad hoc runs
submitted for the INEX 2004 evaluation, in order to have a
basis of comparison with the fusion methods used in INEX
2002 and 2003. In this section we focus on the re-estimation
and the values obtained for the new coefficients. Later we
will this discuss the effectiveness of the new coefficients (or
rather, the lack of effectiveness) and several possible reasons
for it.

For re-estimation purposes we submitted the INEX 2003 CO
queries using the “Base” LR algorithm, which was the best
performing LR-only experiment as reported in [9] (which
was able to obtain 0.0834 mean average precision under the
strict quantization, and 0.0860 under the generalized quan-
tization). In addition we performed separate runs using only
searches on single indexes (which may combine multiple doc-
ument elements, as described in Tables 2 and 4). For all of
these runs we captured the values calculated for each of the
variables described in equation 4 for each document element
retrieved. Then the strict relevance/non-relevance of each
of these documents was obtained from the INEX 2003 rele-
vance judgements and the resulting relevance/element data
was analyzed using the SPSS logistic regression procedure
to obtain re-estimations of the variable coefficients (bi) in
equation 4. The resulting coefficients for the various compo-
nents/indexes are shown in Table 1, where the “Base” row is
the default TREC-estimated coefficients and the other rows
are the estimates for the named index. Not all indexes were
reestimated because they (e.g., pauthor) tend to be used
as purely Boolean criteria, or were components of another
index and/or not present in all articles (e.g., kwd).

Testing these new coefficients with the INEX 2003 queries
and relevance judgements we were able to obtain a mean av-
erage precision of 0.1158 under the strict metric and 0.1116
for the generalized metric, thus exceeding the best fusion
results reported in [9]. However, the data used for training
the LR model was obtained using the relevance data asso-
ciated with the same topics, and it appears very likely that
the model was over-trained for that data, or that a different
set of variables needs to be considered for XML retrieval.

Index b0 b1 b2 b3 b4 b5 b6

Base -3.70 1.269 -0.310 0.679 -0.021 0.223 4.01

topic -7.758 5.670 -3.427 1.787 -0.030 1.952 5.880

topicshort -6.364 2.739 -1.443 1.228 -0.020 1.280 3.837

abstract -5.892 2.318 -1.364 0.860 -0.013 1.052 3.600

alltitles -5.243 2.319 -1.361 1.415 -0.037 1.180 3.696

sec words -6.392 2.125 -1.648 1.106 -0.075 1.174 3.632

para words -8.632 1.258 -1.654 1.485 -0.084 1.143 4.004

Table 1: Re-Estimated Coefficients for The Logistic

Regression Model

3. INEX 2004 ADHOC APPROACH
Our approach for the INEX 2004 adhoc task was quite sim-
ilar to that used for INEX 2003 runs. This section will
describe the indexing process and indexes used, and also
discuss the scripts used for search processing. The basic
database was unchanged from last year’s. We will summa-

rize the indexing process and the indexes used in the adhoc
task for reference in the discussion.

3.1 Indexing the INEX Database
All indexing in the Cheshire II system is controlled by an
SGML Configuration file which describes the database to
be created. This configuration file is subsequently used in
search processing to control the mapping of search command
index names (or Z39.50 numeric attributes representing par-
ticular types of bibliographic data) to the physical index files
used and also to associated component indexes with particu-
lar components and documents. This configuration file also
includes the index-specific definitions for the Logistic Re-
gression coefficients (when not defined, these default to the
“Base” coefficients shown in Table [?]).

Name Description Contents

docno Digital Object ID //doi

pauthor Author Names //fm/au/snm

//fm/au/fnm

title Article Title //fm/tig/atl

topic Content Words //fm/tig/atl

//abs

//bdy

//bibl/bb/atl

//app

topicshort Content Words 2 //fm/tig/atl

//abs

//kwd

//st

date Date of Publication //hdr2/yr

journal Journal Title //hdr1/ti

kwd Article Keywords //kwd

abstract Article Abstract //abs

author seq Author Seq. //fm/au

@sequence

bib author Bib Author Forename //bb/au/fnm

fnm

bib author Bib Author Surname //bb/au/snm

snm

fig Figure Contents //fig

ack Acknowledgements //ack

alltitles All Title Elements //atl, //st

affil Author Affiliations //fm/aff

fno IEEE Article ID //fno

Table 2: Cheshire Article-Level Indexes for INEX

Table 2 lists the document-level (/article) indexes created
for the INEX database and the document elements from
which the contents of those indexes were extracted. These
indexes (with the addition of the are the same as those used
last year. The abstract, alltitles, keywords, title, topic and
topicshort indexes support proximity indexes (i.e., term lo-
cation), supporting phrase searching.

As noted above the Cheshire system permits parts of the
document subtree to be treated as separate documents with
their own separate indexes. Tables 3 & 4 describe the XML
components created for INEX and the component-level in-
dexes that were created for them.

166

Name Description Contents

COMP SECTION Sections //sec

COMP BIB Bib Entries //bib/bibl/bb

COMP PARAS Paragraphs //ilrj|//ip1|//ip2|

//ip3|//ip4|//ip5|

//item-none|//p|

//p1|//p2|//p3|

//tmath|//tf

COMP FIG Figures //fig

COMP VITAE Vitae //vt

Table 3: Cheshire Components for INEX

Table 3 shows the components and the path used to de-
fine them. The COMP SECTION component consists of
each identified section (<sec> ... </sec>) in all of the doc-
uments, permitting each individual section of a article to
be retrieved separately. Similarly, each of the COMP BIB,
COMP PARAS, and COMP FIG components, respectively,
treat each bibliographic reference (<bb> ... </bb>), para-
graph (with all of the alternative paragraph elements shown
in Table 3), and figure (<fig> ... </fig>) as individual
documents that can be retrieved separately from the entire
document.

Component

or Name Description Contents

COMP SECTION

sec title Section Title //sec/st

sec words Section Words //sec

COMP BIB

bib author Bib. Author //au

bib title Bib. Title //atl

bib date Bib. Date //pdt/yr

COMP PARAS

para words Paragraph Words *†

COMP FIG

fig caption Figure Caption //fgc

COMP VITAE

vitae words Words from Vitae //vt

Table 4: Cheshire Component Indexes for INEX

†Includes all subelements of paragraph elements.

Table 4 describes the XML component indexes created for
the components described in Table 3. These indexes make
individual sections (COMP SECTION) of the INEX doc-
uments retrievable by their titles, or by any terms occur-
ring in the section. These are also proximity indexes, so
phrase searching is supported within the indexes. Biblio-
graphic references in the articles (COMP BIB) are made
accessible by the author names, titles, and publication date
of the individual bibliographic entry, with proximity search-
ing supported for bibliography titles. Individual paragraphs
(COMP PARAS) are searchable by any of the terms in the
paragraph, also with proximity searching. Individual fig-
ures (COMP FIG) are indexed by their captions, and vitae
(COMP VITAE) are indexed by keywords within the text,
with proximity support.

Almost all of these indexes and components were used dur-
ing Berkeley’s search evaluation runs of the 2004 INEX top-
ics. The official submitted runs and scripts used in INEX
are described in the next section.

3.2 INEX ’04 Official Adhoc Runs
Berkeley submitted 5 retrieval runs for the INEX 2004 ad-
hoc task, three CO runs and 2 VCAS runs. This section
describes the individual runs and general approach taken in
creating the queries submitted against the INEX database
and the scripts used to do the submission. The paragraphs
below briefly describe Berkeley’s INEX 2004 runs.

Berkeley CO FUS T CMBZ (FUSION): This run uses au-
tomatic query generation with both Okapi BM-25 and Lo-
gistic regression retrieval algorithms combined using a score-
normalized merging algorithm (MERGE CMBZ). Results
from multiple components where combined using MERGE CMBZ
as well. Separate retrieval of Articles, Sections and para-
graphs were combined using score normalized merges of these
results. Only Titles were used in generating the queries,
which also included Boolean operations for proximity search-
ing and ”negated” terms. This run was based on the most
effective fusion method found in our post-INEX 2003 anal-
ysis and reported in [?] and was intended as a baseline for
comparison with the other runs.

Berkeley CO FUS T CMBZ FDBK (FEEDBACK): This run
is fundamentally the same as the previous run, with the ad-
dition of “blind feedback” where the <kwd> elements from
top 100 results were retrieved, extracted and the top 30
most frequently occurring keyword phrases were used as an
addition to the base query generated by the previous query.

Berkeley CO PROB T NEWPARMS (NEWPARMS): This
run used automatic query generation with only the Logistic
regression retrieval algorithm where the new coefficients for
each of the indexes, as noted in Table 1, were used.

Berkeley VCAS FUS T CMBZ (FUSVCAS): This was a VCAS
automatic run using only the topic title. This run uses au-
tomatic query generation from the NEXI expression in, and
like the Berkeley CO FUS T CMBZ run, uses both Logis-
tic Regression and the Okapi BM-25 ranking. Results from
multiple components where combined using MERGE CMBZ
merging of results.

Berkeley VCAS PROB T NEWPARMS (NEWVCAS): This
run also uses automatic query generation and is very similar
to Berkeley CO PROB T NEWPARMS. Results from mul-
tiple components where also combined using MERGE CMBZ
merging of results. This run used only the LR algorithm
with the new LR coefficients as shown in Table 1.

3.2.1 Query Generation and Contents
All of the Cheshire client programs are scriptable using Tcl
or Python. For the INEX test runs we created scripts in the
Tcl language that, in general, implemented the same basic
sequence of operations as described in the INEX 2003 pa-
per[?]. For VCAS-type queries, the NEXI specification was
used to choose the indexes (and components) to be searched,
and the RESTRICT operators described above were used to
validate proper nesting of components. For each specified

167

“about” clause in the XPath, a merger of phase, keyword,
Boolean and ranked retrieval was performed, depending on
the specifications of the NEXI query.

 0

 0.2

 0.4

 0 0.5 1

P
re

ci
si

on

Recall

FUSVCAS
NEWVCAS

Figure 1: Berkeley VCAS Runs – Strict Quantiza-

tion

 0

 0.2

 0.4

 0 0.5 1

P
re

ci
si

on

Recall

FUSVCAS
NEWVCAS

Figure 2: Berkeley VCAS Runs – Generalized Quan-

tization

3.3 INEX ’04 Heterogeneous Track Runs
The Hetergeneous Track for INEX 2004 is attempting to test
the ability to perform searches across multiple XML collec-
tions with different structures and contents. Unfortunately
we were late in submitting our runs (due to travel for an-
other conference), so they are “unofficial” submissions. The
results are still pending, and so they cannot be discussed
here. In this section we briefly describe the approach taken
for the track and the system features used in the implemen-
tation.

Our approach to the Heterogeneous Track was to treat the
different collections as separate database with their own
DTDs (simple “flat” DTDs were generated for those collec-
tions lacking them). The runs relied on Cheshire’s “Virtual
Database” features, in which multiple physical databases
can be treated as if they were a single database. In addition
we used the search attribute mapping features of the Z39.50
protocol, so that each physical database configuration file
could specify that some subset of tags was to be used for
“author” searches, another for “title”, etc., for each as many
of the index types described in Tables 2 and 4. Thus, when
an “author” search was submitted to the virtual database,
the query was forwarded to each of the physical databases,
processed, and the results returned in a standardized XML
“wrapper”. Thus we were able to run scripts similar to those
used for the adhoc track “CO”runs against the virtual data-
base requesting the LR algorithm and obtain a result from
all of the physical database sorted by their estimated prob-
ability of relevance. In effect, the virtual search implements
a form of distributed search using the Z39.50 protocol.

The only difficulty in this implementation was that all collec-
tions consisted of a single XML “document”, including one
of the databases where that single document was 217Mb in
size. We ended up treating each of the main sub-elements
of these “collection documents” as separate documents (an-
other feature of Cheshire). The difficulty was then generat-
ing the actual full XPath for the elements in order to report
results. This was eventually handled by a script that, in
most cases, was able to infer the element from the inter-
nal document ID, and in the case of the 217Mb document
(with multiple different subelements for the collection doc-
ument) this involved matching each of the subtypes in sep-
arate databases. Until the evaluation is complete, we won’t
know whether this mapping was actually accurate.

4. EVALUATION
The summary average precision results for the runs described
above are shown in Table 5. The table includes an additional
row (...POST FUS NEWPARMS) for an unofficial run that
essentially used the Berkeley CO FUS T CMBZ structure
of combining LR and Okapi searching along with the new
LR coefficients. This combination performed a bit better
than any of the official runs.

Run Name Short name Avg Prec Avg Prec

(strict) (gen.)

... CO FUS T CMBZ FUSION 0.0923 0.0642

... CO FUS T CMBZ FDBK FEEDBACK 0.0390 0.0415

... CO PROB T NEWPARMS NEWPARMS 0.0853 0.0582

... VCAS T CMBZ FUSVCAS 0.0601 0.0321

... VCAS PROB T NEWPARMS NEWVCAS 0.0569 0.0270

...POST FUS NEWPARMS POSTFUS 0.0952 0.0690

Table 5: Mean Average Precision for Berkeley INEX

2004

Figures 1 and 2 show, respectively, the Recall/Precision
curves for strict and generalized quantization of each of the
officially submitted Berkeley “VCAS” runs. Figures 3 and 4
show, respectively, the Recall/Precision curves for strict and
generalized quantization of each of the officially submitted

168

 0

 0.2

 0.4

 0 0.5 1

P
re

ci
si

on

Recall

FDBK
NEWPARMS

FUSION
POSTFUS

Figure 3: Berkeley CO Runs – Strict Quantization

Berkeley “CO” runs. No Berkeley runs appeared in the top
ten for all submitted runs. None of these runs was in the
top 10, though the “FUSION” run was close (ranked 14th
in aggregate score).

Our attempt at “blind feedback” performed very poorly
(which was expected, given that it was very much a last-
minute attempt, and we had no time to attempt to de-
termine the optimal number of records to analyze or the
number of retrieved <kwd> phrases to include in the re-
formulated query). More interesting was the fact that the
re-estimated LR parameters, when used alone did not per-
form as well as the basic fusion method. However, when
combined with in a fusion approach the new coeffients do
improve the results over the basic Fusion method using the
“Base” coefficients.

5. CONCLUSIONS AND FUTURE DIREC-
TIONS

We still need to perform a number of analyses of alterna-
tive combinations, but it appears that the re-estimated LR
coefficients, although not as effective as the submitted FU-
SION approach when LR alone is used, do provide addi-
tional improvement when combined in a similar fusion ap-
proach. Blind feedback using only assigned keywords in ar-
ticles doesn’t appear to offer an benefit, though we plan to
experiment a bit further using the framework developed for
the “relevance feedback” track. Now with two years of us-
able and comparable relevance evaluations for INEX we can
once again re-estimate the LR parameters from the INEX
2003 results and now test on the 2004.

6. REFERENCES
[1] S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder,

D. Grossman, and N. Goharian. Disproving the fusion
hypothesis: An analysis of data fusion via effective
information retrieval strategies. In Proceedings of the 2003
SAC Conference, pages 1–5, 2003.

 0

 0.2

 0.4

 0 0.5 1

P
re

ci
si

on

Recall

FDBK
NEWPARMS

FUSION
POSTFUS

Figure 4: Berkeley CO Runs – Generalized Quanti-

zation

[2] N. Belkin, P. B. Kantor, E. A. Fox, and J. A. Shaw.
Combining the evidence of multiple query representations
for information retrieval. Information Processing and
Management, 31(3):431–448, 1995.

[3] W. S. Cooper, F. C. Gey, and A. Chen. Full text retrieval
based on a probabilistic equation with coefficients fitted by
logistic regression. In D. K. Harman, editor, The Second
Text Retrieval Conference (TREC-2) (NIST Special
Publication 500-215), pages 57–66, Gaithersburg, MD,
1994. National Institute of Standards and Technology.

[4] W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic
retrieval based on staged logistic regression. In 15th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Copenhagen,
Denmark, June 21-24, pages 198–210, New York, 1992.
ACM.

[5] R. R. Larson. TREC interactive with cheshire II.
Information Processing and Management, 37:485–505,
2001.

[6] R. R. Larson. A logistic regression approach to distributed
ir. In SIGIR 2002: Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, August 11-15,
2002, Tampere, Finland, pages 399–400. ACM, 2002.

[7] R. R. Larson. Cheshire II at INEX: Using a hybrid logistic
regression and boolean model for XML retrieval. In
Proceedings of the First Annual Workshop of the Initiative
for the Evaluation of XML retrieval (INEX), pages 18–25.
DELOS workshop series, 2003.

[8] R. R. Larson. Cheshire II at INEX 03: Component and
algorithm fusion for XML retrieval. In INEX 2003
Workshop Proceedings, pages 38–45. University of
Duisburg, 2004.

[9] R. R. Larson. A fusion approach to xml structured
document retrieval. Journal of Information Retrieval,
pages ??–??, 2005? (in press).

[10] J. H. Lee. Analyses of multiple evidence combination. In
SIGIR ’97: Proceedings of the 20th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, July 27-31, 1997, Philadelphia,
pages 267–276. ACM, 1997.

169

[11] S. E. Robertson and S. Walker. On relevance weights with
little relevance information. In Proceedings of the 20th
annual international ACM SIGIR conference on Research
and development in information retrieval, pages 16–24.
ACM Press, 1997.

[12] S. E. Robertson, S. Walker, and M. M. Hancock-Beauliee.
OKAPI at TREC-7: ad hoc, filtering, vlc and interactive
track. In Text Retrieval Conference (TREC-7), Nov. 9-1
1998 (Notebook), pages 152–164, 1998.

[13] J. A. Shaw and E. A. Fox. Combination of multiple
searches. In Proceedings of the 2nd Text REtrieval
Conference (TREC-2), National Institute of Standards and
Technology Special Publication 500-215, pages 243–252,
1994.

170

Using a relevance propagation method for Adhoc and
Heterogeneous tracks in INEX 2004

Karen Sauvagnat
IRIT-SIG

118 route de Narbonne
31 062 Toulouse Cedex 4

France

sauvagna@irit.fr

Mohand Boughanem
IRIT-SIG

118 route de Narbonne
31 062 Toulouse Cedex 4

France

bougha@irit.fr

ABSTRACT
This paper describes the evaluation of the XFIRM system
in INEX 2004 framework. The XFIRM system uses a rel-
evance propagation method to answer queries composed of
content conditions and/or structure conditions. Runs were
submitted to the ad-hoc (for both CO and VCAS task) and
heterogeneous tracks.

Keywords
XML retrieval, ad-host task, heterogeneous task, relevance
propagation method

1. INTRODUCTION
Long documents may have heterogeneous content from dif-
ferent domains. In that case, selecting a whole document
as answer unit is not necessary useful for the user. He/she
may require document parts, which are of higher precision
and finer granularity. XML documents, combining struc-
tured and unstructured (i.e.) text data, allow the processing
of information at another granularity level than the whole
document.
The challenge in an IR context is to identify and retrieve
relevant parts of the document. In other words, the aim
is to retrieve the most exhaustive and specific information
units answering a given query.
The approach we used for our participation in INEX 2004 is
based on the XFIRM system and on a relevance propagation
method. The idea of relevance propagation (or augmenta-
tion) is also undertaken in [2], [6], [5]. In our approach, all
leaf nodes are used as a starting point of the proagation, be-
cause even the smallest leaf node can contain relevant infor-
mation (it can be a title or sub-title node for example). Ad-
vantages of such an approach are twofold: the index process
can be done automatically, without any human intervention
and the system will be so able to handle heterogeneous col-
lections automatically; and secondly, even the most specific

query concerning the document structure will be processed,
since all the document structure is stored.
In this paper, we present the methodology we use within
the context of INEX’2004. Section 2 presents the XFIRM
model, namely the data representation model and the asso-
ciated query language. Section 3 describes the search ap-
proach used for the ad-hoc track for both CO and VCAS
sub-tasks and section 4 presents the XFIRM model in the
heterogeneous track context.

2. THE XFIRM MODEL
2.1 Data representation
2.1.1 Logical Data Representation Model
A structured document sdi is a tree, composed of simple
nodes nj , leaf nodes lnj and attributes aj .
Structured document: sdi = (treei) = (nij , lnij , aij)
This representation is a simplification of Xpath and Xquery
data model [4], in which a node can be a document, an
element, text, a namespace, an instruction or a comment.
In order to easy browse the document tree and to quickly
find ancestors-descendants relationships, the XFIRM model
uses the following representation of nodes and attributes,
based on the Xpath Accelerator approach [7]:
Node : nij = (pre, post, parent, attribute)
Leaf node : lnij = (pre, post, parent, {t1, t2, . . . , tn})
Attribute: aij = (pre, val)

A node is defined thanks to its pre-order and post-order
value (pre and post), the pre-order value of its parent node
(parent), and depending on its type (simple node or leaf
node) by a field indicating the presence or absence of at-
tributes (attribute) or by the terms it contains ({t1, t2, . . . , tn}).
A simple node can either contain other simple nodes, leaf
nodes, or both. This last case is not really a problem, be-
cause as each node owns a pre and post order value inde-
pendently of its type (simple node or leaf node), the recon-
struction of the tree structure can be done in an easy way.
An attribute is defined by the pre-order value of the node
containing it (pre) and by its value (val). Pre-order and
post-order values are assigned to nodes thanks respectively
to a pre-fixed and post-fixed traversal of the document tree
(see [12] for having an example).

If we represent nodes in a two-dimensions space based on the
pre and post order coordinates, we can exploit the following
properties, given a node n:

171

• all ancestors of n are to the upper left of n’s position
in the plane

• all its descendants are to the lower right,

• all preceding nodes in document order are to the lower
left, and

• the upper right partition of the plane comprises all
following nodes (regarding document order)

Xpath Accelerator is well-suited for the navigation in XML
documents with Xpath expressions. In contrast to others
path index structures for XML, it efficiently supports also
path expressions that do not start at the document root.
Moreover, this data representation allow the processing of all
XML documents, without necessarily knowing their DTD.
This implies the ability of the model to process heteroge-
neous collections.

2.1.2 Physical Data Representation Model
As explained in our previous work [9], all data are stored in
a relational database.
The Path Index (PI) allows the reconstruction of the doc-
ument structure (thanks to the Xpath Accelerator model):
for each node, its type, and its pre and post-order values are
stored. The Term Index (TI) is a traditional inverted file,
i.e. for each term, the index stores the nodes containing it
and its positions in the different nodes. The Element Index
(IE) describes the content of each leaf node, i.e. the total
number of terms and also the number of different terms it
contains, and the Attribute Index (AI) gives the values of
attributes.
Finally, the Dictionary (DICT) provides for a given tag the
tags that are considered as equivalent. It is useful in case of
heterogeneous collections (i.e. XML documents with differ-
ent DTD) or in case of documents containing similar tags,
like for example, title and sub-title. This index is built man-
ually.

2.2 The XFIRM Query language
A query language is associated to the model, allowing queries
with simple keywords terms and/or with structural condi-
tions [11].
The user can express hierarchical conditions on the docu-
ment structure and choose the element he/she wants to be
returned (thanks to the te: (target element) operator).
Examples of XFIRM queries:
(i) // te: p [weather forecasting systems]
(ii) // article[security] // te: sec [”facial recognition”]
(iii) // te: article [Petri net] //sec [formal definition] AND
sec [algorithm efficiency]
(iv) // te: article [] // sec [search engines]
respectively mean that (i) the user wants paragraphs about
weather forecasting systems, (ii) sections about facial recog-
nition in articles about security, (iii) articles about Petri net
containing a section giving a formal definition and another
section talking about algorithm efficiency, and (iv) articles
containing a section about search engines. When expressing
the eventual content conditions, the user can use simple key-
words terms, eventually preceded by + or - (which means
that the term should or should not be in the results), and

connected with boolean operators. Phrases are also pro-
cessed by the XFIRM system.
Concerning the structure, the query syntax allows the for-
mulation of vague path expressions. For example, the user
can ask for ”article[]//sec[]” (he/she so knows that arti-
cle nodes have sections nodes as descendants), without nec-
essarily asking for a precise path, i.e. article[]/bdy[]/sec[].
Moreover, thanks to the Dictionary index, the user does not
need to express in his/her query all the equivalent tags of
the tag he/she’s looking for. He/she can ask for example
for a section node, without saying he/she is also interested
in sec nodes. User can also express conditions on attribute
values, as explained in [11].

3. AD-HOC TASK
This year, within the ad-hoc retrieval task, two sub-tasks
were defined: the Content-Only (CO) task and the Vague
Content-and-Structure (VCAS) task.

3.1 Answering CO queries
CO queries are requests that ignore the document structure
and contain only content related conditions, e.g. only spec-
ify what a document/component should be about (without
specifying what that component is). In this task, the re-
trieval system has to identify the most appropriate XML
elements to return to the user.

3.1.1 Query processing
The first step in query processing is to evaluate the rele-
vance value of leaf nodes ln according to the query. Let
q = t1, . . . , tn be this query. Relevance values are computed
thanks to a similarity function called RSVm(q, ln) (Retrieval
Status Value), where m is an IR model. The XFIRM system
authorizes the implementation of many IR models, which
will be used to assign a relevance value to leaf nodes. As
shown in [10], a simple adaptation of the tf−idf measure to
XML documents seems to perform better in case of content
and structure queries. So:

RSVm(q, ln) =

n∑
i=1

wq
i ∗ wln

i (1)

with wq
i = tfq

i ∗ iefi and wln
i = tf ln

i ∗ iefi

And where :
- tfi is the term frequency in the query q or in the leaf node
ln
- iefi is the inverse element frequency of term i, i.e. log
(N/n+1)+1, where n is the number of leaf nodes containing
i and N is the total number of leaf nodes.
In our model, each node in the document tree is assigned
a relevance value which is function of the relevance values
of the leaf nodes it contains. Terms that occur close to
the root of a given subtree seems to be more significant for
the root element that ones on deeper levels of the subtrees.
It seems so intuitive that the larger the distance of a node
from its ancestor is, the less it contributes to the relevance of
its ancestor. This affirmation is modeled in our propagation
formula by the use of the dist(n, lnk) parameter, which is the
distance between node n and leaf node lnk in the document
tree, i.e. the number of arcs that are necessary to join n
and lnk. The relevance value rn of a node n is computed

172

according the following formula:

rn =
∑

k=1..N

αdist(n,lnk) ∗RSV (q, lnk) (2)

where lnk are leaf nodes being descendant of n and N the
total number of leaf nodes being descendant of n.

To avoid the retrieval of nodes that do not supply informa-
tion (like title nodes for example), we introduce the following
rule: Let n be a node and lni, i ∈ [1..N] be its descendant
leaf nodes having a non-zero relevance score. Let L be the
sum of the length of lni (i.e. the sum of the number of terms
contained in lni. If L is smaller than a given value x, n will
be considered as not relevant. This rule can be formalised
as follows:

rn =

{ ∑
k=1..N αdist(n,lnk) ∗RSV (q, lnk) if L > x

0 else
(3)

where L =
∑

i=1..N

length(lni) with RSV (q, lni) > 0 (4)

3.1.2 Experiments and results
Table 1 shows the results obtained with different values of
α and L. All runs were performed using the title field of
topics. Our official run is in bold characters.
Average precision decreases when factor L is considered (run
xfirm co 05 25 o processed with L = 25 obtains lower pre-
cision than runs precessed with L = 0). This surprising
observation can be mainly explained by the fact that some
very small elements may have been judged relevant during
the INEX assessments although they do not supply infor-
mation.
Run xfirm co 05 25 wo was processed without any node over-
lap. Results (for all metrics) are lower, because of the over-
populated recall-base [8].
Run xfirm co 1 0 o is processed with α set to 1, which is
equivalent to do a simple sum of leaf nodes relevance weights
without down-weighting them during propagation. As a
consequence, highest nodes in the document structure have
a higher relevance value and are better ranked than deeper
nodes (because they have a greater number of leaf nodes as
descendants). As highest nodes in the document structure
are also the biggest ones, the specificity criteria of the CO
task is not respected. However, results are still relatively
good, which is quite surprising. The same observation can
be done on XFIRM results on INEX 2003 CO topics.
In a general manner, performances are lower than those ob-
tained with the same parameters on the INEX 2003 CO top-
ics, even for the ”old” metrics. We need to conduct more
experiments to evaluate the impact of all our paramenters
on each metric.

3.2 Answering VCAS queries
The VCAS (Vague Content and Structure) task consists
in content-oriented XML retrieval based on content-and-
structure (CAS) queries, where the structural constraints
of a query can be treated as vague conditions. CAS queries
are topic statements, which contain explicit references to the
XML structure, and explicitly specify the contexts of the
users interest (e.g. target elements) and/or the contexts of
certain search concepts (e.g. containment conditions). The
idea behind the VCAS sub-task is to allow the evaluation of

XML retrieval systems that aim to implement approaches,
where not only the content conditions within a user query
are treated with uncertainty but also the expressed struc-
tural conditions.

3.2.1 Query processing
A VCAS query evaluation in XFIRM is carried out as fol-
lows:

1. INEX (NEXI) queries are translated into XFIRM queries

2. XFIRM queries are decomposed into sub-queries and
elementary sub-queries

3. relevance values are then evaluated between leaf nodes
and the content conditions of elementary sub-queries

4. relevance values are propagated in the document tree
to answer to the structure conditions of elementary
sub-queries

5. sub-queries are processed thanks to the results of ele-
mentary sub-queries

6. original queries are evaluated thanks to upwards and
downwards propagation of the relevance weights

Query translation
The transformation of INEX CAS queries to XFIRM queries
was fairly easy. Table 2 gives some correspondences.

Query decomposition
Each XFIRM query can be decomposed into sub-queries SQi

as follows:

Q = //SQ1//SQ2// . . . //te : SQj// . . . //SQn (5)

Where te: indicates the tag name of the target element.
Each sub-query SQi can then be re-decomposed into ele-
mentary sub-queries ESQi,j , eventually linked with boolean
operators and of the form:

ESQi,j = tg[q] (6)

Where tg is a tag name and q = {t1, . . . , tn} is a set of
keywords, i.e. a content condition. For example, topic 156
is decomposed as follows:

SQ1=article[] AND abs[”spatial join”]
ESQ1,1=article[]
ESQ1,2=abs[”spacial join”]

SQ2=sec[”performance evaluation”]

Evaluating leaf nodes relevance values
As for CO topics, formula 1 is used.

Elementary sub-queries ESQi,j processing
The relevance values assigned to leaf nodes are then propa-
gated upwards in the document tree until nodes having the

173

Table 1: Average precision of our runs for CO topics
Run α L Average Overlap Rank

precision
xfirm co 05 25 o 0.5 25 0.0660 77,4% 19/70

xfirm co 06 0 o 0.6 0 0.0758 81,8% 17/70
xfirm co 09 0 o 0.9 0 0.0754 83.8% 17/70
xfirm co 1 0 o 1 0 0.0781 83.8%

xfirm co 05 25 wo 0.5 25 0.0143 0% 48/70

Table 2: Transformation of INEX topics into XFIRM queries
Topic INEX XFIRM
138 //article [about(.,operating system) and

about(.//sec,thread implementation)]
// te: article [operating system] // sec [thread im-
plementation]

145 //article[about(.,information retrieval) //
p[about(.,relevance feedback)]

//article [information retrieval] // te: p [relevance
feedback]

156 //article[about(.//abs,”spatial join”)]// bdy //
sec [about(.,”performance evaluation”)]

//article[] AND abs[”spatial join”] // te: sec [”per-
formance evaluation”]

asked tag name are found. The result set of an elemen-
tary sub-query tg[q] is so composed of nodes having tg as
tag name (or having a tag name equivalent to tg according
to the DICT index) and their associated relevance values,
which are obtained thanks to the propagation.
Formally, the result set Ri,j of ESQi,j is a set of pairs (node,
relevance) defined as follows:

Ri,j = {(n, rn)/n ∈ construct(tg)

and rn = Fk(RSVm(q, nfk), dist(n, nfk)) } (7)

Where :
- rn is the relevance weight of node n
- the construct(tg) function allows the creation of the set of
all nodes having tg as tag name
- the Fk(RSVm(q, nfk), dist(n, nfk)) function allows the prop-
agation and aggregation of relevance values of leaf nodes
nfk,descendants of node n, in order to form the relevance
value of node n. This propagation is function of distance
dist(n, nfk) which separates node n from leaf node nfk in
the document tree (i.e. the number of arcs that are neces-
sary to join n and nfk).
In our INEX 2004 experiments, we choose to use the follow-
ing function :

Fk(RSVm(q, nfk), dist(n, nfk))

=
∑

k

αdist(n,nfk) ∗RSV (q, nfk) (8)

α is set to 0.9, which is the optimal value for experiments
presented in [12] on INEX 2003 SCAS topics.

Sub-queries SQi processing
Once each ESQi,j has been processed, sub-queries SQi are
then evaluated as explained below. Let Ri be the result set
of SQi.
- if sub-query SQi is composed of one elementary sub-query
ESQi,j then the result set of SQi is the same than the one
of ESQi,j

If SQi = ESQi,j , then Ri = Ri,j (9)

- if sub-query SQi is composed of elementary sub-queries
ESQi,j linked by the Boolean operator AND, the result set

of SQi is composed of nodes being the nearest common an-
cestors of nodes belonging to the result sets of elementary
sub-queries ESQi,j . The associated relevance values are ob-
tained thanks to propagation functions. Formally,

If SQi = ESQi,j AND ESQi,k,

then Ri = Ri,j ⊕AND Ri,k (10)

with ⊕AND defined as follow:

Definition 1. Let N = {(n, rn)} and M = {(m, rm)} be
two sets of pairs (node, relevance).

N ⊕AND M = {(l, rl)/ l is the nearest common ancestor

of m and n, or l = m (respectively n) if m

(resp .n)is ancestor of n (resp. m),

∀m, n being in the same document and

rl = aggregAND(rn, rm, , dist(l, n), dist(l, m))} (11)

Where aggregAND(rn, rm, dist(l, n), dist(l, m)) = rl defines
the way relevance values rn and rm of nodes n and m are
aggregated in order to form a new relevance rl.

According to the results obtained in [12] for the INEX’2003
SCAS topics, we use the following function in this year ex-
periments:

aggregAND(rn, rm, dist(l, n), dist(l, m))

=
rn

dist(l, n)
+

rm

dist(l, m)
(12)

- if sub-query SQi is composed of elementary sub-queries
ESQi,j linked by the Boolean operator OR, the result set of
SQi is an union of the result sets of elementary sub-queries
ESQi,j .

If SQi = ESQi,j OR ESQi,k,

then Ri = Ri,j ⊕OR Ri,k (13)

with ⊕OR defined as follow:

174

Table 3: Average precision of our runs for VCAS topics
Run Dict Average Overlap Rank

precision
xfirm vcas 09 vague INEX 0.0346 17,8% 26/51

xfirm vcas 09 vague dict DICT1 0.0475 38,5% 16/51
xfirm vcas 09 vague dict2 DICT2 0.0686 62,6% 8/51
xfirm vcas 09 vague dict3 DICT3 0.0694 68,3% 7/51

Definition 2. Let N = {(n, rn)} and M = {(m, rm)} be
two sets of pairs (node, relevance).

N ⊕OR M = {(l, rl)/l = n ∈ N and rl = rn

or l = m ∈ M and rl = rm} (14)

Whole query processing
The result set of sub-queries SQi are then used to process
the whole query. In this query, a target element is specified,
as defined above.
Q = //SQ1//SQ2// . . . //te : SQj// . . . //SQn

The aim in whole query processing will be to propagate the
relevance values of nodes belonging to the results sets Ri of
sub-queries SQi to nodes belonging to the result set Rj ,
which contains the target elements. Relevance values of
nodes belonging to Ri where i ∈ [1 . . . j − 1] are propagated
downwards in the document tree, while relevance values of
nodes belonging to Ri where i ∈ [j + 1 . . . n] are propagated
upwards. This is obtained thanks to the non-commutative
operators ∆ and ∇ defined below:

Definition 3. Let Ri = {(n, rn)} and Ri+1 = {(m, rm)}
be two sets of pairs (node, relevance)

Ri∆Ri+1 = {(n, rn)/n ∈ Ri is descendant of m ∈ Ri+1

and rn = prop agg(rn, rm, dist(m, n))} (15)

Ri∇Ri+1 = {(n, rn)/n ∈ Ri is ancestor of m ∈ Ri+1

and rn = prop agg(rn, rm, dist(m, n))} (16)

Where prop agg(rn, rm, dist(m, n)) → rn allows the aggre-
gation of relevance weights rm of node m and rn of node n
according to the distance that separates the 2 nodes, in order
to obtain the new relevance weight rn of node n .

The result set R of a query Q is thus defined as follows :

R = Rj∇(Rj+1∇(Rj+2∇ . . .))

R = Rj∆(Rj−1∆(Rj−2∆ . . .)) (17)

For the experiments presented here and according to the re-
sults obtained in [12], we use:

prop agg(dist(m, n), rn, rm) =
rn + rm

dist(n, m)
(18)

3.2.2 Experiments and results
We processed several runs, using different Dictionary in-
dexes. This way, we are able to control the notion of uncer-
tainty on structure constraints.
Table 3 shows the average precisions of all runs. All runs

were performed using the title field of topics. Our official
runs are in bold characters.
Equivalencies in the INEX Dict are given in the INEX guide-
lines [1]. For example, ss1, ss2, and ss3 nodes are con-
sidered as equivalent to sec nodes. Equivalencies are then
gradually extended in the other DICT indexes. For exam-
ple, sec, ss1, ss2, ss3 nodes and p nodes are considered as
equivalent in DICT1, whereas in DICT3 sec, ss1, ss2, and
ss3 nodes are equivalent to both p and bdy nodes. The use
of a very extended DICT index increases the percentage of
nodes overlap but increases also the average precision. This
is not really surprising because as the structure conditions
are treated with uncertainty, the recall-base obtained dur-
ing the assessments is overpopulated, as it is the case for the
CO task.

4. HETEROGENEOUS TRACK
4.1 Motivation
The idea behind the heterogeneous track is that an informa-
tion seeker is interested in semantically meaningful answers
irrespectively to the structure of documents.
The Het collection consists in documents from different sources
and thus with different DTDs (one can cite the original
INEX Collection, the Computer Science database of FIZ
Karlsruhe or the Digital Bibliography and Library Project
in Trier). The additional collections are mainly composed
of bibliographic references. Documents’ sizes are also very
”heterogeneous” : smallest documents have a few Kb whereas
the biggest is 300 Mb.
Heterogeneous collection poses new challenges: (i) for CO
queries, DTD-independent methods should be developed;
(ii) for CAS queries, there is the problem of mapping struc-
tural conditions from one DTD onto other (possibly un-
known) DTDs. Methods from federated databases could be
applied here, where schema mappings between the different
DTDs are defined manually. However, for a larger number
of DTDs, automatic methods must be developed, e.g. based
on ontologies.
This year, different topic types were defined for answering
the different retrieval challenges in heterogeneous collections
[3]:

• CO queries;

• BCAS (Basic CAS) queries : these topics focus on the
combination of singular structural constraints with a
content-based constraint;

• CCAS (Complex CAS) queries : they are the het track
equivalent of the CAS topics of the ad-hoc track, spec-
ified using the NEXI language;

175

• ECCAS (Extended Complex CAS) queries : these top-
ics assume that the user is able to express th probabil-
ity of the likelihood of a given structural constraint.

4.2 Experiments
As this is the first year the het track is proposed in the INEX
framework, the track was mainly explorative. Participants
to the Het track proposed 10 Co topics, 1 BCAS topic and
13 CCAS topics.
As the index structure of XFIRM is designed to handle het-
erogeneous collections, the indexing process was quite easy.
We submitted one run per topic category. For CO queries,
we used the same formula as for the ad-hoc task. For BCAS
and CCAS queries, a new Dict index was built manually,
comparing the different DTDs.
Results are not known yet.

5. PERSPECTIVES
For this year INEX evaluation campaign, we have submitted
runs for both the ad-hoc task and the heterogeneous track.
Runs were performed with the XFIRM system using a prop-
agation method.
Results obtained for the CO task are lower than those ob-
tains with the same parameters on INEX 2003 CO topics.
Results obtained for the VCAS track are relatively good
when using a very extended Dictionary index. In both cases,
we need to conduct more experiments to evaluate the im-
pact of all our parameters on all INEX metrics.
Concerning the Heterogeneous track, the task this year was
mainly explorative. Runs we submitted were performed us-
ing a Dictionary index built manually by comparing the dif-
ferent DTDs. Some het challenges are still open: how can
we build a Dictionary index automatically? Do we need to
adapt our formulas for taking into account the gap between
document sizes of the different collections?

6. REFERENCES
[1] Guidelines for topic development. Proceedings of

INEX 2003, Dagstuhl, Germany, december 2003.

[2] V. N. Anh and A. Moffat. Compression and an ir
approach to xml retrieval. In Proceedings of INEX
2002 Workshop, Dagstuhl, Germany, 2002.

[3] V. Dignum and R. van Zwol. Guidelines for topic
development in heterogeneous collections. Guidelines
of INEX 2004, 2004.

[4] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. Xquery 1.0 and xpath 2.0 data model.
Technical report, World Wide Web Consortium
(W3C), W3C Working Draft, may 2003.

[5] N. Gövert, M. Abolhassani, N. Fuhr, and
K. Grossjohann. Content-oriented xml retrieval with
hyrex. In Proceedings of the first INEX Workshop,
Dagstuhl, Germany, 2002.

[6] T. Grabs and H. Scheck. ETH zürich at INEX:
Flexible information retrieval from XML with
powerdb-xml. In Proceedings of the first INEX
Workshop, Dagstuhl, Germany, 2002.

[7] T. Grust. Accelerating xpath location steps. In
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison,
Wisconsin, USA. In M. J. Franklin, B. Moon, and A.
Ailamaki, editors, ACM Press.

[8] G. Kazai, M. Lalmas, and A. P. de Vries. The overlap
problem in content-oriented XML retrieval evaluation.
In Proceedings of SIGIR 2004, Sheffield, England,
pages 72–79, July 2004.

[9] K. Sauvagnat. Xfirm, un modèle flexible de recherche
d́ information pour le stockage et l̀ interrogation de
documents xml. In Proceedings of CORIA’04
(COnférence en Recherche d’Information et
Applications), Toulouse, France, pages 121–142,
march 2004.

[10] K. Sauvagnat and M. Boughanem. The impact of leaf
nodes relevance values evaluation in a propagation
method for xml retrieval. In R. Baeza-Tates,
Y. Marek, T. Roelleke, and A. P. de Vries, editors,
Proceedings of the 3rd XML and Information Retrieval
Workshop, SIGIR 2004, Sheffield, England, pages
13–22, July 2004.

[11] K. Sauvagnat and M. Boughanem. Le langage de
requête xfirm pour les documents xml: De la
recherche par simples mots-clés à l’utilisation de la
structure des documents. In Proceedings of Inforsid
2004, Biarritz, France, may 2004.

[12] K. Sauvagnat, M. Boughanem, and C. Chrisment.
Searching XML documents using relevance
propagation. In A. Apostolico and M. Melucci,
editors, SPIRE 04 , Padoue, Italie, pages 242–254.
Springer, 6-8 october 2004.

176

A Test Platform for the INEX Heterogeneous Track

Serge Abiteboul
INRIA Futurs

France
serge.abiteboul@inria.fr

Ioana Manolescu
INRIA Futurs

France
ioana.manolescu@inria.fr

Benjamin Nguyen
PRiSM, Univ. Versailles

France
benjamin.nguyen@prism.uvsq.fr

Nicoleta Preda
INRIA Futurs

France
nicoleta.preda@inria.fr

ABSTRACT
This article presents our work within the INEX 2004 Het-
erogeneous Track. Our focus within this track has been on
taming the structural diversity within the INEX heteroge-
neous bibliographic corpus.

We demonstrate how semantic models and associated infer-
ence techniques can be used to solve the problems raised by
the structural diversity within a given XML corpus. Our
approach starts by automatically extracting a set of con-
cepts from each class of INEX heterogeneous documents.
We then compute an integrated set of concepts, which syn-
thesizes the interesting concepts from the whole corpus. We
connect individual corpora to the integrated set of concepts
via conceptual mappings. This approach is implemented as
an application of our KadoP platform for peer-to-peer ware-
housing of XML documents. While our work caters to the
structural aspects of XML information retrieval, the exten-
sibility of the KadoP system makes it an interesting test
platform in which components developed by several INEX
participants could be plugged, exploiting the opportunities
of peer-to-peer data and service distribution.

1. CONTEXT
Our work is situated in the context of the INEX Heteroge-
neous Track (which we will denote as het-track throughout
this paper). The het-track is very young: has been held in
2004 for the first time. The het-track has built a collection
of heterogeneous data sets, all representing bibliographic en-
tries in various encodings. This collection includes:

• Berkeley: The particularity of this data set is to in-
clude several classifications or codes for each entry.

• CompuScience: Bibliographic entries in CompuScience
format.

• BibDB Duisburg: Bibliographic data from the Duis-
burg university.

• DBLP: The well-known database and logical program-
ming data source.

• HCIBIB: Bibliographic entries from the field of Human-
Computer Interaction.

• QMUL

A set of topics have also been proposed, which are largely
similar (in structure and scope) to those formulated within
the relevance feedback track. The topics include:

• Content-only (CO) topics, of the form “database query”;
XML fragments pertinent to the specified keywords
must be returned.

• Content-and-structure (CAS) topics, such as
//article[about(.//body, ”XML technology”)]

In this case, the search for pertinent data fragments is
confined by specific structural criteria.

Answering an IR query on a structurally heterogeneous cor-
pus raises two main challenges. First, computing the rel-
evance of a data fragment for a given keyword or set of
keywords; this task is no different from the main relevance
assessment track. Second, taking into account the structural
hints present in the topic, in the case of CAS topics.

In the presence of a heterogeneous corpus, the second task
becomes particularly difficult. This is due to the fact that
semantically similar information is encoded in very different
XML formats; furthermore, DTDs may or may not be avail-
able for the corpus. The work we present has specifically
focused on this second task.

Contributions
Our work within the het-track makes the following contri-
butions.

First, we present an approach for integrating the hetero-
geneous structures of the heterogeneous data sources un-
der an unified structure. This approach relies on simple
semantic-based techniques, and on our experience in build-
ing semantic-based warehouses of XML resources [2, 3]. The
result of this integration on the het-track corpus is an uni-
fied DTD, and a set of mappings from individual sources to
this DTD. CAS topics against the het-track corpus can now

177

file

entry

id

manual miscmastersthesis manuscript

book

phdthesisunpublished proceedingsbooklet incollection articleinbook inproceedingstechreport

altauthorbooktitlepublisher general-terms editionnumberorganizationmonth annoteauthor classification-codesentrydate free-termskey note subject-descriptorstitle year doi bumberabstracthowpublished pages urladdressschool isbnlanguageinstitution journal editorseries

translation

volume issnchapter crossref conference keywordstype

Figure 1: XSum drawing of the DBLP DTD (top), Duisburg DTD (middle), and zoom-in on Duisburg DTD
articles (bottom).

be expressed in terms of the unified DTD, and get automat-
ically translated into a union of topics over each data set.
Thus, solving a CAS topic on a heterogeneous corpus is re-
duced to solving several CAS topics against the individual
component data sets.

Second, we present XSum [11], a free XML and DTD visual-
ization tool, that we developed as part of our work in INEX.
XSum helped us get acquainted to the complex structure of
the heterogeneous collection, and devise semi-automatic in-
tegration strategies.

Finally, we outline the architecture of a peer-to-peer plat-
form for processing XML queries or IR searches, over a set
of distributed, potentially heterogeneous XML data sources.
This platform has the advantage of being open and inher-
ently distributed, allowing to take advantage of the data
sources and capabilities of each peer in the network in order
to solve a given query or search. In particular, we show this
platform may be used as a testbed for the XML IR method-
ologies developed within the het-track, by allowing to test
and combine the various implementations of the about func-
tions developed by INEX participants.

This document is structured as follows. Section 2 describes
our semantic-based approach for XML information retrieval
over a heterogeneous corpus. Section 3 details the result
we obtained by applying this approach on the INEX het-
track corpus. Section 4 outlines the peer-to-peer generic
platform we propose, and describes how it could be used as
a testbed for the het-track in the future. Section 5 draws
our conclusion and outlines future work.

2. OUR APPROACH FOR HETEROGENEOUS
XML INFORMATION RETRIEVAL

Dealing with structural diversity in heterogeneous sources
has been a topic of research in the field of databases and in
particular of data integration. The purpose of a data inte-
gration system is to provide the user the illusion of a single,
integrated database, on which the user can pose queries (in
our case, IR queries, or topics). Behind the uniform inter-
face, the system will process these queries by translating
them into the formats specific to each data source, process-
ing them separately, and integrating the results into a single
one.

Traditionally, data integration operates at the level of schemas.

178

A source schema characterizes the structure of each data
source, and an integrated schema is provided to the user.
This approach has been thoroughly investigated in the case
of relational data sources and schemas.

In the case of heterogeneous, complex, potentially schema-
less data sources, this approach is no longer applicable. In-
stead, we chose to draw from the experience obtained in
semantic-based data integration [?], to integrate sources per-
tinent to a specific domains, such as the het-track corpus,
under a single conceptual model. The building bricks of our
conceptual model are:

• Concepts, which are the notions of relevance for a given
application. For instance, in the het-track corpus, use-
ful concepts are: “publication”, “author”, etc.

• IsA relationships represent specialization relationships
between concepts. For instance, “book IsA publica-
tion” represents the fact that books are a kind of pub-
lication.

• PartOf relationships represent composition (aggrega-
tion) relationships between concepts. For instance,
“title PartOf book” represents the fact that a title is
a component of a book.

It has been noted [4] that XML DTDs are a good basis for a
conceptual model of the XML documents conforming to the
DTDs. Thus, our approach starts by extracting a conceptual
model from each source. For the sources for which DTDs
are available, the process is straightforward: we extract a
concept for each type in the DTD, including element and
attributes (among which we do not make a distinction). For
sources for which DTDs are not available, we start by ex-
tracting a “rough” DTD, including all element names. Fur-
thermore, whenever we encounter in the data an element
labeled l1 as a child of an element labeled l2, we mention in
the DTD that the type l1 can appear as a child of the type
l2. After having extracted this DTD, we compute from it a
set of concepts as in the previous case.

At the end of this stage, we have obtained a set of concep-
tual data source models. Our purpose then is to construct
a unified conceptual model characterizing all sources, and
mappings between each conceptual model to the unified one.

Extracting the unified conceptual model
To build the unified conceptual model, we identify groups
of concepts (each one in different conceptual source models)
that represent semantically similar data items. We do this
in a semi-automatic manner, as follows.

First, the names of concepts from different source models
are compared for similarity, to identify potential matches.
This can be done automatically, with the help of a tool such
as WordNet [5]. If simple matches such as the one between
“book” (DBLP) and “book” (HCI BIB) can be automati-
cally detected, more subtle ones such as the similarity be-
tween “editor” (HCI BIB) and “Edition” (Berkeley) require
the usage of tools such as WordNet. Having identified clus-
ters of concepts which potentially represent the same thing,

we create one concept in the unified model, for each cluster
of source model concepts above a given similarity threshold;
human intervention is required at this point in setting the
similarity threshold.

At the end of this process, it may happen that some source
model concepts have not been clustered with any others.
This may be the case, for instance, of concepts called “Fld012”,
“Fld245”, etc. from the Berkeley data source. These con-
cepts are difficult to cluster, since their names (standing for
“Field number 012”, “Field number 245”, etc.) do not en-
capsulate the meaning of the concept, instead, this meaning
is included in plain-text comments prior to the DTD descrip-
tion of the respective type. To deal with such concepts, we
need to capture the DTD comments preceding the type, and
feed those descriptions to the word similarity-based cluster-
ing. This way, we may learn that “Fld245” stands for “Title
Statement”, and cluster “Fld245” with similarly named con-
cepts from other DTDs.

Once the clusters of similar (and supposedly semantically
close) concepts have been extracted, we create a concept for
each such cluster, in the unified conceptual model.

Extracting mappings between the source and unified
conceptual models
We add an ISA relationship going from each source model
concept, to the unified model concept that was derived from
its clusters. If a source model participates to several clusters,
this may yield several ISA relationships.

3. RESULTS OF OUR PARTICIPATION TO
INEX

In this section, we report on the results that we obtained in
our work in the framework of the het-track.

3.1 Unified conceptual model for the INEX
corpus

In this section, we discuss the techniques uses to construct a
unified DTD in order to query the documents of the hetero-
geneous track. An important factor is that the documents
are all about the same topic : a bibliography. Five of them
are qui verbose, and the labels are self descriptive, while
one (Berkley DB) has label that convey no semantic signifi-
cation whatsoever. Some examples of such labels would be
: Fld001, Fld002, etc...

In this article, we do not take into account this DTD, there-
fore the unified DTD we propose does not include elements
from the Berkley DB for the moment. We are currently ex-
perimenting the use of a tool that displays the DTD graph,
by clustering together labels that have the same parent, in
order to bring some semantics into this DTD. We intend to
propose groups of labels and compare them with the existing
element clusters in order to determine their semantics.

The method used in order to determine a unified DTD is
the following :

• We first of all create mappings between elements that
have the same syntax, but that originate from differ-

179

Figure 2: Fragment of a path summary computed
from an article in the INEX main corpus (IEEE CS).

ent DTDs. For instance, we might find two article
elements, one from DBLP, the other from BibDB Duis-
burg. If there are several elements with the same (or
very close) syntax in multiple DTDs, we group them
all together. These are one to one mappings, and the
output of this phase is a group of clusters of syntacti-
cally close elements.

• For each cluster, we then check the parent nodes, and
group them together in a new parent cluster.

• For all these automatically constructed clusters, we
manually check the correctness of these groupings, and
chose a name for the cluster, generally of the form
nameOfElementC.

We give on our website the full resulting DTD.

Using the unified DTD : The Unified DTD is to be used
when asking queries over the heterogeneous data set. The
querying mecanism is as follows.

• The INEX queries must be written taking into account
the unified DTD. The Unified DTD elements represent
the predicates to be used in the path expressions. We
call this query a generic query.

• The generic query is then converted into specific queries,
with a specific structure for each database, and the
queries are then run seperately on all the databases.

• Given the unified DTD, the answers returned are clus-
tered together in a common structure, in order to use
only a single DTD for browsing means.

Further steps: We intend on focusing on merging the
BerkleyDB into the Unified DTD, and we intend to propose
an easy to use integration plateform, in order to include
any other bibliographical semi-structured database, by in-
crementally clustering its elements with those already clus-
tered.

3.2 XSum: a simple XML visualization tool
We have developed a simple XML visualization tool, called
XSum (from XML Summary Drawer). XSum can be used
in two ways.

First, if given an XML document, with or without a DTD,
XSum extracts a tree-shaped structural summary of the doc-
ument, and draws it. This structural summary contains a
node for each distinct path in the input document [7], and
is the equivalent of a strong DataGuide [6] for XML data
(DataGuides were initially proposed for graph-structured
OEM data). XSum enhances this structural representation
with:

• Node counts: XSum records the number of nodes on
a given path in the XML document, and correspond-
ingly may show this number in the summary node cor-
responding to that path.

• Leaf types: XSum attempts to “guess” the type (String,
integer or real number), of each leaf node, whether
#PCDATA or attribute value, and depicts the corre-
sponding node in a color reflecting its type.

• Edge cardinalities: XSum records the minimum and
maximum number of children of a given tag, that a
node on a given path may have. XSum may depict
these numbers on the edge connecting the two corre-
sponding summary nodes.

A sample summary representation produced by XSum from
a XML-ized article from the INEX IEEE CS corpus is de-
picted in Figure 2. The fragment shown here reflects the
references at the end of an article, including authors, titles,
and publication information for the relevant references.

Second, when given a DTD, XSum draws a simple graph,
representing each attribute or element type from the DTD as
a node, and adding an edge from a node to another whenever
a type may appear inside another in the DTD. Figure 1
shows the drawing extracted by XSum from the DTD of the
Duisburg data source, and a zoomed-in fragment around the
node corresponding to the “article” type in that data source.

From our experience using XSum with the INEX standard
and heterogeneous corpus, we draw some remarks. First,
graph corresponding to DTDs tend to have relatively few
nodes, but large number of edges, which cross each other in
the drawing (Figure 1), which may make the image difficult
to read. In contrast, graphs derived directly from the data
are guaranteed to be tree-shaped, and thus planary (no edge
crossing). Second, both DTD and summary drawings tend
to be large for documents of the complexity we are dealing
with, typically larger than the screen or a normal printer
format. Understanding the image requires “sliding” over it
to see one part at a time. We have introduced in XSum some
options which allow to omit leaf nodes and/or cardinality
annotations, which simplifies the graphs. We welcome the
feedback of INEX participants on how to modify the graph
drawing logic to produce better images.

XSum is implemented in Java, and is based on GraphViz,
a well-known graph drawing library developed at AT&T,

180

freely available under the BSD licence. XSum is freely avail-
able and can be downloaded from [11]. The graphs produced
by XSum, for all DTDs in the het-track corpus, are available
at [9].

4. PEER-TO-PEER SEARCH AND XML IN-
FORMATION RETRIEVAL PLATFORM

In this section, we briefly describe the KadoP peer-to-peer
XML resources management platform, which serves as the
framework for our work. A more detailed presentation can
be found in [3].

The KadoP platform allows constructing and maintaining,
in a decentralized, P2P style, a warehouse of resources. By
resource, we mean: data items, such as XML or text docu-
ments, document fragments, Web services, or collections; se-
mantic items, such as simple hierarchies of concepts; and re-
lationships between the data and semantic items. KadoP’s
functionality of interest to as are:

• publishing XML resources, making them available to
all peers in the P2P network;

• searching for resources meeting certain criteria (based
on content, structure as well as semantics of the data).

KadoP leverages several existing technologies and models.
First, it relies on a state-of-the art Distributed Hash Table
(DHT) implementation [10] to keep the peer network con-
nected. Second, it is based on the ActiveXML (AXML) [8]
platform for managing XML documents and Web services.
A full description of ActiveXML is out of the scope of this
work, see [1]. For our purposes here, AXML is an XML
storage layer, present on each peer.

The KadoP data model comprises the types of resources
that can be published and searched for in our system. We
distinguish two kinds of resources: data items, and semantic
items. Data items correspond to various resource types:

• A page is an XML document. Pages may have associ-
ated DTDs or XML schemas describing their type; we
treat DTDs as sources of semantic items (see further).
Other formats such as PDF can be used; we ignore
them here.

• We consider data with various granularities. Most sig-
nificantly, we model: page fragments, that is, results
of an XML query on a page, and collection, as user-
defined sets of data items. Inside pages, we also con-
sider element labels, attribute names, and words.

• Finally, a web service is a function taking as input
types XML fragments, and returning a typed XML
fragment.

Any data item is uniquely identified by an PID (peer ID)
and a name. The PID provides the unique name (logical
identifier) of the peer that has published the data item, and
where the item resides; names allow distinguishing between
data items within the peer. Data items are connected by

PartOf relationships, in the natural sense: thus, a word is
part of a fragment, a fragment part of a page etc. Further-
more, any type of data items can be part of collections. A
data item residing on one peer may be part of a collection
defined on another peer.

Semantic items consist of concepts, connected by two types
of relationships: IsA, and PartOf. A graph of concepts,
connected via IsA or PartOf links, is called a concept model.
We derive a source concept model from each particular data
source, as described in Section 2.

InstanceOf statements connect data items with concepts. In
particular, all elements from an XML document, of given
type τ (obtained as the result of the XPath query //τ),
are implicitly connected by InstanceOf statements to the
concept derived from the type τ .

The KadoP query language allows retrieving data items,
based on constraints on the data items, and on their re-
lationship with various concepts. Queries are simple tree

* body

article
Q1 Q2

about("XML technology")

*

* instanceOf("body")

instanceOf("article")

about("XML technology")

Figure 3: Sample KadoP queries.

patterns, and return the matches found for a single query
node (in the style of XPath and the CAS INEX topics). For
instance, the query in Figure 3 at left allows retrieving all
“article” elements such that they have a “body” element,
and the body is about XML technology. This corresponds
to the sample CAS topic in Section 1. The dashed box des-
ignates the node for which matches will be returned.

Such a query, however, needs specific names (that is, ele-
ment tags) for its nodes. In the case of the heterogeneous
corpus, such queries are no longer helpful, due to the varied
structures encountered in different documents.

The approach we take for solving INEX heterogeneous CAS
topics is based on the unified conceptual model. The idea is
to drop name conditions from the queries, and instead use
conditions of the form “instanceOf c”, where c is a concept
from the unified model. On our example query, this leads
to the KadoP query at right in Figure 3, where we assume
that “article” and “body” are part of the unified conceptual
model. This query is processed as follows:

1. The elements directly declared as instance of the con-
cepts “article” and “body” are found.

2. We search for concepts ca such that ca IsA “article”,
and concepts cb such that cb IsA “body”. This will
lead to retrieving all the concepts from the source con-
cept models, which have been mapped to the unified
concepts “article” and “body”.

3. We search for elements declared as instances of the
concepts ca and cb obtained as above.

181

These steps lead to matching the structural conditions posed
by the CAS query against the heterogeneous corpus. They
do not, however, apply the “about” condition, since imple-
menting this condition is out of the scope of our work. We
next explain how others’ implementations of the “about”
function could be plugged in our work.

Integrating “about” functions
In the KadoP framework, “about” can be integrated as a
Web service, offered by one or several peers. The imple-
mentation of this function is typically complex. From the
KadoP perspective, all that is needed is that one or several
participants make available a Web service named “about”,
obeying to a well-defined interface. Then, the KadoP query
processor can invoke one of these services to evaluate the
pertinence of an XML fragment for a given set of keywords.
The user may specify which service to use; this is helpful
when we want to compare the results of different implemen-
tations. Or, she may let the system choose an implementa-
tion.

It is worth stressing that the KadoP framework is based on
a concept of openness and extensibility: new data sets, new
concepts, or new semantic statements can be added by any
participant, and refer to any data item on any peer. Finally,
the KadoP framework is by nature distributed: any Web
service (thus, any “about” function) can be invoked on XML
fragments originating from any peer.

5. CONCLUSION AND PERSPECTIVES
6. REFERENCES
[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The

activexml project: an overview. Gemo research report no.
344, 2004.

[2] Serge Abiteboul, Gregory Cobena, Benjamin Nguyen, and
Antonella Poggi. Construction and maintenance of a set of
pages of interest (spin). In Bases de Donnees Avancees,
Evry, 2002.

[3] Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda.
Constructing and querying a peer-to-peer warehouse of
XML resources. In Proceedings of the Semantic Web and
Databases Workshop (in collaboration with VLDB),
Toronto, CA, 2004.

[4] Sophie Cluet, Pierangelo Veltri, and Dan Vodislav. Views
in a large scale XML repository. In VLDB, 2001.

[5] Christine Fellbaum. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[6] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases.
In VLDB, pages 436–445, Athens, Greece, 1997.

[7] I. Manolescu, A. Arion, A. Bonifati, and A. Pugliese. Path
Sequence-Based XML Query Processing. In Bases de
Données Avancées (French database conference),
Montpellier, France, 2004. Informal proceedings only.

[8] The ActiveXML home page. Available at www.axml.net,
2004.

[9] Gemo and PRiSM at the inex heterogeneous track.
Available at www-rocq.inria.fr/gemo/Gemo/Projects/
INEX-HET, 2004.

[10] The FreePastry system. Available at
www.cs.rice.edu/CS/Systems/Pastry/FreePastry/, 2001.

[11] XSum: The XML summary drawer. Available at
www-rocq.inria.fr/gemo/Gemo/Projects/SUMMARY, 2004.

182

EXTIRP 2004: Towards heterogeneity

Miro Lehtonen
Department of Computer Science

P. O. Box 68 (Gustaf Hällströmin katu 2b)
FIN–00014 University of Helsinki

Finland

Miro.Lehtonen@cs.Helsinki.FI

ABSTRACT
The effort around EXTIRP 2004 focused on the heterogene-
ity of XML document collections. Since the subcollections of
the het-track did not offer us a suitable testbed, we success-
fully applied methods independent of any document type to
the INEX test collection. By closing our eyes to the DTD,
we created comparable runs and discovered that the results
improved. Some problematic areas were also identified. One
of them is score combination which enables us to return big-
ger elements as answers given the relevance scores for the
smaller ones.

1. INTRODUCTION
One of our goals for the INEX 2004 project was to adapt our
system to support heterogeneous XML collections without
losing the retrieval accuracy achieved in 2003. Our system
for XML retrieval — EXTIRP — has now been successfully
modified: it is independent of any document type and, based
on tests with the topics of 2003, the accuracy has even im-
proved. However, not all components of EXTIRP adjusted
to the changes equally well. For example, the score combi-
nation algorithm of EXTIRP showed its weakness in a sig-
nificant decline in average precision. Consequently, the best
result sets consisted of disjoint answers at the finest level
of granularity. Another factor having a negative impact on
EXTIRP 2004 was the lack of manpower due to which we
gave up a previous success story: query expansion.

This paper is organised as follows. XML terminology and
related vocabulary have had various interpretations in the
history of INEX. Section 2 clarifies the terminology that is
necessary in order to fully understand the rest of the paper.
In Section 3, EXTIRP is briefly described. The problem of
too big documents is addressed in Section 4, and the chal-
lenge of score combination in Section 5 (unfinished). Our
runs for 2004 topics are described in Section 6 after which
we draw the conclusions in Section 7.

2. COMMON MISCONCEPTIONS
The purpose of this section is to make our paper accessi-
ble to readers who are not familiar with XML terminology.
Because of the confusion with vocabulary, the INEX docu-
ment collection is often misrepresented, see [5, 6]. We will
now explain what the collection looks like to XML-oriented
people in order to have a common terminological basis with
the reader.

Number of XML documents. An XML Document is the
biggest logical unit of XML. It can be stored in several
XML files which are part of the physical structure of
the document. When parsed into DOM1 trees, each
XML document only has one Document Node in the
tree. The DOM trees representing the whole INEX
collection have 125 Document Nodes because the col-
lection consists of 125 XML documents. Each XML
document contains one volume of an IEEE journal.

Number of articles. The concept of a document has changed
because of XML. A document is no longer considered
the atomic unit of retrieval. However, XML should
have no effect on the concept of an article. It is true
that there are 12,107 article elements in the docu-
ment collection, but the number of articles is smaller.
According to the common perception, many article el-
ements do not have article content. Instead, they con-
tain a number of other papers such as errata, lists of
reviewers, term indices, or even images without any
text paragraphs.

Number of tags. The specification for XML2 defines three
different kind of tags: start tags, end tags, and empty
element tags. A DTD does not define any tags, but
it does define element types. In the XML documents,
though, each non-empty element contains two differ-
ent tags. Counting the different tags in the collec-
tion (361) is very different from counting the different
element type definitions in the DTD (192), different
element types inside the article elements (178), or dif-
ferent element types in the whole collection (183).

Number of content models. The content models of the
collection are defined in the DTD. Each element type
definition contains the name of the element followed by
its content model. Altogether 192 content models are
defined in the DTD, but only 65 of those are different.
Of the 65 different content models, only 59 appear in
the articles of the collection. For example, the content
models of element types journal and books are not al-
lowed in article content, and elements such as couple,
line, and stanza are not included in the collection at
all.

DTD-independent methods. One of the goals of the het-
track has been the development of DTD-independent

1http://www.w3.org/DOM/
2http://www.w3.org/TR/REC-xml/

183

methods although methods that are independent of
the DTD are necessary only when no DTD is avail-
able. The problem of documents with several differ-
ent DTDs or schema definitions is far more common.
Methods that are independent of the document type
may read the DTDs or schema definitions and try to
make the most of it. For example, link relations in-
side one document are easily resolved with a DTD by
reading which attributes are of the ID type and which
of the type IDREF or IDREFS. Moreover, indepen-
dence of the DTD does not exclude the dependence on
a schema definition.

3. SYSTEM OVERVIEW
EXTIRP specialises in full-text search of XML documents
and does not support any structural conditions in the queries.
Only full-text is indexed, and only full-text is queried. It is
thus natural to focus on CO-type topics when evaluation
our system.

EXTIRP uses two static indices: an inverted word index
and an inverted phrase index. The key in the word index
is the identifier of a stemmed word and the corresponding
value contains a list of XML fragment identifiers indicating
where in the collection the word occurs. The phrase index
contains similar information about those phrases that are
considered Maximal Frequent Sequences [2].

Before the static indices are built, we divide the document
collection into document fragments which results in a frag-
ment collection. Each fragment represents the smallest atomic
unit of content that can be retrieved. In other words, only
the finest level of granularity is indexed. The fragments are
not leaf nodes in the document tree but whole sub-trees that
contain element and text nodes. How the indexed fragments
are selected is described in Section 4 in more detail.

Upon query processing, two normalised similarity scores are
computed for each fragment: word similarity and phrase
similarity. These two scores are aggregated into a Retrieval
Status Value (RSV), according to which the fragments are
ranked. At this point, the result list contains a ranked list
of relatively small answers for each query. By combining the
scores of these fragments, we can replace them with bigger
fragments in the list. For example, the score of a section is
computed using the scores of each child element, e.g. a para-
graph, inside the section. If the section seems more relevant
than the paragraphs in the light of RSVs, the paragraph-
size fragments are replaced with the particular section-size
fragment and ranked accordingly. By combining the scores
of adjacent fragments, all the scores are propagated upward
in the document hierarchy all the way to the article level.
This process has turned out remarkably challenging with the
fragment collections of 2004.

A more detailed description of the 2003 version of EXTIRP
was presented in [4]. A novelty in EXTIRP 2004 is its inde-
pendence of any document type. The major changes from
2003 are described in Section 4.2.

4. DIVISION INTO FRAGMENTS
In recent research, several different purposes have been pre-
sented for dividing structured documents into fragments.

We will first briefly look into the state of the art and see
whether these algorithms could be applied to XML retrieval.
Then we will describe how EXTIRP selects the fragments
to be indexed.

4.1 Related work
Ramaswamy et al. presented a fragment detection algo-
rithm motivated by performance issues [9]. Web pages were
divided into fragments according to certain criteria, e.g. how
many other fragments share its content, whether it is maxi-
mal or content of another fragment, and how frequently the
content is updated in comparison with other fragments on
the web page. A minimum size was also set on the quali-
fying fragments which were considered cost-effective cache
units. This algorithm is not directly applicable to a static
collection of XML documents because we cannot measure
any lifetime characteristics in an unchanging set of docu-
ments. Moreover, the potential fragments in the INEX test
collection are unique and not shared among other fragments.
Some noteworthy details in their studies include the mini-
mum size of a detected fragment which is used to exclude
the smallest segments of web pages from being detected as
candidate fragments. The values of 30 bytes and 50 bytes
seemed reasonable in their experiments. Note also the unit
of the minimum size: it is not the number of words, terms,
or tokens but simply the bytesize which roughly corresponds
to the number of characters in the element content.

In 1999, Jon Kleinberg introduced the HITS algorithm [8]
that categorises web pages into hubs and authorities. A page
with a good collection of links has a high hub score whereas a
popular page or an authoritative source of information has a
high authority score. However, hubs rarely contain links re-
lated to a single topic. On the contrary, hubs can cover wide
ranges of topics which makes them mixed hubs. Chakrabarti
developed an algorithm that disaggregates web pages consid-
ered mixed hubs into coherent regions by segmenting their
DOM trees [3]. He uses the HITS algorithm for topic dis-
tillation by computing the hub score for each subtree in the
DOM tree instead of computing the hub score for the whole
document. The resulting fragments are pure hubs that are
highly specific answers to appropriate queries. Topic dis-
tillation is a proper but not sufficient criterion for dividing
XML documents into fragments. Applying Chakrabarti’s
hyperlink-based algorithm to any of the INEX test collec-
tions is, however, pointless.

Another need for document segmentation comes from de-
vices that can only display a small amount of information
at a time, either because of a small display size or a low
resolution. Hoi et al. developed a document segmentation
and presentation system (DSPS) that automatically divides
a web page into logical segments [7] based on the display
size, and document structure and content. The segments
have their own branches in a content tree into which HTML
documents are first converted. The HTML tags are classified
into different categories and interpreted accordingly. Apply-
ing this algorithm to arbitrary XML documents requires a
thorough analysis of the document type. The maximum size
of an HTML segment is also rather small. A major differ-
ence from the algorithms of Ramaswamy and Chakrabarti
is that the resulting HTML segments do not cover all of the
original documents: Segments that are very small or very

184

different from the adjacent segments are removed from the
content tree.

4.2 Size-based division
In 2003, the indexed fragments were selected by the name
of the corresponding XML element. After carefully study-
ing the DTD of the collection, we could see which element
types represented section-level fragments (sec, ss1, ss2, etc.)
and which element types were common at the paragraph-
level (p, ip1, etc.). Similar approaches have been common
among other participants. For example, the selection of in-
dex nodes in HyREX system is strictly based on element
names [1]. Approaches relying on element names do not
scale well to fit the needs of heterogeneous document col-
lections. Analysing each DTD is hardly an option as the
number of document types increases. Furthermore, it will
shortly be shown that better results can be achieved with
methods that are independent of the document type.

The EXTIRP algorithm for dividing XML documents into
fragments has two parameters: the maximum and minimum
size of an indexed fragment. The fragments are selecting by
traversing the document tree in preorder. If the current
node is small enough and qualifies as a full-text fragment,
it will added to the fragment collection, the following node
will be tested. The fragments in the fragment collection
are disjoint because all the subtrees of qualifying fragments
are skipped. If the current node does not qualify, its chil-
dren will be tested until they are either small enough or too
small. Consequently, irrelevant fragments, e.g. those that
are unlikely answers to any full-text query, are discarded in
a similar fashion that the DSPS by Hoi et al. removes irrel-
evant segments. The algorithm on the whole is independent
of any document type and also applicable to the INEX test
collection.

We compare the precision of four different runs drawn with
a solid line in Figure 1. Three of the runs were our official
submission in 2003, and the fourth one is based on a frag-
ment collection with the minimum size of a fragment set
to 150 characters and maximum to 8,000 characters in text
nodes. The other curves represent the official submissions
of other participants for the CO topics. Only the first 100
recall answers of each run are considered here. The run that
was based on EXTIRP 2004 methods shows the best perfor-
mance (see the thickest solid line). Our official runs of 2003
have a significantly lower precision at most recall levels. The
curves for the generalised quantisation show similar results.

More evidence for the results can be found in Table 1 where
the Generalised Recall measure is shown for each run. The
online evaluation tool3 was used for computing the GR score.
No score combination method is applied to the disjoint frag-
ments in the run ’Fragments150-8k’, which shows in the 0.0
List-Based Overlap (LBO).

5. SCORE COMBINATION
A method called Upward Propagation with the Upward Prop-
agation Factor (UPF) as a parameter.

A fragments collection was created with the maximum size

3http://inex.lip6.fr/2004/metrics/

UPF strict -o strict -s generalised -o generalised -s
2.0 0.0058 0.0057 0.0081 0.0079
1.0 0.0270 0.0288 0.0277 0.0305
0.7 0.0536 0.0437 0.0500 0.0446
0.6 0.0584 0.0443 0.0451 0.0379
0.5 0.0565 0.0408 0.0395 0.0318
0.4 0.0546 0.0379 0.0351 0.0275
0.2 0.0509 0.0351 0.0294 0.0219
— 0.0954 0.0728 0.0705 0.0562

Table 2: Upward propagation applied to a fragment
collection ”Fragments200-20k”.

set to 20,000 and minimum size to 200 characters. After the
RSV was computed for each fragment, the score combination
method was applied. The results with different values for the
UPF are shown in Table 2. The best average precision was
achieved without score combination.

6. OUR RUNS
The results presented in earlier sections of this paper were
not available at the time of run submission. We have, how-
ever, learned since then and found reasons for the decline
in the precision of the three runs for the CO topics that we
submitted. Three different factors have been identified:

Query expansion Although query expansion turned out
to improve the results in 2003, we did not have enough
resources to repeat the success.

Score combination As seen in Section 5, the results dete-
riorated after the score combination process. Adjust-
ing the parameters did not have a great impact on the
results.

Query processing Only the title of the topic was used for
the runs of 2004. In 2003, also the description of the
topic was used for similarity computation. This change
should not show in the overall results because it con-
cerned all the participants of 2003.

We did not submit any runs for the het-track topics. As
EXTIRP 2004 specialises in full-text search, it also does not
index any data-oriented content. The XML documents con-
sisting of bibliographic data have no such full-text content
that qualifies for the fragment index. It was not found mean-
ingful to submit runs for a CO topic that would be identical
with the corresponding runs for the ad-hoc track.

7. CONCLUSIONS
8. REFERENCES
[1] M. Abolhassani, N. Fuhr, and S. Malik. HyREX at

INEX 2003. In INEX 2003 Workshop Proceedings,
pages 49–56, Dec. 2003.

[2] H. Ahonen-Myka. Finding All Frequent Maximal
Sequences in Text. In Proceedings of the 16th
International Conference on Machine Learning
ICML-99 Workshop on Machine Learning in Text Data
Analysis, Ljubljana, Slovenia, pages 11–17. J. Stefan
Institute, eds. D. Mladenic and M. Grobelnik, 1999.

185

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 25 50 75 100

P
re

ci
si

on

Recall

INEX 2003: quantization strict

Figure 1: Precisiono of all runs at recall levels 1-100.

Run LBO strict -o strict -s generalised -o generalised -s GR
UHel-Run1 39.6 0.0484 0.0358 0.0340 0.0270 9.70
UHel-Run2 28.0 0.1135 0.0866 0.0716 0.0586 11.63
UHel-Run3 10.5 0.1058 0.0787 0.0537 0.0418 8.60

Fragments150-8k 0.0 0.1170 0.0924 0.0831 0.0658 27.68

Table 1: A run with size-based division and no score combination or query expansion compared with the
official runs of University of Helsinki.

186

[3] S. Chakrabarti. Integrating the document object model
with hyperlinks for enhanced topic distillation and
information extraction. In Proceedings of the tenth
international conference on World Wide Web, pages
211–220. ACM Press, 2001.

[4] A. Doucet, L. Aunimo, M. Lehtonen, and R. Petit.
Accurate Retrieval of XML Document Fragments using
EXTIRP. In INEX 2003 Workshop Proceedings, pages
73–80, Schloss Dagstuhl, Germany, 2003.

[5] N. Fuhr, N. Goevert, G. Kazai, and M. Lalmas, editors.
INEX: Evaluation Initiative for XML retrieval - INEX
2002 Workshop Proceedings, DELOS Workshop, Schloss
Dagstuhl, 2003.

[6] N. Fuhr and M. Lalmas. Report on the INEX 2003
Workshop, Schloss Dagstuhl, 15-17 December 2003.
SIGIR FORUM, 38(1):42–47, June 2004.

[7] K. K. Hoi, D. L. Lee, and J. Xu. Document
visualization on small displays. In Proceedings of the
4th International Conference on Mobile Data
Management (MDM 2003), pages 262–278, Berlin,
Germany, 2003. Springer-Verlag.

[8] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632, 1999.

[9] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis.
Automatic detection of fragments in dynamically
generated web pages. In 13th World Wide Web
Conference (WWW - 2004), pages 443–454, May 2004.

187

NLPX at INEX 2004

Alan Woodley

Centre for Information Technology Innovation

Faculty of Information Technology

Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia

ap.woodley@student.qut.edu.au

Dr Shlomo Geva

Centre for Information Technology Innovation

Faculty of Information Technology

Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia

s.geva@qut.edu.au

ABSTRACT
In order to optimally fulfil their information need users of

information retrieval (IR) systems require an interface

that is powerful yet easy-to-use. This problem is

especially applicable IR systems that handle structured

documents such as XML, since users expect the system

to return only the relevant portions of documents. This

paper presents a natural language interface that is user

friendly enough to be can be used intuitively, but

sophisticated enough to be able to handle complex

structured queries. This paper presents a solution to this

paper via a natural language interface. The interface

accepts queries written in a natural language that express

both users content and requirements. It uses a set of

grammar templates to derive the structural and content

requirements of users. The system was developed for

participation in the NLP Track of the INEX 2004

Workshop, its performance results are presented in the

results chapter of this paper.

1. INTRODUCTION
The widespread use of Extensible Markup Language

(XML) documents in digital libraries has led to

development of information retrieval (IR) methods

specifically designed for XML collections. While

traditional IR systems are limited to whole document

retrieval, XML IR systems are able to satisfy both the

content and structural needs of users by retrieving only

highly relevant information. However, in order to

properly satisfy users’ needs, IR systems require an

interface that is powerful enough to thoroughly express

the users information need, but user-friendly enough that

it can be used intuitively.

Historically two types of queries have been supported by

the INEX Workshop: Content Only (CO) and Content

and Structure (CAS), each with their own interface. CO

queries only express users’ content requirements so their

interface consists of a list of keywords. In comparison,

CAS queries express both the structural and content

requirements of users, and therefore require a more

sophisticated interface. To meet this requirement CAS

queries have been formatted using complex query

languages (XPath [2] in 2003, NEXI [11] in 2004).

Unfortunately, in a structured IR system neither interface

optimally addresses users’ needs. Keyword based

systems are too simplistic, since they do not allow users

to expresses their structural requirements. Alternatively

formal query languages are too difficult to use, and

require users to have an intimate knowledge of a

documents structure.

In this paper we present an alternative interface for XML

IR systems, one that allows users to express their need in

natural language. This type of interface is very applicable

to the INEX collection since each topic already contains

a description element that expresses users’ content and

structural needs in natural language. There already exists

an extensive body of research into natural language

processing in the specific area of Information Retrieval,

largely thanks to The Text Retrieval Conference (TREC)

[10] and the Special Interest Group for Information

Retrieval (ACM-SIGIR) [9]. However, work on an

XML-IR interface is still largely un-documented and

many problems remain unsolved. What follows begins by

outlining some of the motivating factors for a natural

language interface for IR systems. We then present our

own NLPX system, which participated in the INEX 2004

NLP Track, including the methodology used to process

Natural Language Queries (NLQs), how we tested the

system and finally our results from the INEX 2004

Workshop. We conclude with a short discussion on

where our system is headed and how the number of

participants in the NLP track can increase.

2. MOTIVATION
This section outlines several motivating factors behind

the development of a natural language interface for

XML-IR systems. These factors are specific to the

domain of structured IR, and are therefore closely related

to the CAS than CO task. There are also motivating

factors that closely related to the CO task, however these

have already been covered in The Text Retrieval

Conference (TREC) [10] and the Special Interest Group

for Information Retrieval (ACM-SIGIR) [9] publications.

The main motivation for an XML IR natural language

interface is that formal query languages are too difficult

for users to accurately express their information need. A

very good example of this occurred at the INEX 2003

Workshop: more than two-thirds of the proposed queries

had major semantic or syntactic errors [5]. Furthermore

the erroneous queries were difficult to fix, requiring 12

rounds of corrections. Therefore, if experts in the field of

188

structured information retrieval are unable to correctly

use complex query languages, one cannot expect an

inexperienced user to do so. However, we feel that users

should be able to intuitively express their information

need in a natural language.

The second motivation is that users require an intimate

knowledge of a document’s structure in order to properly

express their structural requirements. For instance, if

users wish to request elements at the section or paragraph

level from the INEX collection, they need to know that

those elements correspond to the sec and p tag

respectively. And, while this information may be

obtained from a document’s DTD or Schema there are

situations where the proprietor of the collection does not

wish users to have access to the document’s DTD or

Schema. However, in a natural language interface the

underlying document structure can be completely hidden

from users, who only require a conceptual document

model when formulating queries. So instead of requesting

sec and p tags, users will be able to request sections or

paragraphs.

The final motivation is that formal queries do not scale

well across multiply or heterogenous collections, even if

the collection falls within a single domain. For example,

most journal articles conceptually follow the same

format, that is, they start with elements such as titles and

authors, have a body with sections and paragraphs, and

finish with a list of references. So, while these collections

are conceptually the same, it is unlikely that they will

have the same DTD or Schema. For instance one

collection may use the tag p to denote paragraphs while

another collection may use the tag para. A similar

situation exists in a heterogenous system where multiple

DTDs or Schemas are used in the same collection.

However, this problem will be resolved via natural

language since as noted in the previous motivation, users

will express their information needs conceptually.

3. NLPX SYSTEM

Figure 1 A CO Topic

Figure 2 A CO Topic

Figures 1 and 2 are examples of CO and CAS topics.

Both the description and title elements express the users’

information need. The description expresses users’ need

in a natural language (e.g. English). The title expresses

users’ information need in either a list of

keywords/phrases (CO) or as a formal XPath-like

language (CAS) called Narrowed Extended XPath I

(NEXI) [11].

We developed our natural language interface to accept

the description element from an INEX topic. This was the

obvious choice, since the description element expresses

users’ content and structural requirements in natural

language, and is meant to be a faithful 1:1 translation of

the title element. We had already developed a system for

participation in the Ad-hoc track. Therefore, instead of

developing a completely new system for participation in

the NLP track, we developed a natural language query to

NEXI translator. We did this for three main reasons:

• First, by developing a NLQ-to-NEXI translator we

were able to use our existing retrieval engine as

the backend to system.

• Secondly, since the description element is a 1:!

Translation of the title element, then NLP systems

will be able use the existing set of Ad-hoc topics

and assessments for testing. Furthermore, future

NLP tracks will be able to use the same topics and

assessments in future Ad-hoc tracks, resulting in

very little extra work for future INEX organisers.

• Finally, we can output the translated queries and

compare them with the original NEXI queries to

evaluate the successes of the translator.

The syntax of NEXI is similar to XPath, however, it only

uses XPath’s descendant axis step, and extends XPath by

incorporating an ‘about’ clause to provide an IR-like

query. NEXI’s syntax is //A[about(//B,C)] where A is

the context path, B is the relative path and C is the

content requirement. Conceptually each ‘about’ clause in

a NEXI query represents an individual information

request. So conceptually the query

//A[about(//B,C)]//X[about(//Y,Z)] contains two

requests: //A[about(//B,C)] and //A//X[about(//Y,Z)].

However, in NEXI only elements matching the leaf (i.e.

rightmost) ‘about’ clause, here the second request, are

<inex_topic topic_id="XX" query_type="CO">

<title>

 "multi layer perceptron" "radial basis

functions" comparison

</title>

<description>

 The relationship and comparisons between

radial basis functions and multi layer

perceptrons

</description>

</inex_topic>

<inex_topic topic_id="XX"

query_type="CAS">

<title>

 //article[about(.,information

retrieval)]//sec[about(.,compression)]

</title>

<description>

 Find sections about compression in

articles about information retrieval.

</description>

</inex_topic>

189

returned to the user. We refer to these requests and

elements as ‘return requests’ and ‘return elements’.

Elements that match the other ‘about’ clauses, here the

first request, are used to support the return elements in

ranking. We refer to these requests and elements as

‘support requests’ and ‘support elements’.

The following subsections describe how a natural

language query is first translated to NEXI format and

then how a NEXI query is handled by the backend

system.

3.1 Natural Language Queries to NEXI

Translator
Suppose that the following natural language queries

(NLQ) are submitted to the system.

Figure 3 CO and CAS Natural Language Query

3.1.1 Lexical and Semantic Tagging
Suppose that the contents of Figure 3 are input into the

system as natural language queries (NLQ). Translating

the NLQs into NEXI format takes several steps. First

each word is tagged as either as a special connotation or

by its part of speech. Special connotations are words of

implied semantic significance within the system. Our

system uses three types of special connotations: structural

words that indicate the structural requirement of the user

(e.g. article, section, paragraph, etc.), boundary words

that separate the user’s structural and content

requirements (e.g. about, containing) and instruction

words that indicate if we have a return or support request.

All other words are tagged by their part of speech. In

theory, any part of speech tagger could perform this task;

however, our system uses the Brill Tagger [1]. The Brill

Tagger is a trainable rule-based tagger that has a success

rate comparable to state of the art stochastic taggers

(>95%). The Brill Tagger defines tags as specified by the

Penn Treebank [7]. Figure 4 presents an example of the

NLQ after tagging.

Figure 4 Tagged CO and CAS Natural Language Query

3.1.2 Template Matching
The second task of the translator is to derive information

requests from the tagged NLQ. This is performed by

matching the tagged NLQ to a predefined set of grammar

templates. The grammar templates were developed by

inspection of previous years’ INEX queries. Initially it

may seem that a large number of templates would be

required to fully capture the semantics of natural

language. However, as natural language queries are

written in the same context, comprehending them can be

viewed as a subset of classical natural language

understanding. Therefore, a system that interprets natural

language queries requires fewer rules than a system that

attempts to understand natural language in its entirety.

This theory was verified by the inspection of previous

INEX queries and recognising that the format of most

queries corresponded to a small set of patterns. By

extracting these patterns we were able to formulate a

small set of grammar templates that match the majority

of queries. Figure 5 shows an example of some of the

grammar templates.

Figure 5 Grammar Templates

Conceptually each grammar template corresponds to an

individual information request. Once the semantically

tagged text was matched to grammar template, we

derived information requests from the query. Each

information request contains three separate attributes.

Content: A list of terms or phrases that express the

content requirements of the user. This is derived from the

noun phrases from the matched grammar template.

Structure: A logical XPath expression that describes the

structural constraints of the request. This value is derived

via a function that maps structural words (e.g. section) to

the XML tags (e.g. /article/sec) as specified in the

document’s DTD. Instruction: “R” if we have a return

request or “S” if we have a support request. Figure 6

shows an example of the information requests derived

from the templates.

3.1.3 Produce NEXI Queries
The final step in the translator is to merge the information

request into a single NEXI query. Return requests are

output in the form A[about(.,C)] where A is the request

structural attribute and C is the request content attribute.

Support requests are then added to the output in two

stages; however, first the system must locate the correct

position within the output to place the support request.

For example if the internal representation is

X/Y/Z[about(,.C)] and the support request has a

structural attribute of X/Y/A, then the structural request

should be placed in position Y. Using a string matching

function, a comparison is made between the internal

Query: Request+

Request : CO_Request | CAS_Request

CO_Request: NounPhrase+

CAS_Request: SupportRequest | ReturnRequest

SupportRequest: Structure [Bound] NounPhrase+

ReturnRequest: Instruction Structure [Bound]

NLQ 1: The relationship and comparisons

between radial basis functions and multi layer

perceptions

NLQ 2: Find sections about compression in

NLQ 1: The/DT relationship/NN and/CC

comparisons/NNS between/IN radial/JJ basis/NN

functions/NNS and/CC multi/NNS layer/NN

perceptions/NN

NLQ 2: Find/XIN sections/XST about/XBD

compression/NN in/IN articles/XST about/XBD

information/NN retrieval/NN

190

Figure 6 A Derived Information Requests

representation and the support request structural attribute,

to determine the correct position of the support request.

Then the request is added to the internal representation in

the form A[about(B,C)] where A is the longest matching

string, B is the remainder of the support request structural

attribute and C is the support requests content attribute.

Figure 7 is how the NEXI queries would appear after the

information requests for each NLQ have been merged.

Figure 7 NLQ-to-NEXI Queries

3.2 GP-XOR Backend

3.2.1 NEXI Interface
Once NEXI queries are input into the system they are

converted into an intermediate language called the RS

query language. The RS query language converts NEXI

queries to a set of information requests. The format of RS

queries is

Request: Instruction ‘|’ Retrieve_Filter ‘|’ Search_Filter

‘|’ Content.

The Instruction and Content attributes are the same as

they were in the previous section; however, the Structural

attribute has been divided into a Retrieve and Search

Filter. While both are logical XPath expressions the

Retrieve Filter describes which elements should be

retrieved by the system, while, the Search Filter

describes which elements should be searched by the

system. Figure 8 presents an example of the queries

introduced earlier converted to RS queries. For the NEXI

query, //A[about(//B,C)] the retrieve filter is its context

path //A while its search filter is its relative path, is //A//B.

Figure 8 Example of an RS Query

3.2.2 System Structure and Ranking Scheme
We index the XML collection using an inverted list.

Given a query term we can derive the filename, physical

XPath and the ordinal position within the XPath that it

occurred in. From there we construct a partial XML tree

containing every relevant leaf element for each document

that contains a query term. Further information on our

structure can be found in [4].

Elements are ranked according to their relevance. Data in

an XML tree is mostly stored in leaf elements. So first we

calculate the score of relevant leaf elements, then, we

propagate their scores to their ancestor branch elements.

The relevance score of leaf elements is computed from

term frequencies within the leaf elements normalised by

their global collection frequency. The scoring scheme

rewards elements with more query terms. However, it

penalises elements with frequently occurring query

terms, and rewards elements that contain more distinct

query terms.

The relevance score of a non-leaf is the sum of the

children scores. However, leaf element scores are

moderated by a slight decay factor as they propagate up

the tree. Branch elements with multiple relevant children

are likely to be ranked higher then their descendents – as

they are more comprehensive – while branch elements

with a single relevant child will be ranked lower than the

child element as they are less specific.

4.0 TESTING

4.1 Testing Methodology
Our experiments were conducted using the INEX 2003

set of topics and evaluation metrics. The results from

2003 INEX queries were submitted into the official

INEX evaluation program that calculated the

recall/precision graphs. As the results comprised of XML

elements, the precision value was calculated over two

dimensions: exhaustiveness, which measures the extent

to which a component discusses the information request;

and specificity, which measures the extent to which a

component is focused on information request.

We aimed to execute two runs for both the CO and CAS

topic sets. The first run was to accept NEXI queries, that

is topic’s title tag, as input while the second run was to

accept natural language queries, that is topic’s description

tag, as input. These runs corresponded with INEX’s Ad-

hoc and NLP tracks, and allowed us to compare how well

our system performed with and without our NLP-to-

RS Query 1:

 R|//*|//*| relationship, comparisons, radial basis

functions, multi layer perceptions

RS Query 2:

R|//article//sec|//article//sec|compression

S|//article|//article| information retrieval

NLQ 1:

Structure: /*

Content: relationship, comparisons, radial basis

functions, multi layer perceptions

Instruction: R

NLQ 2:

 Request 1

Structural: /article/sec

Content: compression

Instruction: R

 Request 2

Structural: /articlec

Content: information retrieval

NLQ 1:

//*[about(.,relationship, comparisons, radial

basis functions, multi layer perceptions)]

NLQ 2:

//article[about(.,information

retrieval)]//sec[about(.,compression)]

191

NEXI frontend. It was hoped that the results of these two

runs would be fairly similar, however, we identified one

major obstacle that hindered our progress.

4.1 Testing Obstacles
INEX guidelines specifically state that the description tag

should be a as close as possible to a 1:1 natural language

translation of the title. However, during the execution of

this run, it became clear that many of the descriptions are

not faithful 1:1 title translations. Therefore it would be

impossible for a system with a NEXI interface to produce

similar results as a system with a NLQ, even if they used

the same backend. From our observations we have

identified three major discrepancies between the title and

description tags: inconsistent content requirements,

inconsistent structural requirements, and vague structural

requirements.

4.1.1 Inconsistent Content Requirements
The first discrepancy is when the title and description

contain different content requirements. An example of

this occurs in topic 93, where the title mentions the term

‘institute’ while the description does not.

Figure 9 Topic 93

Naturally, participants in the NLP track would be greatly

concerned when the title contains more information than

the description. However, Ad-hoc participants should

also be concerned about this discrepancy, since as topic

104 shows, sometimes the description can contain more

content information than the title.

Figure 10 Topic 104

4.1.2 Inconsistent Structural Requirements
A second discrepancy is when the title and description

contain different structural requirements. For example in

topic 76 the title element specifically requests the

retrieval of section elements, however no mention of this

is made in the description element.

Figure 11 Topic 76

Likewise the title element of topic 81 specially requests

its content requirements occur at the paragraph level, but

no mention of this is made in the description. Nor is any

mention made in the title to bibliographic references, as it

is in the description element.

Figure 12 Topic 81

4.1.3 Vague Structural Requirements
The final discrepancy is when the description element

contains information that is too vague for an NLP system

to understand. A perfect example occurred in topic 89

where the description asks for articles “from recent

years”. We can not expect an NLP system to understand

such vague concepts as “recent years”, and the

description should be rewritten to quantify the year of

publication. Likewise in topic 85 the description tag asks

for articles “with many figures”, but at least they also

quantify the number of figures as “at least 10”.

Figure 13 Topic 89

<title>

//article[about(./bdy,'clustering

"vector quantization" +fuzzy

+k-means +c-means -SOFM -

SOM')]//bm//bb[about(.,'"vector

quantization" +fuzzy clustering +k-

means +c-means') AND

about(./pdt,'1999') AND ./au/snm !=

'kohonen']

</title>

<description>

find articles about vector

quantization or clustering and return

bibliography details of cited

publications about clustering and

vector quantization methods, from

recent years, not authored by Kohonen.

</description>

<title>

//article[about(.//p,'"multi

concurrency control"') AND

about(.//p, 'algorithm') AND

about(./fm//atl, 'databases')]

</title>

<description>

We are interested in articles that can

provide information or reference to

information on algorithms for

multiversion concurrency control in

databases.

</description>

<title>

//article[(./fm//yr = '2000' OR

./fm//yr = '1999') AND about(.,

'"intelligent transportation

system"')] //sec[about(.,'automation

+vehicle')]

</title>

<description>

Automated vehicle applications in

articles from 1999 or 2000 about

intelligent transportation systems.

</description>

<title>

 Toy Story

</title>

<description>

Find information on the making of the

animated movie Toy Story, discussing

the used techniques, software, or

hardware platforms.
</description>

<title>

 "Charles Babbage" -institute -inst.

</title>

<description>

 The life and work of Charles Babbage.
</description>

192

Figure 14 Topic 85

To overcome these obstacles we modified the description

elements so that they were a faithful 1:1 translation of the

title elements. It must be stressed that in this modification

to descriptions we were very careful not to generate

descriptions that favour the natural language processing

that we implemented. Modifications mostly ensured that

the same keywords and structural tag names that

appeared in the NEXI formulation also appeared in the

natural language description.

4.3 Testing Results
Three runs were submitted for both the CO and CAS

topics sets: one with NEXI queries, with the original

NLQ description elements, and one with the altered NLQ

description elements. The plots for these three runs are

displayed in Figure 15-18. A fourth plot is the

recall/precision line of the University of Amsterdam’s

systems that achieved the best results at INEX 2003 in

the CO and SCAS tracks [8]. This allowed us to compare

the quality of our system with the best official INEX

alternative. Two metrics were used to formulate the

recall-precision values, the strict metric that evaluates

highly relevant and highly precise results, and the

generalized metric that evaluates results based on a

graded measure (or degree) of relevancy and/or precision.

Further details on the metrics are available in [3] .

The plots for each task and quantization are listed in

figures 15-18. The solid line is the Amsterdam

submission, the dotted line is the Ad-hoc submission, the

dashed line is the NLP submission and the dash-dotted

line is the altered-NLP submission.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2003 SCAS Strict Queries

Figure 15 The INEX 2003 SCAS Strict R/P Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2003 SCAS Generalized Queries

Figure 16 The INEX 2003 SCAS Generalized R/P Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2003 CO Strict Queries

Figure 17 The INEX 2003 CO Strict R/P Curve

<title>

//article[./fm//yr >= 1998 and

.//fig//no > 9]//sec[about(.//p,'VR

"virtual reality" "virtual

environment" cyberspace "augmented

reality"')]

</title>

<description>

Find sections about Virtual Reality.

Retrieve sections only from articles

that were published in or after the

year 1998 and have many figures (at

least 10).

</description>

193

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2003 CO Generalized Queries

Figure 18 The INEX 2003 CO Generalized R/P Curve

5.0 RESULTS
The system was entered into both the Ad-hoc and NLP

tracks at INEX2004. In the Ad-hoc track the system

ranked 1
st
 from 52 submitted runs in the VCAS task, and

6
th

 from 70 submitted runs in the CO task. In the NLP

track the system was ranked 1
st
 in the VCAS task and 2

nd

in the CO task. While the NLP track was limited to 9

participants initially, of which only 4 made official

submissions, the most encouraging outcome was that the

NLP system outperformed several Ad-Hoc systems. In

fact, if the NLP submission was entered in the Ad-hoc

track it would have ranked 12
th

 from 52 in VCAS and

13
th

from 70 in CO. This seems to suggest that in

structured IR, natural language queries have the potential

to be a viable alternative, albeit not as precise as a formal

query language such as NEXI.

The Recall/Precision Curves for the Ad-hoc track, along

with the R/P curve for our NLP runs are presented in

Figures 19 and 20. The top bold curve is the Ad-hoc

curve, the lower is the NLP curve, and the background

curves are of all the official Ad-hoc runs at INEX 2004.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2004 VCAS Queries

Figure 19 The INEX 2004 VCAS R/P Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2004 CO Queries

Figure 20 The 2004 INEX CO R/P Curve.

6.0 FUTURE OUTLOOK
The most promising aspect of our participation in this

year’s NLP track was that our system was able to

outperform the majority of Ad-hoc systems, thereby

verifying that natural language queries have the potential

to be a viable alternative to complex formal queries

languages such as NEXI. However, there is still progress

to be made, and we shall strive to improve the

performance of our NLP system.

However, the most disappointing aspect of this years

track was the lack of submissions. INEX should

encourage more participation in the NLP track in order to

broaden the knowledge in the domain of natural language

interfaces to XML IR and to strengthen INEX as a whole.

Future participants will most likely come from two areas.

The first will be existing INEX participants in the Ad-hoc

and other tracks who will develop a natural language

interface to their existing system, similar to the approach

we took. The second will be from participants in

workshops such as TREC [10] and SIGIR [9], which are

traditionally strong in the domain of natural language IR

systems. Both types of competitors are likely to bring

194

different perspectives on the problem and their

participation should be welcomed.

We also feel that the INEX organiser should strive to

ensure that the title and description elements are faithful

1:1 translations, both in terms of structural and content

requirements.

7.0 CONCLUSION
This paper presents a natural language interface to XML-

IR system. The interface uses template matching to

derive users’ content and structural requests from natural

language query. The interface then translates the NLQ to

a formal query language, allowing the request to be

processed by many existing systems. Our backend

system responds to user queries with relevant and

appropriately sized results in a timely manner and our

ranking scheme is comparable with the INEX best

alternatives. While the NLP interface requires further

development, however, initial results are promising.

BIBLIOGRAPHY
[1] E. Brill. A Simple Rule-Based Part of Speech

Tagger. In Proceedings of the Third Conference

on Applied Computational Linguistics (ACL),

Trento, Italy. 1992.
[2] Clark, J. and DeRose, S., “XML Path Language

XPath version 1.0.”, Technical report, W3C, 1999.

W3C Recommendation available at

http://www.w3.org/TR/xpath.

[3] N. Fuhr and S. Malik. Overview of the Initiative

for the Evaluation of XML Retrieval (INEX)

2003. In INEX 2003 Workshop Proceedings,

Schloss Dagstuhl, Germany, December 15-17,

2003, pages 1-11. 2004.

[4] S. Geva and M. Spork. XPath Inverted File for

Information Retrieval, In INEX 2003 Workshop

Proceedings, Schloss Dagstuhl, Germany,

December 15-17,2003, pages 110-117. 2004.
[5] R. O’Keefe and A. Trotman, “The Simplest Query

Language That Could Possibly Work”, In INEX

2003 Workshop Proceedings, Schloss Dagstuhl,

Germany, December 15-17,2003, pages 167-174, [6] C. D. Manning. and D. Schutze “Foundations of

Statistical Natural Language Processing”, MIT

Press, Cambridge, 1999.

[7] M. Marcus, B. Santorini. and M. Marcinkiewicz,

Building a large annotated corpus of English: The

Penn Treebank, In. Computational Linguistics,

1993.

[8] B. Sigurbjornsson, J. Kamps, M. de Rijke, An

Element-based Approach to XML Retrieval, In

INEX 2003 Workshop Proceedings, Schloss

Dagstuhl, Germany, December 15-17, 2003, pages

19-26, 2004.
[9] Special Interest Group on Information Retrieval

(SIGIR) Homepage, http://www.acm.org/sigir/.

[10] Text REtreival Conference (TREC) Homepage,

http://trec.nist.gov/.

 [11] A. Trotman and B. Sigurbjörnsson, Narrowed

Extended XPath I (NEXI),

http://www.cs.otago.ac.nz/postgrads/andrew/2004-

4.pdf, 2004.

[12] R. J. Van Rijsbergen, R. J., Information Retrieval,

Butterworths, Second Edition, 1979.

195

Analysing Natural Language Queries at INEX 2004

Xavier Tannier
École Nationale Supérieure

des Mines
158 Cours Fauriel

F-42023 Saint-Etienne, France
tannier@emse.fr

Jean-Jacques Girardot
École Nationale Supérieure

des Mines
158 Cours Fauriel

F-42023 Saint-Etienne, France
girardot@emse.fr

Mihaela Mathieu
École Nationale Supérieure

des Mines
158 Cours Fauriel

F-42023 Saint-Etienne, France
mathieu@emse.fr

ABSTRACT���������
	��
����������	��������������������������
	
�� "!��
�����#��$%�����'&)(*�������,+-�.�������"�����
/ !��10�	
����!�	���2����435�����6�42�� / ��������798:�����������<;>="	
�������.?A@B���#�����C����D
+-�.��!�	
���FEG����H�!���H��JI4	��K�����
������H<���F���������L�M	
���
NO��$��
���-�
�"��	
2QP)�"� 7
�����.����R��S$T��	U8'R
����!��
�
�����V��$-WJ35EYX����
	
����R����#;>P)+-84W[Z�\�\
]K?�^_P`�
2�������!��
�����������a�"�������a��$�+-EMIb���cWa3dEe	�����	
����R����L���"2c��	������������B�
f ��������2Q�
�U������� g����#�"�.��!�	
����������H�!"�
H��#hK!���	
������^

1. INTRODUCTIONP9$L�����-��WC�
����2���2U35�
	�N�!��cEG����H�!��
H��i;TWJ35E�?' F����� f ���'jO���*��k%7�F���l�
��2_jb�m!�����R���	
�
������gn�����������
��2o���
���"2��
	
2n$T��	c��k��l������H��d��$
����$T��	 f �.�����%�Lp�hK!���	�g�����HU���������i�)�
	
!��l��!�	���252�����! f �6�����J���5���
�
!�7	
���"������H%!��
H���	
�.������	4�������U���U�q�)�
	
!��l�
!�	���2UhK!���	�gO������H�!��
H��BDC�����
���K���c��!�	
�S�����
�U�i���������������9g�^
�����#��� f ��$G�����#����DrP)+-84Ws+-EMI'Wt�M	
���
Nu;v+-�.��!�	
����EG����H�!���H��
I4	��K�����
������Hw$T��	UWJ3dExP)��$T��	 f �.�
�����bX����
	
����R����T?<���i�
�w��	�� f �
�
�&������
��	
���l�
�����u� f �%��Hc	��������
	
������	
�a���d�����iy�����25��$�+-�.��!�	
���:EM���K7H�!"�
H��UI4	��K�����
������Hm;>+-EMI,?J����2eWJ3dEbP)��$T��	 f �.�������wX����
	
����R
��� @�^z !�	<�1�
	����������"�.�������{�
�d�������|��	
���
N{�������|D-� �������{�
�"���i�������F��}U�����
�"!�	��1�%���|�����
�Q��2"2S��!�	-�������
	
�� 1!K�������S���U�����qH�������	
����	���~"���l�
�����
�
 F��!��B�
���#�����"�������.�����%���B��$�+JEGI f ���
���K2"���
�OWJ35Ee	�����	
����R����>^z !�	��� ��)���l��� R%�w�.�dP)+-84W�Z�\�\
]b������������	
� gr���
�m;Tg�����?U�����{2���7
f ��������	
�
�
�����m��$�������	����
	
����R����,���F���l�
��R����������<��$-�u�)g��)�
� f p* "!K������c� f �"��� f �6�����.�����%�w��$������6��������hK!��Q$T��	i��������g�������H5�d���
�
!�	
���������H�!"�
H��#hK!���	�g�^
�������a�
	����������i�������
��2���	
�-�
���< F������y��
�C�����
�#�����d F�<H���������2d$T	�� f!��
����Hr��� f �V�"�.��!�	
���<������H�!��
H��{�"	��K�������
����H f ���
����2��d���s�����
������2Lp�����25�����U���F������y"��� �������a��$B�)�
	
!��l�
!�	���2e2�����! f �������a���5������
������	#�"����2�pG���u��	
2���	J�
�S	����
	
����R��U����$>��	 f �.�
�����u$T	�� f ���uWJ3dE
����	��"!"��^<P`�q���������"	������������a����2u2"������!"�������a��!�	 f ��������2d�����.�#	���7�������|���w�
���c�)�
	
!��l��!�	��c��$B�
���c2�����! f �����|�
��&�!���2���	
�)������2K@O�������� f �����������B��$M�����#	���hK!����)��^

2. HOW CAN NLP HELP?�����q�
�"�"�������.�����%������$:+-�
�
!�	
���GEG����H�!��
H��#I4	���������������HU$T��	CP)��$T��	�7
f �.�������uX����
	
����R����:����R��< F�����5��k%�
���"��� R%��� g5�)��!�2"����2u���d�����O���������$��
��kK��!����#;T~1�.�l?|�����������l�����%���S;>$T��	O��R���	�R�����D-�|���m�
�"���O��!� ��)���l��p
�����<� ��p%]"pF��\�pL�
p��6�v?
^4EG����H�!"���)�����C��������g������4��$F�����J�l��	��"!��*����21�6��	
�����UhK!���	�gu�
����!���2w����	�	�gu��!K�|��� f �Q2���������� R%�U� f �"	���R�� f �������#��������w	�����	
����R����a��	�����������^�+C��R���	��
���������
��pa������gr�_$T��D�������H%!������
���
f ��������2���p������"��	
���
���"����	 f ��kK�
	
���l�
�����Q��	B��� f �-N�����2�����$Mh%!���	�g��k��"���"�����%�Lp"�
	��q���6Dx�l� fOf �%��� gS!�����2S���S����$T��	 f �.�����%��	�����	
����R�����)g��)�
� f ��^|�,�a�"	�����������pG���l�
!"����	�����!"� ���a�
	��O���
�Jg%���#!��5�
�QD-���
�D,�q����!���2c��k��F���l�|������p1�6�`^
�C�6D,��R���	'D,����������N|�����
�4�����-���"	�����2O��$��)�
	
!��l�
!�	���2U����	��F��	
�q�����
 �	
����H{����D������F���i���m+-EMI��
!����F��	��
��	
��pB�.�c���6���)�Q$T��	U�
���S�9D,�

$T�������6D-����HO	�������������}

• �����J 1�6����y����
�"�.�B�����Q F�-H���������2Q$T	�� f �������6D-����H<	���hK!����)���
���5�"�.��!�	
����������H%!��
H��i���J��	��� "�� "� g f !"���5����H�����	a���dWJ35E	����
	
����R
���J�������Y���r�
	
��2"� �����%�����#P)X#^CP)�r�
���{�����)�u��������pq�
hK!���	�g{���|H�������	
������gw�dN���g%D,��	
2{�����)�|D-�������m���<hK!����
�Q�����)g
�
��D�	
���
��^SP)�wWJ35En	�����	
����R����*��!��l�{���������<���|���
�|�6����!�H%�
�
� f �
N��ehK!���	
���6�Q�%�n F�
�������������6��������2��)�
	
!��l��!�	����q$T��	�������'	�����������p���2KR����"�l�62<����	
!"����!�	���2OhK!���	�gi������H�!��
H����:�"��R��
 F�����S2���R�������2L^
�,!��4�����,DB�������:Wa3dE��
�a F�B	�������� g|D-��2��6� gi!�����2Lp%����2|�����
�
� f �"�������������.�C���6R������a����2c�����
!����L!"����	
�B������!���2Q F�#�
 "���-�
�
f �
N��Q	���hK!����)���q���{����guWa3dEo����	��"!"��^SP)�e�������q�F��	
���F���l7��� R%��p,�9D,� f �.�)��	c2����O��!"� �������Q�
	
������pB F������!"���SD,�5�������������k��F���l�C��!"���S!�����	
�,����}
� �����
	
�Q�q��� f �"����kU�)�
	
!��l��!�	���2Q����2U$T��	 f ���1hK!���	�gU������7H�!��
H������
� ����R%�J�|$>!����1N����6D-����2�H��-��$��
���J�a�B�x����2c� ���,��� f ����7�
������^

+C�����<�����
�J���������O���
��!����#����	�����2Kgd��k����)�q���5�����O2�� f �����5��$2"�.�
�� "�����6�LDC���
�a����� / ��	
!"����!�	��62|�J!���	�g#EM����H�!"�
H��-; / �-E:?��
 1!K��!�������N��e2��
�
�� "��������p������eWJ3dE�$T��	 f �.�����K��N����������
� F����� f �S!����62{ %g{�
����H�������	
���,�"!� 1�����.p������
�� "� g{�
��	���!�H�������dP)������	
������^r�����.�c���iD-��g�pB����������!�H%�b!���� f "��H�!���!"��� g
f ���l��������7A	�����2��
 "����p#����	
!"����!�	��62Y���"2r$T��	 f ���qhK!���	�gY������7H�!"�
H����-�
	��<�����������
�
	�g{;v������	
2���	C���c������!�������gS��kK�
	
���l�C�����
���"�)D,��	
��?�pM�
���U�����62u$T��	|��� f �1����	|�����
��	�$>�������aDC�����4 F���l� f �
f ��	��q����2 f ��	��q� f �F��	��������C���c�����#$>!��
!�	���^

• P)�i��	
2���	:���#�F��	�$T��	 f �J	���������g<���F���l�
��R������.��!�	
����������H�!"�
H���7
 1������2n	����
	
����R����-���o�{~"�
��2�����! f ������pC�m�)g��)�
� f ������!"��2
&�!���2���	
�)������2K@u�����{��� f ��������������$<�
���e�
��k%��pq���"2���������������
�C$T�������� 1���#g�����^,P)�������|�������|��$'�)�
	
!��l�
!�	���2�2�����! f ��������p�QD,������7A�
����!�H����a����25��� f ����������������g5�)�
	�����HS�)�
	
!��l�
!�	���p� F��7����!"���*����$T��	 f ������g f �
	�N��G!��#����� f ����������H���$K�����4����kK��p
�����
f �
N��<����������	J�
���ih%!���	�gc&�!��"2���	
�)������2"����H.@
p��.�#���������-D-������������JhK!���	�g�	���$T��	
�i;T�1�
	���� g1?,�
�U�����i�)�
	
!��l�
!�	��S;������|�J�,� /
������N�����P)+J8'W#?�^
�C�6D,��R���	�p���������	��6h%!"��	������U����	��
������� f ��!����C��$:NK����D-���62�H���
 F��!��*�����J�l��	��"!���p������
�,�����'�
�| F�J�����
��H�	
�.�
��2U�������<�|�)g��)7
�
� f 1���
��2����������,2�����! f �����
�G����� f ������R�����p����q��	
2���	G�
�-�F��	�7$T��	 f �<H��K�K2c	����
	
����R����F��	�����������^:�w�a2�������!��
���
�"���B�
!� ��)���l�
���S�����l����������^]�^

��P)�e�
�"���#�1�
�F��	aD,�Q��������&����
 l¡O¢
£�¤�¥"¦l l§d£�¢
¨K©
¥"¢�©%¦l@U��������H�!���H��
D-� ���S$T��	 f ������ª���2S��� f �����
����������2�H�	
� fOf ��	�p"���������F������2c�
�U���
7��!�	
���G������H�!��
H���^

196

3. DESCRIPTION OF OUR APPROACHz !�	a��� f ���-�
�cH�������	
�.�
�i�chK!���	�g5���u�Q$T��	 f ���:����	
!"����!�	��625�����K7H�!"�
H��q$T	�� f �
���i«
¬K­K®�¯6°�±�²K³�±
´6µ"¶O�"�
	��J��$:P�+-8'W������1������p1D-�����l�
���qD�	
�����
���m���m���
�
!�	
����8*��H���������^u�����Q�
���"�����<�
	���2���R���2���2m�����
�
�9D,�U���.�
��H���	
������}

• · �
¨"¸)¦l¨"¸v¹�¢
¨Fº
¹`»1¸v l¥"¼�¸v¥�
¦�hK!���	
������p'DC�"�����V�������������"�<�)�
	
!��l7��!�	
���G�l�%���)�
	
����������^
½�¾ ¿.¾�À�Á�Â�Ã�Ä-Å%Æ�Ç)Æ�È�Ç)Æ�Å%É�Ê,Ë�Ì�Í%È6Î�Ç9Ï�ÐvÑlÆ�Å�Ò�Ó Ô.Õ�Ê,Ö�Ë�ÃK×vØ�Â�Ã%Â�Ã�¿B×�Ù�½*Ä.½
ÚÛ ÃKÂ�×�ÂvË�ÃcË9Ü-Ý*ËlÄ.½
Þ ßLàFá�â�Ø�ã�Â>½
ä�ÂvÖ�åCË�ÌCË�×�Ù�½�ÌMÜ)á
å�å�æ�ÚAÞ�Ë)¿�Â>Ö,Â�ç,è�Þ Â>Ö�Ø�Ú
×TÂ>Ë�Ã%ã�¾4é>ê,Î�Ï�Ç`ëQìlí�î�ï�ðAñ�ò�óní�ô�ô�õ
ö

• · �
¨"¸)¦l¨"¸v¹��
¨"£�§chK!���	
���6�,�����
�-��H�����	��#�����|2�����! f �����-�)�
	
!��l7��!�	���^
½�¾ ¿.¾�ÀM÷4Ã%æq×�æ
è�½-Ë9Ü�Ö�ËlÄ�Â�Ã�¿qØ�Þ ¿.Ë�Ì�Â�×�Ù.ç_Ü
Ë�Ì�×v½)ø6×:Ø�Ã�ÄJÂ�Ã"Ä6½�ø|Ö�Ë�çaÚ
èKÌ�½�ã�ã�Â>Ë�Ã�¾*é>ê�Î�Ï�Ç`ëQì�ù.í
ï%ðvñ�ò�óní�ô�ô�õ.ö

�M������������R��|�����i���"��� g������J��$*�
!����5	���hK!������
��pL�
���i�)�
���"�J�
�"�.�JD,�
�F��	�$T��	 f ��	���}

• �i�"��	���7`��$�79���F�������c���
H�H�����HO��$M�
���#hK!���	�ge;v��^��6?��

• �O�)g��������l�
���6�.��� f ���������#��������g������B��$M�����qh%!���	�ge;v��^ Z%?
�

• D-� ���c�����q����������$:���F������y"�a	
!������q;>��^ �%?�}
� �d	�������H��"� �������m��$-��� f �Q�)gK�1�������B�������)�
	
!��l�����%���<��$-�h%!���	�gb;
¦�ú ©%úTûUüC¦l¸v lý`¦lþ
¦dÿ � ��� ¦�¼�¸
?a��	q��$,�����Q����	��"!"�
;�¦�ú ©%úTû��v¢
¨n¢
 l¸výA¼�£�¦��' lýT¸A¸9¦�¨ � §	�)ú�ú6ú�

�b	���$T��	
�q���d�����
�
�
Hd¢
¥cju¢
¥�¸����
 �?
�

� ����2d�Q2"���)�������l�
�����d F���9D,�����S�����i��� f �����
���q����� f �6�����
f �����"����Hq���i�
���-�)�
	
!��l��!�	��-���"2Lp%	������F���l��� R�����g�p f �
��7�"����Hi���c�����q���������������

• �q��	��6�.� f �����,��$G	������
�
����������k������
����H< F���9D,�����Q2"���F��	������,������7f �������B	����l��H�����ª��62��.�-�������C���
��H��U;v��^]K?��

• �����q����������	
!"������������$:�<$>��	 f ����������H�!���H��#h%!���	�ge;v��^ �%?
^

3.1 Part-of-speech tagging���1�
	���7A��$T7`���F�����l�x;vI za/ ?
p���	ODB��	
2b�������
��p����O������	��%���d�"����g���2
 %g5�cD,��	
2u���d�����U�������
��������;�¦6ú ©%ú>ûi����!"�Lp�R���	� �pM��2
�)���l�
��R���^�^�^l?
^
I za/ ���
H�H�����He���|��������	����������<��$ f �
	�N�����Hu!��m�
���QD,��	
2"�<���V��
��kK�JDC���
�d��������	a����	�	������F����2�����Hc	���������^|�M�����
	�	�gd��!��J�
�"���-������N
D,�Q���������O�����U$T	����O�
�K���4�M	��������
H�H���	c� ��p��6�A^S=���	q��k�� f �"����p�$T��	�����#$T�������6DC����HUh%!���	�gL}

;��6?��4ý>¨FºO¸���¦#¸AýT¸A£�¦|���q¢
 l¸Aýv¼�£�¦��#¸���¢
¸Bº%¦�¢
£��'ýT¸�����¦l¡O¢
¨"¸Aýv¼���ú

^�^�^��
���a�%!K�
�"!K����$:�M	��������
H�H���	����BH���R���������y�H�!�	��O���
^

3.2 Syntactic/semantic analysis��������������� g������S���S�F��	�$T��	 f ��2oD-� ���Y�_��������$<	
!�������2����
�l	
�� "����H�����eH�	
� fOf �.���������a����������	
!"�������������
�"�.�d�
	��u����� f ���)�d��!�	�	��6������5hK!���	
�����J����25hK!������
��������^#���������|	
!"�����a�
	��i������2V¼��
¨"¸9¦���¸A¹ �l
¦
¦�}
������gU2���y"���BD-�����l�U����hK!����"�l�C��$L����� f �������-;>���i�����C	
��H%���,����2��.?'��������62���2��
����� f �F�����O�c������H����i����Dt����� f �����U;T�%�������O����$��q����2��.?�^�����-D-�������a�����B��$M	
!����6�,���B��¼
�
¨"¸)¦���¸v¹ �l
¦
¦C©� �¢
¡<¡O¢
 �� · � �"!.^��-����O��k�� f �1����p�D,�-����������2Q���Oy�H%!�	��JZJ�����C	
!"�����4�
�"�.�,�
	����
	
��H�H���	���2D-�������"�
	
������HO��!�	C��� f �"���qh%!���	�gu;��6?�^
��=���	Q�{�������
	���	c��� f ��	��������"�������_ %g_�{������7A��k��F��	��Q	�����2���	�p�D,����"����H���2S�
���<��� f ���C��$:�����q�
��H��-�����
�c�����
�-��� f �"�������| "!�� f ��	����k��"���������C�
 " �	���R����
�
��������^

Ó Õ%$ &,ò('�),éTð�*,+Mö ÍKÕ-$Ò�É�Ï .�ò(/ Ò�É�Ï
Ò�Ó Ò10 Ï ñ3254*ñ Ò�Ó Ò10 Ï
Ô�6 +�'*ò�+ Ô
6Æ�Ç`Ò�Ó Ñ�0 Ï�Ê ñ3254*ñ-é7+�8943'*ö Æ�ÇAÒ�Ó Ñ�0 Ï
Ò�É�Æ�Ò '4ò(8�:;+(';2 Ò�É�Æ�Ò$�ÏlÆ�0 &,ò('�) $�ÏlÆ�0<*Ó Ò�É +�'*ò�+ <�Ó Ò�ÉÊ9Ï�=aÆ�Õ6Ò�Ó Ñ�Ê ñ3254*ñ Ê)Ï�=aÆ�Õ6Ò�Ó Ñ�Ê

>@?BADC(E
FHG9I JLK�MON
PQA9AD?�R�AHSUTWVXFYRUN�FQR(Z-F\[�GQ]_^,?BNa`
b5E
FcFYb3PdA9A9FeE 2 fhgjilknm ?7VoP9Rp?�q�r;FYE�PQNa?7s9Fts9FYEaunv	waxyP9R(z
{ i}|1~ PdE
F�r"E�FYr;SUV
?�N�?BSDR(V�P9R(z |}~��9| ?�VLP�E
FY�7PYN�?BsUF	r(E
SDR�SDC"R

��� → ���
��� �����
���� → ������� � �������� → ����� �a�a� ���-���� �a�a� ���-��� → � �a�a� ���-�������� → � � ������� � � � ���� → � � ���D�1�����c�����

>@?BADC(E
F��DI���� PUq�r¡�7FYV�SUT�¢�> £¤E�C"�BFYV-v�^,?BNa`¥M§¦¨M FQR ©
N�FQR(Z-FUv�ª�J«¦¬ª�SDC"R­J®`(E
P9V¯FUv�°��²±�³�J®°,K,J´¦¬E
FQ�BPQNa?7s9F
r"E
SUr¡SUV
?BNa?7SDR�v	µ¶J¨¦·µ¸FeEau(PU�	J®`(E
P9VXF f b�`�Fº¹�C�FYV¯Na?7SDR
q»P9Ea¼»½U¾X¿Àq»FePUR(V�N�`�PYN�Na`�F�FY�7FQq»FQR9N�?7V�SUr�Na?7SDR�P9�5?�RÁN�`�F
VXFY¹�C�FQR(Z-F f

�[�����!�	
����R��5�
���1�������.�������b��$J���������w��=¡Â[
!������U	��6��!����
�c���b�����
�l§.¨"¸9¢�¼�¸Aýv¼q¸A
¦
¦#	����"	����������
��2�����y�H�!�	��q�-Ã
^

Ä

&Bò�'n),éTð�*,+MöÛ Ã�Ä ñ3+

ñn+
.,ò(/
×�Ù�½

ñ3254*ñ
×TÂ�×TÞ�½

+('4ò(+Ë`Ü ñn+

ñ3+
ñ3254*ñØ�Ì
×�Â>Ö�Þ�½

'4ò(8�:;+(';25+
'4ò(8�:�+�';2

×�Ù�Ø�×
&5+

&Bò('�)
Ä6½�Ø�Þ

+�'*ò�+
äGÂ�×TÙ

ñn+
ñ5254*ñ
ã�½�çqØ�ÃK×�ÂvÖ�ã

>@?BADC(E
FÆÅ ItMDÇ"RUN�P9Z�Na?7ZÈN
E
FeFÉSUT�VXFQR9N
FYR(Z-FÊ[�GQ]
vLSUu�N
P9?�R�FYz
^�?�Na`­EaC"�7FYVËSUTjÌ(ADC(E
F��

�������#���F��	
�.�����%�5H���R����#!"�#�S�)g����
���������i����	
!"����!�	���pM "!K�#D,�U������2
��� f �#��� f �����
�����*�
�O����R��a���c��2����<�� 1�%!K�,�
���J	������
�
�������,��k������
����H F���9D,�����5�
���<D,��	
2"��^<P��d�����
�#��� f p�D,�U!����U�QR���	�gu��� f �"���O� f 7�"��� f �����
�
�
�����<��$F�J��������!�	
����XB���"	������������.�������i��������	�g�;v�JX'�C?,� Í
�
Ã�+C�����Q�����.�|D-���
�w�������<�����i��$�	
!������q�9DB�52"���F��	������<�"�
	
�
����H5�
	���F�����
�� "����}{�
���5	������.��� R%�5�"	����F�������
�����������o F�u�.������������2b�
�m�����
���%!��»�v¢
 l¸výA¼�£�¦-�4;v���4�
���6DC�O���i������y�H�!�	��.?M��	'�
�a�����C���%!��»�T¸AýT¸v£�¦���^
P)���"	
���l�
�����a F���
�c�
	��������
	��#��k��"����	���2L^

197

;>$T��	i���{�6R���	�R�����Dqp*�����e� Z6�Ap4R�����! f �cP�P�?
^'P)�V�JX:�apM�����S��� f ����7�����O	�����	������6�����.�����%�u��$,�S2���������!�	
���d;>��	q�S�"�
	��q��$,2"���
�l�%!�	
���.?J���
2����
��	
�� F��2bD-� ���o�w�9D,��7`����R����,&) F��k%@5���������62V&)�a���
�l�%!�	
���uX����"	���7
���������.�����%� / �
	
!��l��!�	��l@�;>�aX / ?
^M�B���O!����F��	#����R����:H�� R%���-�
���O2"���)7
����!�	
���i	���$T��	���������p�D-�������u�
	��i�����i����� f �����
�#�����
	���2�!�����25 %gd�����2���������!�	
�����K�����a���6D,��	B����R����1	�����	������������*�
���a������2����������"�,����������	
�K7
����Hi�
���a	���$T��	���������^
=:��H�!�	��#]O�
���6DC���<�9g��"�������L��k�� f �"���a��$:�JX / ^

½,ø#æaå
Î Ø�è%Ë�ÞÐÏ�Ë�ÃDÑ�ø�ÒÓ Ø�×T×TÞ�½aÑTæ�Ò÷4á�ã�×v½
Ì
Þ Â�×�å
Ñ�åÔÒ
½�Õ6½�ÃK×1ÑA½�ßGä�Â�Ã
Ò
Øl¿.½�Ã�×}ÑA½�ßLø�ÒË ÓBÖ ½�Ö
×}ÑA½
ß�æ�Ò
Þ�ËlÖ�Ø�×�ÂvË�Ã Ñ�æ�ß�åÔÒ

>@?BADC(E
FÆ×(IÊM FQq»PUR9Na?�Z�E�FYr"E
FYVXFYR9N
PYN�?BSDRp?�RpØ¶°¸bÙSUT�N�`�F
VXFQR9N�FQR(Z-FUI�Ú1Û �cÜ w9Ý�Þ
w k { ißk¡à��­á
�9|1| Ý7Þ ilkÆâ�ã(à-| Þ-äcÝ i}|ßå9æ

P)�S�
�"������k�� f �1����p������#�
��	 f ����çq¢�è��
£Bé��
¨e�)pn��êC¥c�l¸)¦l l£ ý>¸7ë-�)pn� � ¢�¸v¸A£�¦�����"2#�����*R���	� ��>¸`�ì�'ýT¨e��;T��R%�����
e
?G�
	��B2���������!�	
����	���$T��	������
��p
	����"	���7

�������
��2Q %gc�������
��	
�B���Q�
���a!����F��	B����R����L����2c2�������	
�� F��2c �gc����H��������
��	���2"�����.�
���:���q�����B����D,��	'����R����v^:�����,�
������	'������2"� �����%���:�
	��B�
 F��!��
�����Q�
H������|���"2e�� ��)�6���|��$,�
���U��R�������;T	������F��������R�����g���çq¢�è��
£Bé��
¨c�
���"2É� � ¢
¸A¸A£�¦��,$T��	J�����O��R������¶�>¸`���4ýT¨e�`?C����2d�����O�������
�
�����5��$4�����
 "�
��������^
z ���4�����#�������'�
�"�.�������*��� f ��������������$���� f �'��	���2"�����.�
���G�����#2����F��	$T	�� f �a2�� f �����|���#�������
����	�^�P9$"�
���J£���¼
¢
¸Aýv�
¨c���'����	��B!���2���	
�)�
�K�K2���M�BH�����H�	
�
�"�"���'$T���.��!�	���p
���q���#WJ3dEU	����
	
����R���������������kK�����GD,��!���2
��	��� "�
 "��g5 F�O�S����	
!"����!�	
���'�����"�)�
	
��������^U� �
����N%7`���F������y"�O�����%�����
�����i�
�{ F� f ��2��d���b��	
2���	O�
� f ��2����C����������	
!"�����������O�����.���
	���F����!������
	B�
�iWa3dEe	����
	
����R
���>^
�M�e��� f �"!K�
�S�u�JX / 	����"	���������������Hu�dD-�������S�������
��������p'D,�S�
��7�
	
�� 1!K�
�S�5 "���������aX / �
�e�������{D,��	
2Lp�2����F����2"����H5���_� ���O���������
;vI z#/ ?�^4EG���U!"�i��� f �S "����Nw���e��!�	i	
!"��������Hu��k�� f �"������$J�����K7�
�������d;)�.?
^Q=:��H�!�	��Q���������
�������J����	����O��k�� f �"�����a��$,I z#/ �aX / �$T��	C�O����!"�Lp"�<R���	� S����2S�<�"	����F�������
�����L^
�����O�)g��������l�
���<	
!"�����#�
	��i����	
��������2dD-� ���e��� f ���������i���l�������"��^iP)���!�	B��k�� f �"����p�DC���
�c�����#	
!�����}í%î → í%ï%ð%ñòî%ð%ï%î ¾ôó î p
�
�"�"������2a�
���
�����JX / �G��$�y�H%!�	��,�Kp6D,����2�2a�����*$T�������6D-����H-��2�������� �9g
������2"� �����%����}

e1 = e2
����2

x = y
^<�����i	�����!"� �q���J�
���O��� f �����
����
	����#��$My"H�!�	��®Í�^

ø
ã�½�çqØ�ÃK×�ÂvÖ�ã�Ñ�ø�Ò

e1
½�Õ�½
ÃK×}Ñ e1 ß:Ä6½�Ø�Þ Ò

e2
æ

äGÂ�×TÙYÑ e2 ßGæ�ÒÕ�Ô6Î�Õ�õ�ã�½�çqØ�ÃK×TÂ>Ö�ã¯ö ÷6Ï�Çßø õ>Ä6½�Ø�Þ�ö Å�Ç9Ï�ÅKÔ�Ê�Ó Ò�Ó Ô6Õ�õ�ä�ÂT×�Ùeö
>j?7ADC(E�FúùDI¸Fe� PUq�r¡�7FeVËSUTj^LSUE
zÉØ¶°�M V

e1 e2
ø#æ

ã�½�çqØ�ÃK×�ÂvÖ�ã�Ñ�ø�Ò
½�Õ6½�ÃK×1Ñ e1 ß:Ä.½�Ø�Þ ÒäGÂ�×�ÙQÑ e2 ßGæ�Ò
e1 = e2ø�ûbæ

ü
e1
ø

ã
½
çqØ�Ã�×�Â>Ö
ã�Ñ�ø�Ò
½�Õ�½
ÃK×}Ñ e1 ß:Ä6½�Ø�Þ Òä�ÂT×�ÙQÑ e1 ßLø�Ò

& +

e1½�Õ6½�ÃK×1Ñ e1 ß:Ä.½�Ø�Þ Ò&Bò�'n)�$�ÏlÆ�0
e2
æ

äGÂ�×TÙYÑ e2 ßGæ�Ò+�'*ò�+�<*Ó Ò�É
ø
ã�½
çqØ�Ã�×�Â>Ö
ã�Ñ�ø�Ò

ñ3254�ñmÊ)Ï�=aÆ�Õ6Ò�Ó Ñ�Ê
>@?BADC(E
Fºý I¥Fc��P9qúr¡�BFþSUT�Ø¶°�M´TÔSUEÉN�` Fþs9FYEau(P9�¶r¡`(E
P9VXF
½ m Þ � Ý { i}|1~Èà Þ-ÿ �Qk�|}i��%à ¿

�J!��B�
�q�#�����
N<��$����"���l�BD,�-���������
��������Db������$>!����"��� f ���������,�
	������ ��
��������2c$T��	,�
���J��k�� f �"����^'�����ay�H�!�	��®�qH�� R��6�*�����ay"�����L�JX / ^+C�
�
�B�
�"�.�*�a	���$T��	������*�"���' 1���6�i��2"2���2Lp�D-�����l�i���4� f �1������� �����<������������
��������}-������ý>¨"¸9¦l l£���¼�¥�¸`�
 U�
�cDC�"�����5D,�iH���R��i���5��	
2���	JD-�����
!��
����HU�<R���	� ����Q�����q� f �F��	
�
�
��R�� f �K��2e;v����	���p;� �4¨Fº%ú�ú6ú��9?
^

ø#æaå�ã e1 e2½�Õ6½�ÃK×1Ñ e1 ß Û Ã�Ä�Ò½�Õ6½�ÃK×1Ñ e2 ß:Ä.½�Ø�Þ Ò×�ÂT×TÞ�½
Ñ�ø�ÒØ�Ì
×�Â>Ö�Þ�½
ÑTæ�Ò
ã�½�çqØ�ÃK×�ÂvÖ�ã�Ñ�åÔÒ
Â�Ã�×v½�Ì
Þ�Ë�Ö�á�×vË�Ì
ÑTã�ÒØl¿.½�Ã�×}Ñ e1 ß�ã�ÒË ÓBÖ ½�Ö
×}Ñ e1 ßLø�ÒË9ÜXÑ�ø�ßGæ�ÒØl¿.½�Ã�×}Ñ e2 ß�æ�ÒäGÂ�×�ÙQÑ e2 ß�åÔÒ

>@?BADC(E
F��DI®Ø¶°¶M TÔSUE�VXFQR9N�FQR(Z-FÁ[�GQ]

çqú��-ú>û_�B���5�����c��$q�)g����
�����������
��� f �����
����	
!������O�����.�QDB�d!"���5���
f ��2��q!��S��$:�
 F��!K�-�
\i	
!����6�B����2S���B�� %R�����!"����gc���
�C�����
���"2���2Q�
�2����
��	
�� F�c�����cD-�������S������H�!"�
H���^m�����S����	��6���i�"���< F�����m�1!K�O���
���%!��V�"��	
��������p*�����
�U��	�����$����6� f !"��� f ��	�� f ����������H�$>!"���
�"���R���	� 1���G�1��	
�������<;v�.�a�������)�#��������	 f �-��$4P)��$T��	 f �.�������dX����
	
����R����T?�^X������
�
��R��e��	����1�%��� ����������pJ�"	����F�������
���������J�1��	
�����6����	��e�������_R���	�g
� f �F��	��������M F������!����'������g f �
	�NJ�C�)�
	
!��l�
!�	��4��$�hK!���	�g-�
�"�.�GD,�*2�������-DB�����-�
� f ������^#=���	a��� f �"����kd2�� f ����2"��pL���d��������	��<�"�
	
�
����H���C��$��
���d� f �1�%������ "����^CP)�S�����
�a�������|������g������<���%!����"��	
�������-�
	�����"��� g�ª���2S����2c�
���JR%��	� "���
	��q����$��C��!K��^
�����#�aX / D,�#�� ��
�����S�.�B���������)���
H��#���������
�� F�q!�����2Q�
�O "!�����2S�
$T��	 f ����hK!���	�gQg�����^ / � f �#P)XB7`���1�6����y"�a	
!�����������R��J�
�O F�#�����C!��G^

3.3 Specific rules�����U��� f ���������O����������	
!"���������e�����u F�O	���2�!"�l�62u �g5�
��NK����H���� f ����F�����������������6�B�������U��������!"����p"� f ����H<D-�����l�L}

198

�
^B�����L½a¹�C�FYEXÇ s9FYE
u"V�¿w����N�� �T¸9����¢
¨�¸��)p¸�T¸`���4¨FºQ�)^�^�^��������
�����O�������u��$���2����l���������
	�gu2����
�l	
�� "����Hc�����O��� f �����
���<	������.7�����%�< F���9D,�����|���������,R���	� "�'����2|������hK!���	
������p�D,�������*�J�"�
	�7
������!"���
	*~1�
Hq���<�����J�l�%������	
����2O����� f ������^'�B�"���*~"�
H f �6����������.��������������� f �����:������!���2q F�����������l�
��2|�����CH��K��2#	��6���F��������
�i�
���qh%!���	�g�p"���������6D-�����c�
���a$T�%������D-����Hi��k�� f �"����^
;AZ�? Pn^LPUR9Nq���S�
	��
��������^

ã�ø<½
ãvè%½�Ø�â6½�Ì
ÑTã�ÒØ�Ì
×�ÂvÖ
Þ�½
Ñ�ø�Ò
½�Õ�½�Ã�×}ÑA½�ßGä:Ø�Ã�× Ò
Øl¿.½
ÃK×}ÑA½
ß�ã�ÒË ÓBÖ ½�Ö
×1Ñv½
ßLø�Ò

⇒
ø
Ø�Ì
×�Â>Ö�Þ�½
Ñ�ø�Ò

�C��	��#DB�|NK����Ds�
�"�.�-�����qR���	� É�T¸`�¶�*¢
¨"¸�� f �������������.�a���
��� ��)���l�U;��v¢� �¸Aýv¼�£�¦��9?C�����C�
�� 1�O�������6���
��2�p�����2��������a����D ���K7
$T��	 f �
�
�����n���Q	�����	����������
��2b %gn�w$T	
� f ��2n	���$T��	��6����^s�����
�
H������
�B��$:��!��l�cR���	� "�q;v����	��#�
���Ë�ßè�¦�¢	��¦l lp"��	���

�`?�p1���BD,�����
���,�����aR���	� 1������� f ����� R�����p"�
	��a�
����������$��C��!K��^

ZK^B������z(FYV�Z%Ea?�r�Na?7SDRÊs9FYE
u"VS����N��Á�T¸9�wº%¦
¢
£5�'ý>¸��U��pì�T¸9�{¼
�
¨"¹
¼l¦l l¨c�)^�^�^
�-�u�
������	q2����l�
�������
	�ge�l�%�����������J�����O����$T��	 f �
�
����������.�-�������6DC��!��,�
�U��2�2S�O����DY	������.�������S���������62e¢ � �
¥K¸l}
;v�%? ������	��
�������a�����.��z(FcPU�7V�^,?BNa`{��� f �����
������^

ø#æ<½
Ø�Ì
×TÂ>Ö
Þ�½aÑ�ø�Òã�½�çqØ�ÃK×�ÂvÖ�ã�ÑTæ�Ò
½�Õ�½
ÃK×}ÑA½
ß�Ä.½�Ø�Þ Ò
ä�ÂT×�ÙQÑA½�ßGæ�Ò

⇒

øqæ
Ø�Ì
×�ÂvÖ
Þ�½
Ñ�ø�Òã�½
çqØ�Ã�×�Â>Ö
ã�Ñ�æ�Ò
Ø Ó Ë�á�×}Ñ�ø�ßGæ�Ò

�����aR���	� S	���$T��	������C���,	�� f �6R���2S���,D,�����G���c����������������^
��^B�����²s9FYEau"V®SUT3N
SUr;SD�BS9AD?�Z-P9��E
FQ�BPQNa?7SDRu����N����>¸`�Q¼
�
¨"¸9¢
ýT¨e�)p
�T¸9�cýT¨F¼�£�¥�º%¦���^�^�^�P9$4��!"���d�iR%��	� d�"���C�����
H������J���"2����S�� �7
�)���l��p,�������n���n�
����	�����	
���
����	������.�������n���U�����c!��n F���9D,�����
���������J�9D,�O����� f �����
�����"2Q�����aR���	� ����B2��������
��2�}
;>]K? �i�����l�����%�c�����.�@Z%SDR9N�PU?�R(V#�iy�H%!�	���^�^�^

ø#æ<½
ã�½�Ö�×�ÂvË�ÃDÑ�ø�ÒÛ ¿�á�Ì�½
ÑTæ�Ò
½�Õ�½
ÃK×}ÑA½�ß:Ö�Ë�ÃK×AØ�Â�Ã
ÒØl¿
½�ÃK×}ÑA½
ßFø�Ò
Ë Ó7Ö ½�Ö
×1ÑA½�ß�æ�Ò
¾�¾l¾

⇒

ø#æ
ã�½�Ö�×�Â>Ë�ÃDÑ�ø�ÒÛ ¿�á�Ì�½
ÑTæ�ÒÖ�Ë�ÃK×AØ�Â�Ã%ã�Ñ�ø�ßGæ�Ò
¾�¾l¾

]�^ / � f �a����	��"!"�)79���F������y1�¸VXFYq�P9RUNa?7Z�EaC"�7FeVJ�����
���"��R%�-�
�i F���2"2���2|���q��	
2���	M���J	����l��H�����ª��,��� f �*�"	����������,������H%!����)�����������K7����	
!"������������^
;A��? �i2�����! f �����BDC	
� ���
���� %g
������D,�����J���L^ �
�C��	��-���5¢�º
¹l����¼C	
!"���J� f �F�������4�����-$T�������6DC����Hq��	
������$T��	 f �.7�����%�L}

ø#æ<½
Ä6Ë�Ö�á�çq½�Ã�×}Ñ�ø�Ò� ÂvØ�ä:½�æ����BØ�ÃDÑTæ�Ò
½�Õ�½
ÃK×}ÑA½
ß�äGÌ�Â�×A½ÔÒ
Ø�¿
½�ÃK×1Ñv½
ßGæ�ÒË Ó7Ö ½�Ö�×}ÑA½�ßLø�Ò

⇒

ø#æaå
Ä.ËlÖ
á�çq½�ÃK×1Ñ�ø�Ò� Â>Ø�ä:½�æ�����Ø�ÃDÑTæ�Ò
Ø�á�×�Ù�Ë�Ì
Ñ�åÔÒ
Ö�Ë�ÃK×AØ�Â�Ã%ã�Ñ�å�ßGæ�ÒÖ�Ë�ÃK×AØ�Â�Ã%ã�Ñ�ø�ß�åÔÒ

��P)�����"��	���2� �gQ�
���1���O�����
p�P)+J8'W�Z
\�\�]

ç|ú �JúTûq�������-NK����2d��$4	
!������a���c������H���	-	����"	������������q£�ýT¨K©
¥Ký7��¹
¸Aýv¼c$T���
�
!�	�����p* "!K�OP)XB7`���1�6����y"�c	
!"������^V�B���c�9D,�n¼
�
¨"¸9¢
ýT¨Q�
�"	���2������.�
���a�����������-��k�� f �"���i2��������a�"��R��i�Q	�������������H�!"���)7����� f �6��������H�p% 1!K�,��k���	��������|�)�
	
!��l��!�	
���F����������	
�������B���O�����WJ35Ew2�����! f ������^

�K^B�����n^®SUEaz"V SUE@r¡`(E
PdVXFYV@?�R	¹�C�SdN
PYN�?BSDR	q�P9E
¼ V��
	��*������7
�
��2���	��62d���a�����K79�����1�
	
�
 "���|��kK�"	��������������J����25�
	��<H�	���!��1�62
�
��H���������	����S�O������H����aR
��	
���
 1����^
;�Í%?[�w�#�
	��q���K��N�����Hi$>��	������l�
�����������S�
	�������������p�DC�������

�
 "�)�
	
���l�����������
�������l���1�.�������K�)�%���Lp��C�
�"�.�C2�������	
�� F�
���F��	�$T��	 f �������a��R�����!��.�����%�L^������1��è1ýA¼�������!

Í�^B�-�"2e�
 F��R%�O�����>p"PÈN�FYEaq E
FYZ-S9ADR"?� %FYzÀPdV�P­Ø�bLØ�©1N
PQA
[1SUE�V¯Ç"R�SDR9Ç¡q]<���q���"����H��62u�������S�
�"���a���
H��"� f �O����2e���
f �
	�N��62c���B��!"���e;v����	��a �g��| F����2c��	���2������.�
�a���c�
���a�JX / pD-� ���w¢
¸A£��)�����"2�����Hi$T��	Ë�T¸AýT¸A£�¦-�`?�^
;l��?[�
���²N�?�N��BFQ��$:���¶P9EXN�?7Zc�7F1^�^�^

ø#æ
×�ÂT×TÞ�½
Ñ�ø�Ò
Ø�Ì
×�Â>Ö�Þ ½aÑTæ�ÒË9ÜXÑ�ø�ßGæ�Ò

⇒

!#"
$&%('*)+!-,
$/.-%+0(1	'�23)+"-,
Ë9ÜXÑ�ø�ß�æ�Ò

� 2"���l�������"�
	�g5��$���g�������g f �#���#!����62L^U�B�"���#2����l�������"�
	�gu����
 1������!K�
��� g<���
�4���������"2���2q�
�a����R��B�-H�������	
���%�1!�	��F�������%� �4���
����	��1!��)79���F������y1�.^4P)��2�����2U�����#�J���Y���
HO��� f ���B�
	��a	
�
	�����g	������,D,��	
2���p� 1!K�Q�� � �	���R����
�
�������U���"�)�
����2x;l�l¸i$T��	���¦�¼�¸Aýv�
¨
¸AýT¸A£�¦�pYèd$T��	5è�¢
 �¢6©
 �¢�èd�������
^ ?�^

=:��H�!�	��j�J�����6D-�M�������
���"�������
�
�����|��$1��� f �,��$����������B���F������y"��	
!������������!�	���� f �1���q�JX / ^"EG���-!��B	�� f ����2c�����q���"� �������L	���hK!�������}

;��6?��4ý>¨FºO¸���¦#¸AýT¸A£�¦|���q¢� �¸Aýv¼�£�¦��#¸���¢
¸,º%¦�¢
£��'ý>¸�����¦l¡O¢
¨"¸Aýv¼���ú

�w�,��!��"�F�����4�����.�:��!�	:2��������������
	�g#�
��������!��G�����.�M�����4D,��	
2��@�T¸vý>¸v£�¦��
���"2Æ�v¢
 l¸Aýv¼�£�¦��C	������1�6������R���� g{���
����2{$T��	|�
���U���
Hu��� f ����¢
¸v£C����2¢
 l¸Aýv¼�£�¦l^

ø#æaå�ã e1 e2
½�Õ6½�ÃK×1Ñ e1 ß Û Ã"Ä1Ò½�Õ6½�ÃK×1Ñ e2 ß:Ä.½�Ø�Þ Ò×�ÂT×TÞ�½
Ñ�ø�Ò
Ø�Ì
×�Â>Ö�Þ�½
ÑTæ�Òã�½�çqØ�ÃK×TÂ>Ö�ã�Ñ�åÔÒ
Â�Ã�×v½�Ì
Þ�Ë�Ö�á�×vË�Ì
ÑTã�Ò
Øl¿.½
ÃK×}Ñ e1 ß�ã�ÒË ÓBÖ ½�Ö
×}Ñ e1 ßLø�ÒË9ÜXÑ�ø�ßGæ�Ò
Øl¿.½
ÃK×}Ñ e2 ß�æ�ÒäGÂ�×�ÙQÑ e2 ß�åÔÒ

⇒

! æaå
$&%('*)*!	,
$/.-%+0(1	'�23)+"-,
ã�½
çqØ�ÃK×TÂ>Ö�ã�Ñ�åÔÒË9ÜXÑ�ø�ßGæ�Ò
Ø Ó Ë�á�×}ÑTæ�ßLåÔÒ

>@?BADC(E
F54 I¸Ø�°¶MoTÔSDEËVXFQR9N
FYR(Z-F [�GQ]ìu;FYTÔSUE
F�PUR(zoP9T�N
FeEËP9r�©
r¡��?�Z-PQNa?BSDR»SUT�V�r;FeZc?7Ì¡ZËE�C"�BFYV f ±nFcN®C(V¸E�FQqú?�R(z»Na`�PQN¸^LF�P9E�F�BS SU¼�?�R�A TÔSUE®½
P»Na?�N��BF�SUT P9EXN�?7Zc�7F�N�`�PYN�z(FcPU�7VË^�?�N�`ÈVXFQq�P9R ©
Na?�Z%V�¿ f b�`�F»E
FYTÔFYE�FQR9N x ?�V,VXFQ�BFYZ�N
Fezþ[1E�C"�BFoGQ]av¡N�`�F�PdE�Na?�Zc�BF
y
?�V � á w ã"| Ú à Þ-ÿ �Qk�|}i��%àQæ [�EaC"�7FÉ�9]�PUR(zÀN�`�FÁN
FeE�q�V­Ú � ä�6

|ßi7� Ý7Þ æ PUR(zyÚ |}i}| Ý7Þ æ ?�V	E
FYZ-S9ADR"?� %FYzÀP9V�N�PdAt?�z�FQR9N�?BÌ"FYEaV �9| ÝPUR(z � ä |ßi7� Ý7ÞÈ[1E�C"�BF»ýU] f

199

P)�b�
�"���c����D[�JX / p*D,�5�����n�������
	
� gn2"���)������H�!������o�b¸`¢�©m¨F¢
¡U¦lp
D-�����l�e���#	������
����25�
�������U����	
!"����!�	��O��$*�
���U2�����! f �����c;v���u F����2�9g��F�.?�p:$T	�� f D-���
�qD,�UD-���������6D ���������w¸)¦l l¡<p4���	�B��¦l¡O¢
¨"¸Aýv¼¯�a��p
D-�����l�O���*��!����F�%����2<���q F�C�a�1�
	��*��$1�����B�
��kK��!����"���������������4��$1�����
2�����! f ������^

3.4 Structure analysis�,�i�������U�)���
H���D,�d�)������������R������ f �S "�����
	�gV	������.�
�����"�i F���9D,�����	���$T��	��������Q�����.������R��e���
�S F�����n�
	����.�
��2o %go����go���1�6����y"�5	
!����
;v���cy�H%!�	��¸�q�����J	������.�����%�u���a���-8:§�!
?�^4�B�������J	������.�������"�,�"��R��a�����L�
�"��	��
����!�����	 f �����"����H�p6����2#�B��g��)�
� f ���������
�M����R��'�
���'N����6D-����2�H����$F�������i��$1��������� f ����������H���^��w�����"� gO� f �"��� f ��������2U�#��� f ���������	�����	��6�������
�
�
�����|��$1��� f �B� f �F��	��������:	��6���.���������B;v����2|�"��	��
����!����
	
� g&9��� f �F��	
��� @Q	������.���������ajn¢���¸)¦l lp,ý>¨F¼�£ ¥"º%¦�º
p'�����
^�p:�����.�i�
����!"��2w F�!��"2���	
�)�
�K��2�����	��q���B��	
2���	C�������)�
	
�������
�����c�����#WJ3dEey1���.?�^
EG���

R(x, y)
 F�|�O 1���"�
	�gS	������.�������S F���9D,�����S	���$T��	��������

x
����2

y
^

�M�Q�����"2����-&9N�����D-�%@#	������
�
�������-���BD,�����G����&�!���NK����D-�%@#��������p�D,�
�
�"�"� g��O����!�	
�����
���a��������	
2"����H<�
�i�����#$T�������6DC����HU����������}

�
^
x
����2

y
	���$T��	M�
�C�9D,�-���
HJ��� f ���B;T	����"	���������������HJ�)�
	
!��l��!�	
�������� f �����
�l?
}

;v�%?Q��$M�
���a	��6���.�������
R
���BN����6DC��p"���O���l�
�����S���C������2���2�^

½l¾ ¿.¾�9;:=<?>�@A>/B3@�>�<DC�ÆX6�Ò9Ï�Ç Æ�EFBHG?@AIKÀ
!#"
JK)+!-,LNM)+"-,
Ø9Ü�×v½�Ì
Ñ�ø�ßGæ�Ò

;T L?Q��$*�����i	������.�����%�
R
���#!���N�����D-�Lp��
���i$>���l�a�����.�|�c	���7

���.�����%�O��k����)�������,���Q����������$M���Q����$>��	 f �.�
�����L}������J�)�
	
!��l7�
!�	���H���R����| %g#�����B�J���n�������6D-�M�
�����q���JH%!������MD-�����l�	������.�������G;v��?L���������a F��^MP)�#��!�	G��k�� f �1���'�����*�J���mDC�������������!��#�����.�i���{����� f ������¢�¸v£q;T�
�������Qk1?a���c¼��
¨"¸`¢
ý>¨L¦�º� §Q��������� f �6���<¢
 l¸výA¼�£�¦Q;Tg"?�^
½�¾ ¿.¾�9;:PORQ�ORSTIqÔ
6 >�@UORQWV-S�I�À

!
"
$&%*'()+!	,
$/.	%+0(1	'�23)+"-,
Ë`Ü�Ñ�ø�ßGæ�Ò

DTD−−−−−−→
analysis

!#"
$&%('*)+!-,
$/.-%+0(1	'�23)+"-,
Ö�Ë�ÃK×AØ�Â�Ã%ã�ÑTæ�ßLø�Ò

ZK^B�����a	������.�����%��������N��B�<���
H�;v�����C!"������g
x
?����"2��<����	 f ;

y
?�}

;v�%?Q��$
R
���BNK����D-�Lp�D,�#��2�2��<�
��H<�����.�-����� f �.�����cDC���������gw��� f �5;v����������2=X�YHX ?�^S�������#���
Hd���Q¢ � �
¥K¸

y
p:����2

�
���a	������.�������S���,�
	
������$T��	���2Q�
�i�������C����Dr���
H�}
½�¾ ¿.¾�9;:=<?>&@�>/B3@�>�<ZC¶øKÏ�6�Ô6Ç9Ï Ò�É�ÏqÖ�Ë�Ã"Ö
Þ á�ã�Â>Ë�Ã\[
À
! æ
J])*!	,
Ö�Ë�Ã�Ö�Þ á�ã�ÂvË�ÃDÑTæ�ÒÓ ½>Ü
Ë�Ì�½
Ñ�ø�ßGæ�Ò

−→

! æ_^
JK)+!	,
Ö�Ë�Ã�Ö�Þ á�ã)ÂvË�Ã Ñ�æ�Ò`) ^ ,Ø Ó Ë�á�×}Ñ�å�ßGæ�ÒÓ ½TÜ
Ë�Ì�½
Ñ�ø�ß�åÔÒ

�B���C�1�
	
�
H�	
���"�U�����%!���2U F��D�	
�������6�U���i�����-WJ3dEdy"���
 1��$>��	��#�<�
��H<�����
�C�������������"�������aD,��	
2Á�v¼��
¨F¼�£ ¥e��ýA�
¨c��^

;T L?Q��$
R
���C!���N����6DC��p���!�	Cy�	
�)�C��k��F��	
� f ��������������DY�����.��U�
	����.� f �����a�"	��K2"!������ f ��	��O���������<�
�"���u!�����$>!��'���K7$T��	 f �.��������^4�B���a	������.�������S������!��"��	���������2Ha
^
½l¾ ¿.¾�9;/4É�Ï�Ò)Ô6Å%Ó Ñ�Ó Ê'Ò)ÔJÍKÕ-$cbNdOàe>�@UORQWV-STI-fAg
À

[�w���
!����F���������#�������M��k�� f �1���4�����.�M�����*D,��	
2	�v¼
�
¨F¼�£�¥c�lýv�
¨e�"�����K7�����- 1�<�����
� f �����.�
��2S�
�Q�O���
Hc��� f ��pF���-���J�����
���<�������|����P)848*8�����������l��������^
a��C��	��<�����i	���$T��	������i§d2��K���a���
�#�"��R%�i����g f ��	��i	������
�
�����dDC������
������	������ f ������������2� F����� f ���B!"������������^
g P)�����"��	���2� �gQ�
���1���O��]�\�p�P)+J8'W�Z
\�\�]

! æ
$�.	%+0(1	'�23)+!-,
bhdià;ÑTæ�Ò
Ì�½�Þ �#Ø.Ä Ö ½�Ö
×�ÂBÕ�½aÑ�ø�ß�æ�Ò

remove−−−−−→
! æ
$/.-%i0j1	'�23)+!-,
bhdià;ÑTæ�Ò

çqú �JúTû�=���	,�
�"���,	
!����-D,�a������� f ��H������-�
�"�.���<2������1��	��� f �����
���qN����6D-����2�H��|����!"��2d F�<��������$>!"�>^a=���	-��k�� f 7�"����pK��$L�����C����NK�4$T��	*�������
 l¸'�
	�����������pK�#2����
�l	
���������%�i��$
DC���
�,�����������
��2���	���2i�
�| F�J�������
 l¸*2�����! f �����*D,��!"��2��������Dt���cH���� f ��	��i�
�"��	�����	
���.�
�<���"�)D,��	
��^#�,!K�J�������NK����2S��$�N����6DC����2�H��q���BR���	�gS�"�
	
2c�
� f ��2����� F������!������$%�
���*�K! f F��	M����2J�����*�
!� �����������R����9ga��$%�����4	��6���.�������������R�����R���2L^

��^
R
������2��- F���9D,�������9D,�c����	 f �O;9¸)¦l l¡ ���a����	��i!����625���-����7

�F������2e���lkm�Zk�¸9¢�©5¨F¢
¡U¦��.?�}O���e�����
�<�������U�
���Q	������
�
�����2��%���i�����O�
���1� gw�
�5�
��������	
!"����!�	���p*���
x
����2

y
	���$T��	|�
�

�������
����������� f ��������^M�w��2��-���
�:����R�������g#�"�
	�������!"���
	M��	����
��7
f �����|���52���p: "!��q�����Q	������.�������m�����w 1�c�d!"����$>!"�*������H�!"���)7�����O����$T��	 f �.�����%�d�����.�aD,�ON������e$T��	J�����O	�����	
����R����:��	����������;TD-�����l�S�����S!����q� �C��	C���
��?�^
½�¾ ¿.¾�9;/4É�ÏBÊ`Ò)Ç)Î�Ñ
Ò)Î�Ç)Æ
0�Ê�Ó =aÓ 0 Æ�Ç)Ó Òvë�ø�Ï�ÒÔ<:Ï�Ï�Õ�0�ÆXøKÏ�0 Ï�$|Ò)Ç9Ï�Ï�Êjn�À

ä5ø#æ#å
ã�Â�çJÂTÞ Ø�Ì�Â�×TæcÑTädÒ
×�Ì�½�½aÑ�ø�Ò
ã�×�Ì�áKÖ�×�á�Ì�Ø�Þ7ÑTæ�ÒÞ�Ø Ó ½
Þ�½�ÄcÑ�åÔÒ
Ì�½
Þ �aØ.Ä Ö ½�Ö�×�Â�Õ6½
ÑTäGß�æ�Ò
Ì�½
Þ �aØ.Ä Ö ½�Ö�×�Â�Õ6½
Ñ�ø�ß�åÔÒÓ ½�×�ä:½�½�ÃDÑTäGßLø�Ò

P9$J�
���d�����
	
�l�_����H������d���Q�
 "�����
�{�"����2������
!����_	��6���.���������
;�¢�º � ¦
¼�¸AýTþ
¦��#����2 � ¦l¸Ô��¦
¦l¨G?�p"��������!�����$>!"�1���iN����6D��
�"�.��p�$T��	
��k�� f �"����p4������D-���������"��	
�����È�B�lýT¡<ýT£�¢
 lýT¸A§ � ¦l¸Ô��¦
¦l¨n¸A
¦�¦��a����S��	���$T��	
�� "���e���_�����{�����1�
	
�.�
�uD,��	
2"�Á�7��ý>¡<ýT£�¢
 lýT¸A§Y�O����2
�T¸A
¦
¦��a��^

� f ����HU���������|	
!�������pF���"� gS�
���|	
!����c�� 5�
���1�������-���d��!�	-	
!����"����H��k�� f �"����p"����2���!�	�y"�����G�JX / �����
����D-�S����y�H%!�	��#��^

! æaå
$&%('*)+!-,
$/.-%i0(1	'�23)+"-,
ã�½�çqØ�ÃK×TÂ>Ö�ã�Ñ�åÔÒ
Ö�Ë�ÃK×vØ�Â�ÃKãXÑ�ø�ßGæ�ÒØ Ó Ë�á�×1ÑTæ�ß�åÔÒ

>@?BADC(E
Fpo IìÌ;R�P9�3Ø¶°�MÈTÔSUE�VXFYR9N
FQR�Z%Fo[¯GQ] f

3.5 Formal language query�,�S�����w����2r��$|�����{������H�!"���)�����e�"��������pa��!�	d��� f ���S���b�� ��������
�o$T��	 f ���<������H�!"�
H��VhK!���	�gY�����.�w����!���2s��������� gs F�m�
	
���������.�
��2
�����
�U���c��k����)������HO����	
!"����!�	���2S������H�!���H���^4=�	�� f ���������#������H�!��
H��6�
;v����2������ ����������g�$T	�� f / �JE�?�D,�a���
N��#�
���q��2����O��$:������!����q�"�.���
��	
�
; / 8*EG8,���,79=:X z 3S7A���J84XC8d��� / �JE�?F$T��	G	�������	
!"����!�	
����HB�����'	���7
hK!����)��^M�w�,���������*������$T�������6D-����H-$T��!�	�7`������!������"�.���
��	
�c;T��k��"	���������2
���S����WJ3dEw��g������.k1?�}

• �����hq�°K´sr|������!����B�������������"�G�����*���
Ha��� f ���:����2<����2"�����.�����%������c�����a���
HO�"�.���w;TWaI:�.���G����]
�G��k���	������������"��?��
n P)�"���"��	���2� �gc�����"���O�XÍc�%p"P)+-84WtZ�\�\
]

200

• ���S�����U®
­/t�­K¯6³S������!����qD,�|y1��2S�����|����� f �����
�C�����.�a�
	��q�
� F�*	�����!�	
����2a�
�C������!"����	��
��������������� f ������� f !��)�� F��	���$T��	���2���c�
���uq�°�´sr�������!������

• �����mv�w�­
°K­5������!"���c���%�����������q�����c	������.���������| F���9D,�����w�
��H����	BR��
	
���� "���6�#;
¦�ú ©KúTûB F��$T��	��%;�kLp�g1?
p1�
 F��!K�.;v��p� F?�?��

• �����yx&z
°�±-z|{Ht�­K®w�
	��u��2���������y���	
�Q	����"����������Hw�
��	 f �����b������
������	�������!"������^

çqú��-ú>û<�B���c®
­/t�­K¯6³�������!����i������g5���������������J����� f �����#�"� f ����pLD,�2��u���
�<DB�����|���5��	��6R���2��u;>���<���{WJ�-!���	�gK7`����N��e�����6�BhK!���	�gw�����K7
H�!"�
H�����?|����gm�F�����
�� "�������9gm��CT��	 f �
��������H5��������!K�
�"!���^_���6����2�������������������6� ������	B�����#�"!�	��F�����a��$�P)+-84Wt����	B��$MP)Xx����H�������	
���>^
�����B�
	
������$T��	 f �.�������O��	����������4$T	�� f �JX / ���q$T��	 f ���"������H%!��
H��C����)�
	
����H�����$T��	�DB�
	
2L}:�����J���
HO�"� f ���B�
	��#����	�����2�gQ~"��H�H���2e;>���c F����2�9g��F�a���c��!�	,	����"	������������.�������F?
p�����D,�����L�����
���a���������l����2c����� f �6�����;>$T	
� f ��2�	���$T��	������
�C�����
���q�aX / ?
^1�����aR��
	
���
 "�������
	��a�����|!��"�
	�g��	���2"�����.�
���������.�*�
	������
�:���
H#�"� f ����p����"2q�����}v�w�­
°�­J������!���������	�7	������F���"2��,���i�����#�
������	C�l�%��2����
�����"��^
P)�U�
�"��� f ��������	�pK��!�	���g������ f ��!K�
� f �.����������� gUH�������	
�.�
���*�<h%!���	�g���#WJ35E'^.+C�
�'��!�	���	
��������H���ga�
�"���M$T��	 f ���MhK!"� �
�4R���	� 1�%��������2q�"�
	
2�
��	�����2LpM����2dD,�O	
�.������	q���������<�
�������6D�� / �JEL79����N��i	�����	���������7
���.�������u��$*�����U�JX / ��$�y�H�!�	��O�Q�����
�aD,�U�����5�� �����������2dD-� ���e�
��� f �"���#W / Ew�M	
������$T��	 f �.�������w���XÍ
��;Ty"H�!�	��U��\%?�^

~X�����p�p�p�R�R�R�/�s�R�R�?�
� �5�	�s�R�A������|� � � � �����U�|�D�+�F���%��|�X�%�U��� �X� ��� ���U�-�7���U�&�R�s���� � �
�X�	¡X� �

>@?BADC(E
FÈG&¢�I��@��P9qúr¡�BF�SUT¸TlSUEaq�P9�@¹�C�FYEXÇ�SUu�N�PU?�R�FYztTßE�SDq
Ø¶°�M�oú[1¹�C�FYE�Ç [�GQ]�] f�£ ?7V¸P9R � ä |}i�� Ý�Þ,N�PdA(vD¤,?�V²PUR �U| Ý"N�PdA[ßN�?�N��BFd]3Z-SDR9N
P9?�R�FYz�?�R £ vdPUR(z#¥�?7VjP�sYP9Ea?7Pdu¡�7F�E
FYr"E�FYVXFQR9Na?�R�ANa`�F	N
FeE�q Ú à Þ-ÿ �Qk�|ßi7�%àQæ
f

4. THE RETRIEVAL PROCESS�,���
�"���,�)���
H��CD,�J�"��R%�-�|$T��	 f ���Fh%!���	�gi�����.�������U F�C�
	
���������.�
��2�����
�a���q��k����)������HJ���"2|� f �"��� f �����
��2|������H�!"�
H���^:�,!K��D-�������B2�������H�����.�,D,�J�
����!���2QN���������� f ����2U�����.�,�����JP)��$T��	 f �.�������QX����
	
����R
������Mg����:�
�J F�B2������,�
$T����	������B������H�!����)�������"	��K�����
��p����"2|�a2��.���
 "������7
��	
����������2w;>W-�J!���	�g%79����N��.?�hK!���	�gS������H�!��
H��#2��%�������
�C��!��O����}

• P)�q��!�	M��k�� f �"���'�����J¢ � �
¥�¸�	������.�
�����a�����
�����G�� ��
��������2#$T	�� fhK!���	�g5;��6?4���*���< F�J� f �"��� f �����
��2Q���U�����CDB��gO��	,�������
����	�^

• P`�OD,��!���2V 1�SH�	����
�U��$C�����������
	
�l�V����H������S����!"��2w&�!���2���	�7���
���"2%@4�����,������H�!"���)�����*�����"�)�
	
���������G�����.��D,��H�������	
�
����2c;v�����
������������������^]U����2�Í%?�^

• �-�a�����U	���h%!����)�|���q�S�"�.��!�	
���4������H�!���H��Uh%!���	�g�pG�����mq�°K´sr������!����d�
����!"��2b�����Q���������
���
	
��� g_ F�������"����2���	���2b���U����	
���l�
�1�.�
�"��^nP9$-�����d!"����	RX �O	��6h%!����)�Q������©
ý>þ
¦S¡Q¦d¢�è�¢
 �¢�©� �¢�èd�
¢ � �
¥K¸¸��¦l¡U¢
¨"¸výv¼¯�a��p4�u�����l�������m��	i�dy"H�!�	�������!���2m�������5 F�
	�������R������i; f ��g� F�|�����-��R%���w£�¦����|	�������R
������?�^-�B�"���C	�� f ��	�N����	�	������F����2��O�
�w�
����P�+-8'W �l������������$#���
�������
����HÀ��¦"¢�©
¥1¦
· �
¨"¸)¦l¨"¸S¢
¨Fº5»1¸v l¥�¼�¸v¥K �¦��¶�|¦ · ê-»%!�h%!���	
�����<	
�.������	<�
�"�����»1¸A lýv¼�¸ · �
¨"¸)¦l¨"¸|¢
¨FºO»"¸A l¥�¼�¸A¥K
¦-�®�v» · ê-»%!|h%!���	
������^

=���	4�%!�	4�1�
	����������"�.�������i�
�qP)+-84W|p�D,�C�l���������
�|2���R��������U��!�	*��D-�
WJ35Eu	�����	
����R����L�)g��)�
� f pK�
� f �
N��J����������	������#�l�%�������l�����%�Q��$M��!�	

hK!���	�gS��������g��
���C�)g������ f �����
�O�����q	����
	
����R���� f ��2�!"����^,P)��R�����Dx��$�����<2������
�"�1�%����������HQ	�����!"� ���C��$:�
�"���-��g������ f pL���J��	���R%��2��
�Q F�<���!���$T��	���!����.�
�Q�l�������l��^������Q����	
����!"�q�����
Ne��$,�
� f �U F��$T��	��UP)+-84W2�����2��������������.�OD,������R��� F�����_������$T	��%���
��2mD-� ���_���i�����S��$C�����
	�������������$T��	��
�"�.���� 1!K�'����gKDB��g�p���2��
���
����H-��!�	:������H�!����)����� f �K2"!�����
�V���n��k������
����HV�)g��)�
� f ��	e;>��R����n F��������	l?U�����
��H�	
�
�
����HV� �S�����
�
����g������ f 2���R����������F��2w���{�l�%�����
 F��	
�.�����%�uDC�����w�� F�����
��	|��NK��������2
�
��� f DB��!���2c F�q� f ��	��B��!�2"��������!���������!K�����%�S���c�����#$>!K��!�	���^

5. COMMENTS��	���~"���l�
�����n�� 1�%!K�c��!�	UD,��	�N_$T��	QP)+J8'W H�� R��6�U	
�������
�m��� f ���� fOf �����
���
 F��!��C���F������y1����������������2S��� f �����B��$���!�	��
�"��	������l�L^

5.1 CAS versus CO topics�����O�)�
	�����H����)�#��	
��H������������9gd��$*��!�	 f ��������2u���J�
�"�.�q� �#	��6�������J��������S����	
!"�l�
!�	�����$�������2�����! f �����O���m��	
2���	<���w������� g����c�����S����7
f �����
�����O��$C������	���hK!����)��^o=���	i�������O	����������b� �OD����i�"	���2������� "��������.�B	�����!����
��$T��	 · �
¨"¸9¦�¨�¸A¹�¢
¨Fº
¹`»1¸v l¥�¼�¸v¥�
¦C�
����NiD,��!"��2U F�J F�����
��	��������$T��	 · �
¨"¸9¦l¨"¸A¹�§�¨"£�§U������NF^B�����
�-���BD-���.�J���
�"�1�6����2Lp�D-�������D,�Q��	��U	
����N��62e� rd $T��	#�a�,� / �
���"�����q���"2e] th $T��	i� z �
���"�����
����+-EMI'Ws�
	
���
NFpF����2��-Í th $T��	��J�,� / ����2d��� st $T��	a� z ���������
¢�º�����¼U�
	
���
NF^5P9$C� / �,� / �
	
����Nw����2{��k����)�
��2wD,�c����!���2{�"��R��
��k��F���l����2� F��������	B	����
!�� ����^

5.2 Structural density�m�l� f �1�
	
�������J F���9DB�����J��!�	�D,��	�N-���aP)848*8����������6���������a$T��	�P�+-8'W���"2|��!�	:�
������	'�)��!�2"�����'�����|H���R��B!��:��� f �B����2"�����.�����%���:�
 F��!��������	������.�������5 F���)D,�����������O2��6�������9gd��$ f �
	�N%79!��e���d�����O����	��"!"�a����2�����i�
 "�������9g��������"��� g����<��	����1��	���gS�����<	���hK!����)���-�����������J����	��"!"��^
�r�������cD,���
	���!��
����Hd�����S�)�
	
!��l�
!�	��Q�
�u�1��	�$T��	 f ��������������g�������p
��� f �
N��6�<�����"���Q�
�e����������2���	<�
�"�.�<�����S����H�����	|�������i2����"��� �)gm����p�����Q����������	q�%!�	#D,��	�Ne�����%!���2w F��^��-�"2u�������|���q	
��H����q�
�5������	�7
�������Q��kK��������^'�B!K�B��$G�|����	��"!"����� f ��	��J2��.���.79��������	
���
p�����������	*�
�<�2��
�
�
 1�����C$T��	 f �.�a;>���*��2�2�	������4 F�K��NK�4��	*~"��H%���,��������2�!�������?�p�������������J!�����	
�RX%	���hK!����)���*���O�
�"��������	��1!����
	���R%��	�gU�)�
	
���l�B���"2O��	��6�������
;>�"!��l� f ��	��-�������QP)+J8'Wr�
���1������?�^4�������U�����a��� f ���
�,��$�+-EGIY;v���$>�
	l?4��	��-	�����������2Lp�����2Q����gQ� f �F��	�$T���l�����%�Q���O�����J�)g��)�
� f ��	,� f 7 "��H�!����9g�����!���2d������2S���c������	�	��������%!��C�����
��	���	����
�.�������L^,�w�<������2
���q��!"���q�����������
�J�l�%������2���	��,&9	�������	
���l����2K@*�"�.��!�	
���%������H�!��
H���p
��� f 7������2O���|!��"� f 1��H�!���!��4����	
!"�l�
!�	����*����2O��	���792���y1����2i����	 f ��^'�-�*�
f �.������	-��$'$v���l��p��B���|P)+-84W �����������l�����%�d����� f ���
�Q F�<���c&���2������ @���K7A F���)D,�����c$>��	 f �.�B�
�U�
���"��gc��!�	 f ��������2L^

5.3 Topic complexity�����-�
���"�����,�"	����F������2Q %gQ�"�
	����������"�������,�.�BP)+J8'WtZ
\�\
]i�
	��JR���	�g2���R���	
����^4�B���a¬K­K®�¯6°�±�²K³�±
´6µc�"�
	���R
�
	
�����B$T	�� f �|�
���aÍ<D,��	
2���}

ìU¨|© # Ó�Õ-$iÆ�Ç`Ò�Ó Ñ�0 Ï�Ê*Æ�øKÔ6Î
Ò*È�Ï�Ê`Ò�Î�Ç9ÏBÇ9Ï
Ñ�Ô�È.Õ�Ó Ò�Ó Ô6Õ�Ê�ª
í�ô�ì Ç)Æ�Õ�«6Ï�$<Ç9Ï�Ò)Ç)Ó Ï�÷�Æ�01Ó ÕqÒ�É�ÏN¬�¬�¬=ª
ìU¨6î­¬�Ï�Æ�Ç9Ïj0 Ô
Ôs«�Ó Õ�Èì6�Ô6Ç4Æ�Ç`Ò�Ó Ñ�0 Ï�Ê4Ñ�Ô6Õ6Ò�Æ�Ó Õ�Ó Õ�È¸$�Ï
Ê)Ñ�Ç9Ó Å�Ò�Ó Ô6Õ<Ô�6$%ÓÐ=-ÏlÕ�Ê)Ó Ô6Õ|Ç9Ï�$%Î�Ñ
Ò�Ó Ô6ÕË=-Ï
Ò�É�Ô�$�ÊUª�/4É�Ï
Ê)Ï =JÏ
Ò)É�Ô�$�Ê*Æ�0 0 Ô�<VÎ�Ê'Ò)Ô0 Ï�Ê)Ê9ÏlÕ|Ï¯®�Ï�Ñ
Ò9Ê4Ô�61Ò�É�Ï±°�ÑlÎ�Ç9Ê9ÏBÔ
6U$%Ó =JÏ�Õ�Ê�Ó Ô6Õ�Æ
0 Ó ÒAë?°,Æ�Õ-$�=JÆR«6Ï

Ç9Ï
Ò)Ç)Ó Ï�÷�Æ
0�Ô�6D$�Ô.ÑlÎ%=-ÏlÕ6Ò)Ê;6�Æ�Ê9Ò)Ï
ÇUªGòZ²�Æ�=JÅc0 Ï�Ê'Ô
61Ò�É�Ó Ên=JÏ�Ò�É�Ô�$�ÊÆ�Ç9Ï5<:Ï�0 0 Ði«�Õ�Ô�<*Õ�0�Æ�Ò)Ï�Õ6Ò4Ê)Ï�=JÆ�Õ6Ò�Ó Ñ�Ó�Õ-$�Ï7²�Ó Õ�ÈOé78 Ä ð`ö(<*É�Ó Ñ
É
Ó =JÅ�Ç9Ô�÷6Ï�Ê4Ç9Ï�Ñ�Æ�0Ð0�Ô�61Ò�É�ÏBÇ9Ï
Ò9Ç)Ó Ï�÷�Æ�0"Ê`ë�Ê`Ò)Ï�=xÆ�Õ-$<Ç)Æ�Õ-$�Ôa=
Å�Ç9ÔR³`Ï�Ñ�Ò�Ó Ô6Õ®<�É�Ó Ñ�É�$�Ô.Ï�Ê*Õ�Ô�Òn=JÔa$%Ó 6�ë�$%Ó Ê`Ò�Æ6Õ�Ñ
Ï�Ê'Ò)Ô.Ôì=CÎ�Ñ
ÉHªD¬�ÏÆ�Ç9Ï�Õ�Ô�Ò*Ó Õ6Ò)Ï�Ç`Ï�Ê9Ò9Ï�$OÓ Õ|Ê9Ò)Ô�Åc0 Ó Ê9Ò4Íe0 Ò)Ç)Æ�Ò�Ó Ô6ÕL<�É�Ó Ñ�É�$�Ô.Ï�Ê4Ç`Ï�$%Î�Ñ�Ï
Ò�É�Ï $%ÓÐ=-ÏlÕ�Ê)Ó Ô6Õ<Æ²ø%Ó Ò�Æ�Ê*Æ�ø.ë�Å�Ç9Ôa$%Î�Ñ
Ò4Ô�61Ò)Ï�Ç}=YÇ9Ï�=JÔ�÷�Æ�0�ª

����� f �����S��	��� "��� f ���C���
�-��� f !"���c�����q������H
������$M�����#	���hK!���������#�����Q$>�����|�����
�q�����c������H�!"�
H��Q�l������H����aD-�����e�����Q	���hK!��6�)�<���
������H�^'P)��2�����2i�������
���1�����-�����#����2cZ
\��-�
	��C�9g��"�������"P)Xo	���hK!��6�)����}

201

�À���*ýT¨Fº�ÿ´ç#�
¥K¨µ´3�% �¢a��¦-�<�����"�)�
	
!��l�������r����2��V�
����H����e����!��
�"��	
������^ z �|���������
����	4�"����2�p
�����C�����)�*��k�� f �"���������"�������
�4��$L�����K7�
���������G��$���� fOf ���q������H%!��
H���p
�������������"����H f ����gq�������"����	
���G����2��	
��H f �.�
���q���"�����K!"�.�
���������F�O��	����1��	C��������g��
������$'�����L�����<�����������������$�������H�!���H��i���#���
�#�����"����� R��
 "����^|�������a������2"�C�
�S�����
�#��$����������
���<������	��6��!����
���%$T��	��������
�������B�����BD,��	
2"�¸�A¦�¶J¦�¼�¸�������	ì� è1 �� � ¦�¼�¸Aýv�
¨e�
D-�����C F�5�������
��2���	���2b %gb��!�	��)g��)�
� f ���U�
��	 f �U�
�my"��2o���b�����2�����! f �������|���qD,���������q�
���Q�
������	
��^58:R%���{��$,������g{�
	��Q	������.�
��2�
�c�
���<�����1���|��������	a� f �F��	��
���"���i���ahK!������O���6D,��	�^<3���	�����R���	J��!�	�)g��)�
� f 2��K���B���
�C�"����2����#����H%�.�������"��g�����^

5.4 Corpus knowledge�J!�	
����H<�����#���
��H����������.�BD,�#2������������62c���Q�����a��	���R�����!��B�����l�����%����p
D,��!����62<����R���	
���KN����"2��:��$F����$T��	 f �.�����%�<�
 F�%!K�:�����B��k��"����	���2<����	�7�"!"��^��B�"���BN����6D-����2�H��#�����,�
�O F� f �K2�������2�$T��	�������������Dx�����C��$2�����! f �������7·-�
�O�)��!�2�g�^48:R%������$���!�	,�
	
���
Nc��������������������	
����2c %g�����
��	���H���������!"�C2�����! f �����
��p"D,�q��	
����2S�
�Q	���2�!����q�������-�����������
� �9g�
�#����� f ����� f ! f ^'�,!K�,2������"���
���
�"����p%D,����������N<�
�"�.�*�����C$T�������6DB7����H��F�%�������q��	��O����� f ���"� f ! f N����6D-����2�H��O���5�"����2����Q���w��	
2���	
�
�O�1��	�$T��	 f ���S�
�"��	�����	
���.�
�#hK!���	�g����"��� g�������}

• �����q�J�B�

• ���6����!����J�
���#�J���Y���
Hi�"� f ���B�
	��#���
��&9	������ @-DB��	
2��#;v������������������|��^ �%?����"2q�������- F������!"��������R���	
����D,��	
2��������q F��!"����2
$T��	:�J������H����,���%����������p
D,�,������2<�-2"���l�������"�
	�gq��$1�������������
 1���
��g�������g f �-$T��	J�����|���
HS��� f ���O;�¦6ú ©%úTû|�1�
�F��	±¸��
	����������e¸
2��K��! f ������p��
��������¸s�
�
�vp������
^ ?��

• / � f ���������q������!��
�������i;
¦�ú ©%ú>ûC&��Q�����)�a��$'N���gKD,��	
2"�9@�¸x&)N���gK7D,��	
2��9@�?
p,���m��	
2���	<�
�w��R%����2_����������H�������	
�.�
��2V �g_���m��	�7
	���������!��a2����
���l�
�����5��$4�
��	 f �O;>����	���p'£ ý7��¸J���a�������
����	a�Q���
H�"� f �#����	��<����	 f �
�O���K��NQ$T��	����c�
���J�
��kK��?
�

• / � f �<R���	�ge��� f �1���O�%���
������H����i����	
!"����!�	����Q;
¦�ú ©KúTû|&��S����R%���DC	
� ���
���o %g�3d�
	
�����aI'	��%!��)��@�¸�&��V����R����J��$#D-�������n�����
��!��
����	O���O3d�
	
�����BI4	���!����)@Qj{��$CD,�S��!��"�F�����c�����.�S¨F�
þ
¦�£
���"2e¢
¥�¸����
 <	�����	����������B���
HU��� f ���l?
�

6. EXAMPLES�w�SH�� R%�S����	�������	���������H�����y"�������O��k�� f �"�����i��$C�����"�������"��� g����6��^�w�O����	��6��2Kgd��k��"����������2������.�q����R%��	
���:�)g����
���l�����|�1�
	
������H��a����!���2
 F�U�F���
���� "���Q$T��	q�����c��� f �Q�����������"����^SP)�w��	
���l�������c�c&�������	��l@Q����.���
	
�� "!����62d�
���6�����u	
!����i	������6������pM2����1�6��2�����H����u����R���	
���:�"�
	
�
7
f ���
��	
�O;>� f �%��HQD-�������d�����i2"���)�����"���< F���9D,�����������<D,��	
2"�C�����.��
	��5������N���2LpB�����5������H
���n��$J�����d�"��	
��������p,�������)gK�F�d��$J�����d	���7
���.�
��������^�^�^7¹J��$T��	���!��"�.���6� g�D,�|�����
NS���1�����#�
�U��k��"������� f ��	��q��	���7��������� gJ�
�"�����"	��K�������l?
^�P)�a��!�	M��� f �"���:�
���1���������"� g-�����4 F���)�M�
�l��	���2	�����!"� �-���BH���R�����^

6.1 Topic 127ìlí�î # Ó Õ-$<Å%Æ�Ç9Æ�È�Ç)Æ�Å%É�Ê4Ô�Ç'Í%È6Î�Ç9ÏBÑlÆ�Å�Ò�Ó Ô6Õ�Ê4Ñ�Ô6Õ6Ò�Æ�Ó Õ%Ó Õ�ÈJÒ�É�Ï$�Ï
ÍKÕ�Ó Ò�Ó Ô.Õ|Ô
6Zº�Ô�$�Ï�0Tïc81Î�«�Æ�Ê)Ó Ï�<�Ó ÑU»BÔ�Ç'Ô�Ò�É�Ï
Ç;6�Î�»U»
ë.ÐÔ0 Ô�È.Ó Ñ
Ó =JÅc0 Ó Ñ�Æ�Ò)Ó Ô6Õ�ÊUª

�����cy�	
�)�O�JX / �� �����������2w F��$T��	��U�������
�"�"�������.�����%�{��$�P)X 	
!������
���Q�
���6DC�o���by"H�!�	��m���
^t�B���d��	��62������.�
�S&�°K­/t�¼�z
¬&½�­K¯6³�±|x�­¿¾j¤;À
Á-ÂsÃFÁZÄ @ f �����"�S�
�"�.�d�
���wD,��	
2 Á-ÂsÃFÁ hK!"������y����S�����wR��
	
���� "���
¤"^�������	������.�������{&�°K­/t�¼�µ�r"´
¬�±-q�±
­
°;¾j¤;À £ Ä @d�)������2��U$T��	Q��� f � 7�����C��� f �F��!��"2��5;v����	���p�� �l¥%ë�ë�§.¹9£��
©
ýA¼dý>¡�è1£ ýA¼
¢
¸Aýv�
¨e�q���"2Ê� ��©
¥K �¦
¼
¢�èF¸výA�
¨c�`?�^
·l�w�O�������'�5¨L¦��������#��$�2�����! f �����
�a������	��1!��-DC�����u��2����F��	�������J���t����2S2����F��	������C��!� ��)���l��^

�����Uy"�����4hK!���	�ge���#H%� R����w���ey�H�!�	��d��ZK^������O	������.�����%���# F��H����K7
������H_ %g_&	tK±�µ&Å3¼�@e��	��w������H�!����)�����u	������.���������c�����.�d� �SD,�%!���2� F�
�����
��	����)������H�;> "!��B���
�,������������������?:�
�q�
	����.�#;v���U��	
2���	*�
�q���
N��J�����
�
��������!������F�%������ "���aR��
	
���
�
����������� f !����
��7vD,��	
2c����	 f �q� ��pG�����>?�^

ÖAÆ|Ö¯ÇiÖ�È<Ö(É�Ö�Ê|ÖRËqÖRÌqÖUÍ<Ö�Î<ÖAÆ|Ï|ÖRÆ|Æ|ÖAÆRÇiÖAÆsÈ
½�Õ6½�ÃK×1ÑvÖRÆ�ß�ã�æ�ç±9 Û Ã"Ä�ß:Ë Ó7Ö ½�Ö�×i9�ÖRÆAÇ6ß:Ø�¿
½�ÃK×+9�ÖAÆsÈ�Ò
½�Õ6½�ÃK×1ÑvÖUÇ6ß�ã�æ�ç±9�Ö�Ë�ÃK×vØ�Â�ÃKß�Ë ÓBÖ ½�Ö
×i9�ÖAÆ	Ælß:Øl¿.½�Ã�×i9�ÖRÆAÇ�ÒË9ÜXÑAÖUÈ�ß:ÖUÎ ∧ ÖRÆsÏ�ÒÄ.½ Û Ã%ÂT×�Â>Ë�ÃDÑAÖUÈ�Ò
ÖUÎËûV¿.ËlÄ.½
ÞÖAÆ|ÏLûoÞ á�â6Ø�ã�Âv½�äGÂ>Ö�åÐ Ü�á
å)å�æ6ÚAÞ Ë�¿�ÂvÖ Ð ÑAÖjÉXÒ
Â�ç,è�Þ Â>Ö�Ø�×�ÂvË�ÃDÑAÖAÊ1ÒÌ�½
Þ �CÃKçqËlÄ�Â Û ½
Ì
ÑvÖAÊ�ß:ÖjÉXÒ
Ì�½
Þ �aØ.Ä Ö ½�Ö�×�Â�Õ6½
ÑAÖ�Ê�ß:Ë�×TÙ�½
ÌÔÒ
ÖAÆ	Æ®ûrÖUÈ ∨ ÖAÊè�Ø�Ì�Ø�¿�Ì)Ø�èKÙYÑAÖRË}ÒÛ ¿�á�Ì�½aÑvÖsÌßÒ
Ö�Ø�èK×TÂ>Ë�ÃDÑAÖUÍ�ÒÂ>ÄU�CÃKçqËlÄ�Â Û ½
Ì
ÑvÖ�Í�ß�ÖsÌßÒ
ÖAÆRÇËûrÖAË ∨ Ö�ÍÖAÆsÈ�ûnÂ>ÄU�CÂ�Ã�×v½�Ì
Þ�Ë�Ö�á�×vË�Ì

>@?7ADC(E�F G9G9I®Ø¶°�MÈTÔSUE�N
SUr¡?7Z�GQ�?�

ÑR�-�¯Ò Ó-Ô5�pÕ
Ó	Öy�pÕ
�	×�Ô5��Õ
Ó|Øp�pÕ
�AÙy�
Ó	Ø	�s�UÚ
Ó-Û5�pÕ
�AÜy�
Ó�Ûs�s�RÑRÝ��

ÞRß �R�|� �	×�Ô5�#Ó|Ø��A�#Ó�Û
�	×�Ô5�#Ó-Ôy�A�#Ó-Ö
�	�7à	Ý � �Rá|âd���RÛ��±Ó�×���	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���AÖ?�c�-×Uã?���RÑ%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���AÖ?�c�Rä?���RÑ-��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���RÛ��c�AØF�åàRÒ/�Rá���Ñ-�A�R�%��sæsçUè&�&é�ê-ë�ì5�RíRî
�sæsçUè&�&é�ê|ï�ì5�Aësî

ð �	�R�	�U� �	×�Ô
Ó	�s� �RÛ5���7Ò|Ú��	�R�R�A�/�A��à

�AÖy�#á	�sÑ-�7à��U�/�A�Uà
Ó�×ñ�y�A� ß �R��	×Uãy�p�U�|ò	� ð ��� Þ �s����Aäy�#Ý-�Aá|�|�
��Øp�5ÑA�	�s�s�/óA�s�AÝ��s�

>@?BADC(E
F GQ�DIì>@?�R�PU�3V¯N
E�C(Z�NaC(E
FYz­¹�C�FYEXÇ­TÔSUE�N�SUr¡?�Z»GQ�?�

6.2 Topic 141ì
õ�ìH'4Ï�Ò)Ç)Ó Ï�÷.ÏBÊ9Ï�Ñ�Ò�Ó Ô6Õ�Ê*ÆXøKÔ6Î
Ò4Ò�É�Ç9Ï�ÆX$%Ê;6�Ç9Ô
=xÆ�Ç`Ò�Ó Ñ�0 Ï�Ê*Æ�øKÔ6Î
Òô³9Æ�÷�Æ

�������������a�
��kK�
 F�%��Ni��������p��q������	��,���"2U�)g��������l�
������� gQ!���� f "��H�!K7��!"�BhK!���	�g�p��
�"�.�BD,��	�N��B�F��	�$T���l��� g�^ / ���ay"H�!�	��U����^

6.3 Topic 164ì�ù�õ ð�Æ�=YÊ�Î�ÇÔ÷.Ï
ë�Ó�Õ�È-Ò�É�Ï�Æ�Ç9ÏlÆ-Ô
6F«�Õ�Ô�<n0 Ï�$�È�Ïj=aÆ�Õ�Æ�È�Ï�=JÏ�Õ6Ò�6�Ô6Ç4Æ
Ç9Ï�ÅKÔ�Ç`Ò�ðMÆ
=t<4Ç)Ó Ò�Ó Õ�È�ïKÆ�Õ-$OÆ�=Æ0 Ô.Ôs«�Ó Õ�Èì6�Ô�Çõ«�Õ�Ô�<n0 Ï�$�È�Ï=aÆ�Õ�Æ�È6Ï�=JÏlÕ�Òn6�Ç)Æ�=JÏ�<:Ô�Ç(«
Ê4Æ�Õ-$<Ò)Ï
Ñ
É�Õ�Ô
0 Ô6È6Ó Ï�Ê�6�Ô�Ç
Ô�Ç9È.Æ�Õ�Ó »lÆ�Ò�Ó Ô6Õ�Æ
09=-Ï�=JÔ�Ç)Ó Ï�ÊUª

���������
���1���e	
������������� f �e��$|�����w��	��� 1��� f ��2����
�l	
�� F��2Y���Y���6��7�������u�K^ ��^J3d���)�J��$'�
���|��	����F�%����2�	������
�
�������i;>�����|y�H%!�	��c��]K?��
	��

202

Ñs�	�¯Ò �AÖy�p�R�R�R�/�s�R�R�
�	×ñ���AÖ|�U�	á|�	� ð �-�

Þsß �R�|� �sæsçUè3��éj�Aë/ì#�7ö/î
�sæsçUè3��éj�s÷-ì#�Uï-î

ð �|�R�	��� �	×
Ó-�R� ��Øp�yâs�AÓ	�

�RÔ5�#� ß �|�s�sá

>j?7ADC(E�FoGYÅ Iì>@?�R PU�3V¯N
E�C(Z�NaC(E
FezÉ¹�C�FeE�Ç TlSUE�N�SUr¡?�Z»Gc×(G

�����
��	����)������Hu����2 f ��g{ F��!�����$>!��vp' 1!K�O��� f �Q�
��	 f ��;v���"2m�d��	�7	���������!��C��������g���������$������q�"��	
�����-&)PB� f DC	
���
����H�^�^�^)@�?OH�������	
�.�
���
���%�����Q;T�6���F����������� gc����	 f ���7�' lýT¸)¦��¸�)¼7ø�!q���"2o�>
¦ßè��
 l¸��¸�9¼sù¯!
?
^

ÑR�	�UÒ Ó�×ñ�pÕ��
Ó-Ô5�pÕ

ÞRß �s�|� �	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���	×&�c�RÖ?��Ñ|�A�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���	×&�c�sÔ��åàRÒ/�Aá/��Ñ-���s�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���Aú?�c�RÙ?�åàRÒ/�Aá/��Ñ-���s�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���AÙ?�c�sÛ��åàRÒ/�Aá/��Ñ-���s�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD����ØF�c�RÜ?��Ñ|�A�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD����ØF�c�Rú?��Ñ|�A�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���AÜ?�c�Rä?��Ñ|�A�%��	�7à	Ý � àsÚ � �	�|�R�A���A�UàD���Aú?�c�Rä?��Ñ|�A�%��	�7à	Ý � �Rá|âd���Aä?�±Ó	Ù-��sæsçUè&�&é�ê|ï�ì5�7ö�î
�sæsçUè&�&é�ê/÷	ì5�s÷Aî

ð �|�s�	�U� Ó�×
Ó	�R� ��Øp�
Ó-�R�A� � Þ ���¯�	�F��AÜy�
�-�	� ß à��|�s�AÝs�D��Aúy�5Ñs�|�UÒ�� Þ �A�RòD��Aäy�\Ò/�UÒ/�A�s�D�

�	×ñ�\Ò/��à-�RÝ|��Ò���à|�Z�
Ó	Ùy�y�R�sÝ|��à����|�A�/�R�Uà-�|�?�
�AÖy�#�	��Ú��A�R�Z�
�RÔ5�
òsà�� Þ �R�sásÝ|�?��AÙy�\Ò/��à-�RÝ|��Ò���à|�Z�
�RÛ5�
òsà�� Þ �R�sásÝ|�

>j?7ADC(E�FoGc×(Iì>@?�R PU�3V¯N
E�C(Z�NaC(E
FezÉ¹�C�FeE�Ç TlSUE�N�SUr¡?�Z»GYýQ×

7. CONCLUSION�����ËÂ-	
�����G��$:P)��$T��	 f �.�������dXB���
	
����R
���>p"D-�����l�������
�ú� � ¥Ký>£�º������l¸v¹�*¢

¦O¸���¢
¸@�'ý>£T£*¢
¨F¢
£ §a��¦U8�¥�¨Fº%¦l ���¸9¢
¨Fº	8J¢
¨FºQ©%¦�¨F¦� �¢
¸9¦O
¦���¥�£ ¸��iýT¨

¦��ßè��
¨Q��¦<¸9��¤�¥1¦l lýA¦��i¸���¢
¸ �%¥K¡O¢
¨Q�U¦��¯è1
¦����<¨F¢
¸v¥� �¢
£T£�§Y��p����a������2
���_�����dP)+-84W +JEGI4W��
	
���
N_��	����������
�.�������LpC���Q$>�
	Q$T	�� f F������H
	������l����2L^�P`�'	���hK!������
�:�J2�������������2<�)g����
���l�����
p���� f ���������,����2|��	
�
H�7
f �.�����a!���2���	
�)������2�����H<��$M 1���
��hK!���	
���6�,���"2c2�����! f �����
���K�
�"���B���� f �F���
���� 1���e���n�����u��	����������S�)���.�
�u��$q��!�	�N����6D-����2�H��u���"2n	���7���%!�	
������^
P)�q���������"�
�F��	�D,��$T����!�����2|���<�Cy"	
�)�4�)�
����p��C�����l������hK!��*�
�-�
	
�����)7
���.���-�"�.��!�	
���"������H%!��
H��-h%!���	
�����*�����
�|�q����	
!"�l�
!�	���2O$T��	 f ���1h%!���	�g������H�!"�
H���^ z �{�
���V��$��
����� f ��������	
�.�������"�|��$��������O�)g��)�
� f p'D,����6D[���������"2b���{D,��	�Nb���b�����u!����d��$a�
���u������H�!"���)�����d����$T��	 f �.7����������	��6R���2���2S %gS��!�	 f ���
���K2�pF������	
2���	��
�Q� f ��	��6R��|����WJ3dE	����
	
����R�������g������ f ^

8. REFERENCES�����#�q^1�C	
� f �"�.�
ª�����p"�J^�R
����2���	B�w����2���pF�-^�ûC��������	�p"����2I�^�R����S��� fOf ���v^"EG����H�!"���)������������g%7 f �
��� R��.�
��2�P)��$T��	 f �
�
�����

X����
	
����R����v^�P)�S�q^?ûJ������p���2����
��	�pFü�¨F¼�§�¼�£���è�¦
º
ýv¢c����ý:ý � �¢
 l§
¢
¨Fº�
�¨����
 l¡O¢
¸výA�
¨�»L¼�ýA¦�¨F¼�¦lp�R�����! f �ìÍ���p��1�
H����CZ
\���j�Z�Z�ZK^35�
	
�������-��NKN���	�p"P)���
^�p1+C��Dÿþ4��	�N1p1�,�������vp"�-���
^FZ
\�\�\�^

� Z6�#I�^1�,�����
NK "!�	
�S����2#��^1������^Lü�¦ßè1
¦���¦l¨"¸9¢
¸Aýv�
¨e¢
¨Fº

�¨���¦l
¦l¨F¼l¦4���
 ²ç#¢�¸v¥K �¢�£FýG¢
¨K©
¥�¢6©%¦��¡ê��4 ��l¸ · �
¥K ���¦#ý>¨
· �
¡�è1¥�¸`¢
¸Aýv�
¨F¢
£�»L¦�¡O¢
¨"¸výA¼��l^"��� f ��� f pG��������^

� �.�|�-^"=1�
 �	��q����2d�C^F������hK!�� f ����^"���%�%�)������Hi���
	
�������X�������H��"� �����%�QD-� ���SEM��H���� / � f �����
������^�P)�5´, ���¼�¦�¦�º
ý>¨%©��|���¸���¦�����¸��m

¨"¸)¦l l¨F¢
¸výA�
¨1¢�£ · �
¨���¦�
¦l¨F¼�¦<�
¨ · �
¡�è1¥�¸`¢
¸Aýv�
¨F¢
£ý:ýT¨K©�¥KýB�l¸výA¼��U8 · §Ký¿
1çË�������	�.p��"��H�����Z�Í�].j�Z%�.\�p
/ ���
	� �	�
"�
N����Lp"�-!�H"^1Z
\�\�\�^

�]
� / ^"=�����2 f ���L^"+-EMIb3d�������,�
���±���
 � F��	�D,���
N%gL}'+J�.�
!�	
���EM����H�!"�
H��#I4	��K�����
������HU����P)��$T��	 f �.�������SX����
	
����R����v^ z ����������p35��gu��������^
�������G} ���6DBD�D#^ ���"������� f �
H�^ ������� z E4�������%�6$T����2 f ���1�K^ ��� f �>^

� �6�uûi^ / ^?�
��������^��r���.�C���,�����#	������a��$:+-EMIb���c����kK�C	����
	
����R����
�
P)� / ��	�ª�����N��6DC��NK�*����Z6�`p��"��H����a�lj�Z.]�^

� Í.�#�q^?û#� f �S���"2ñ¹q^1XB��g�����^U�L ��
¡�º
ý7��¼��
¥K ���¦#¸`�U£��
©
ýA¼�^
û#��!�D,��	C�B����2�� f ���#I4!� 1����������	�pM��������^

� ���#�M	���������H�H���	,7*�O������H�!"�
H��#���"2����F����2������B�"��	���7`��$�79���F�������
���
H�H���	�^
�������G} ���6DBD�D#^ � f ��^ !��"� 79�)��!K���
H��
	���^ 2��.�6��	��
����N��
�.�.����	��1����k1��M	���������H�H���	l�.�J���������������M	���������H�H���	�^ ��� f �>^

� �.�#�q^ / ��� f ��2L^"I4	��� "�� "���������
���#I:�
	���7A��$�7 / �F�����l�S���
H�H�����H
¹-�
����HU�J�������������S�M	�������^"P)�5

¨"¸)¦l l¨1¢�¸výv��¨1¢
£ · �
¨���¦�
¦l¨F¼�¦<�
¨ç|¦����w¦l¸�����ºa�aý>¨
ýG¢
¨K©
¥"¢�©%¦_´, ���¼�¦����lýT¨K©�p / ������^M�����
]�^

� �.�#�q^1=�^ / f ���.�
����^�P)��$T��	 f �.��������X����
	
����R
���v} / �
�����G�,!K��������H�C����2��,DC���
�S+J�.�
!�	
����EM����H�!"�
H��#I4	��K�����
������H���P)�
3{^"I:�
ª�������ª���p���2"� �
��	�pF
�¨����
 l¡O¢
¸Aýv�
¨
ü��
¸A �¢�¼�¸Aýv�
¨���ê
�5¥K£�¸výAº
ýB��¼�ý è1£�ýT¨F¢
 l§�ê3è%è1 ���¢�¼¯��¸9�c¢
¨
ü,¡U¦l A©
ý>¨%©

�¨����
 l¡O¢
¸Aýv�
¨ �F¦
¼��%¨F�
£���©
§
p�R�����! f �O�6Z
���<��$]ýM¦
¼�¸A¥K
¦²çq�
¸9¦��ý>¨ · �
¡�è1¥K¸)¦l a»L¼�ý`¦l¨F¼�¦lp"�"�
H����a���6��jF���-��^ / �"	
����H���	�7v�*��	
����H�p�����c�%^

����\.�#�q^1=�^ / f ���.�
����^�¹-������HO+-EMIb��	�+JEGIbX������%!�	
�����B$T��	P)��$T��	 f �.�������SX����
	
����R�����������NK��^�P)� / �
	�ª�����N���D-��N��4����Z6�`p�1�
H��������6jF�����
^
�����l�uûi^ / �"�
	
�
N
�
�����������"2
��^�P�^"��������^"�-!���� f �.����� / �6�
	
����M��	 f �*�
	
�������²Â-������	
�.��������^��K�
¥K l¨F¢
£M����k|��¼�¥�¡U¦l¨"¸`¢
¸Aýv�
¨"p

]�\1;)�.?
} �
\6jeÍ%Í�p����-�
]�^
����Z6�#�a^ / ��	�ª�����N��6DC��NK�vp���2�������	�^Uç#¢
¸A¥K �¢
£DýG¢
¨K©
¥�¢�©%¦å

¨����
 �¡U¢
¸výA�
¨

üC¦l¸v lý`¦lþ.¢
£�^�û#��!�D,��	C�B����2�� f ���aI*!� 1����������	�p"�J��	
2�	����l����p"+-E4p��������^
�����.�#�a^ / ��	�ª�����N��6DC��NK�v^"I'	���$>������^�P)��ç#¢
¸A¥K �¢
£DýG¢
¨K©
¥�¢�©K¦

�¨����
 l¡O¢
¸Aýv�
¨SüC¦l¸A �ý`¦lþ.¢
£B���6Z6�Ap��1�
H����,k������ j�kKk������>^
����]
�aWJ35EwI:�.���SEG����H�!"�
H��U;>WJI:�.���1?�^��w��	
��2c����2��a�w��

����������	�����! f ;��r�%��?�X������ fOf ����2"�.��������^�������G} ���6DBD�D#^ D-��^ ��	�HK�.��X-�6kK�1�.�
��^
�����6�aWJ�J!���	�gu�
^ \�}4�-��WJ35Em�J!���	�g�EM����H�!"�
H���^��w��	
��2c�r��2��

�w�� 5����������	�����! f ;��r�%��?4�w��	�N�����HO�J	
�
$���^
�������G} ���6DBD�D#^ D-��^ ��	�HK�.��X-�6k�hK!���	�g%^

���XÍ.�aW / Ew�M	
������$T��	 f �.�������w;TW / E�?�^��w��	
��2c�r��2��J�w�� ����������	�����! f ;��r�%��?�X������ fOf ����2"�.��������^�������G} ���6DBD�D#^ D-��^ ��	�HK�.��X-�6k��
� ���%^

203

Kyungpook National University at INEX 2004: Interactive Track

Heesop Kim

heesop@knu.ac.kr

Heejung Son

sonhjung@postech.ac.kr

Dept. of Library & Information Science, Kyungpook National University, Daegu, 702-701, South Korea

Abstract

At the INEX 2004 Interactive Track, we intended to

understand the searcher behavior by focusing on

search characteristics when interacting with

structured XML documents. We tried to find out

whether there exists any correlation between 6 factors

of search characteristics (i.e., number of query

iterations, number of query terms used, number of

unique query terms used, number of

documents/components viewed, number of

documents/components assessed, time spent) and the

searcher’s satisfaction. 8 subjects were take part in

and followed the experimental guidelines from the

INEX Interactive Track organizer with no

modification. 16 transaction logs from the search

sessions and 6 responses from the questionnaires per

subject were collected. We used SPSS for W indows

10.0 as a statistical analysis tool and adopted

Pearson’s correlation coefficient (r) for correlation

analysis. No significant correlation was found

between satisfaction and the chosen 6 factors in this

experiment. However, a much larger sample size

could support more meaningful interpretation in the

next experiment.

1. Introduction

In the INEX 2004 Interactive Track experiment we

tried to investigate the behavior of searchers with

structured XML documents, and find out which

factors of 6 search characteristics (number of query

iterations, number of query terms used, number of

unique query terms used, number of

documents/components viewed, number of

documents/components assessed, time spent) have a

significant relationship with the searcher’s

satisfaction. We analyzed transaction logs from the

search sessions and questionnaire data from each

subject, collected according to the standard

experimental guidelines from the INEX 2004

Interactive Track organizers.

2. System, database and tasks

HyREX (Hyper-media Retrieval Engine for XML)

on-line search engine, which was provided by the

track organizers, was used to retrieve the XML

documents or their components, and to collect

relevance assessments from the subjects. Of the two

interfaces available in the system, we used the simple

‘baseline interface’ rather than the additional

‘graphical interface.’ INEX data collection of the

ad hoc track (version 1.4), which consists of full text

from the journals published by the IEEE Computer

Society, was used in this track. The topic area of the

collection is computer science, focusing on hardware

and software development. The time span covered by

the collection is 1995 to 2002.

Four tasks, divided into two categories, that is,

‘Background category (B)’ and ‘Comparison

category (C)’, were used. The tasks were derived

from the CO topics that were extended to engage the

subjects in realistic searching behavior. Among topics

204

from the ‘Background’ category which express

information need in the form of “I’d like to find out

about X,” topics 180 and 192 were selected for two

tasks in this category. Topics 188 and 198 were taken

for two tasks of the ‘Comparison’ category, in which

the topics express “Find differences between X and

Y”. Each subject was asked to choose one task from

each category1.

3. Experimental design

3.1. System interface

We used HyREX baseline interface for the system

interface. Figure 1 shows the ranked list of search

results. Each result of the list consists of rank, article

title, author(s), retrieval status value, and a pointer to

the path of the retrieved document component. Up to

100 top-ranked results were returned for each query

and 10 results were seen per page. Each detailed

result page can be accessed by clicking on the path

from the ranked list (see Figure 2). Each one provides

its own Table of Contents on the left which represents

the structure of the document and allows the links to

the corresponding components. From a drop down

box on the top and bottom of the detailed result page,

the subjects were asked to submit relevance

assessments for the retrieved document. Two aspects

of relevance were assessed according to the

followings: (1) the extent to which the displayed

component contains information that is useful for

solving the given task (Usefulness=Exhaustiveness)

and (2) the extent to which the displayed component

is focused on the topic of the task (Specificity).

Finally, 10 categories combined from the two aspects

were provided to the subjects for relevance

assessments2.

3.2. Experimental procedure

We adopted the experimental guidelines from the

�

Four tasks are presented in the Appendix I
2 10 categories are found in Figure 1

organizers without any modification. The order of an

experimental session was as follows:

Figure 1: HyREX interface for ranked list

Figure 2: HyREX interface for detailed result

1. Brief information about the experiment and

procedures was given to the subjects.

2. ‘Before-experiment questionnaire,’ which

contains questions about the demographic

information and search experience of the

subjects, was filled in by the subjects.

3. ‘Introduction for Searchers’ was distributed to

the subjects.

4. System tutorial was conducted. Test runs with

the query ‘Information Retrieval’ were also

performed by the subjects.

5. Category task selection from the first category

was performed by the subjects.

6. ‘Before-each-task questionnaire’ was filled in

by the subjects.

7. Conducted ‘Search’ with maximum 30 minutes.

8. ‘After-each-task questionnaire,’ which contain

205

questions about subjects’ satisfaction with the

results and the system interface, was filled in by

the subjects.

9. Stages 5-8 were repeated for the other task

category by the subjects.

10. ‘Post-experiment questionnaire,’ which contains

questions about the whole tasks and the system,

was filled in by the subjects.

Two transaction logs from each searcher session were

collected, in addition to the questionnaire data.

3.3. Subjects

Eight volunteer subjects participated in this

experiment. Seven of them are students of the

Department of Library and Information Science at

Kyungpook National University, and the other one is

a researcher. Four of the subjects are male and four

are female. All of them speak Korean as their first

language. The ages of the subjects were between 24

and 31 (mean = 27.125) at the time of experiment.

One of them has Master’s degree, while half (4

subjects) have Bachelor's degree and the others (3

subjects) are undergraduate students. Two subjects

have been participated in previous on-line searching

studies as a test person, but none for as an

experimenter. It is reported that our subjects have an

average of 7.13 years of on-line searching experience

(min. = 5, max. = 10, std. deviation = 2.03). Subjects’

detailed levels of experience with searching are

shown in Table 1.

Table 1: Subjects’ Experience with Searching
3

Searching experience Mean Std. Dev.

Computerized library catalogues 3.25 1.282

Digital libraries of scientific articles 3 0.926

WWW search engines 4.625 0.518

IEEE journal and magazines 2 1.069

As you can see from the table, our subjects are more

3 Based upon a 5 point scale in which 1= No, 3= Some, 5=

A great deal

familiar with the WWW search engines than other

kinds of library information systems or databases.

The average frequency of performing a search on any

kind of system was 4.875 based upon a 5 point scale

in which 1=Never and 5=One or more times a day.

4. Results

4.1. Search characteristics

From the transaction logs we identified 9 possible

factors of search characteristics that could be

regarded as reflecting the searcher’s behavior. Those

factors were: (1) the total number of queries issued

by the subject per session (Query iterations), (2) the

total number of query terms used per session (Query

terms used), (3) the average number of query terms

used per iteration (Average query terms used), (4) the

number of unique query terms used per session

(Unique query terms), (5) the number of unique

query terms derived from the content of the task

(Unique query terms in task), (6) the number of

documents (Documents/components viewed), (7)

document components assessed

(Documents/components assessed), (8) the time spent

for each session (Time spent), (9) and the time spent

until the 1st relevance assessment was submitted

(Time of 1st relevance assessment). The most

distinguishing 6 factors out of these 9 were selected

according to the purpose of our research. Table 2

shows the overall search characteristics with all 9

candidate factors.

Table 3 and Figure 1 present the results for each task

as the result of the relevance assessments from the

subjects which obtained from the transaction logs.

206

Table 2: Overall Search Characteristics

Subjects Tasks
* Query

iterations

* Query

terms used

Average

query

terms used

* Unique

query

terms

Unique query

terms in task

* Documents/

components

viewed

* Documents/

components

assessed

* Time

spent

Time of 1st

relevance

assessment

B1 7 32 4.571 11 11 8 2 0:29:16 0:17:30
001

C2 2 4 2 4 4 5 2 0:07:10 0:02:32

C2 7 23 3.286 9 9 23 8 0:32:23 0:03:48
002

B1 5 15 3 8 7 16 5 0:15:18 0:02:47

B1 3 8 2.667 7 7 7 4 0:14:30 0:02:38
003

C2 8 33 4.125 18 17 9 7 0:19:16 0:03:15

C2 7 28 4 7 7 18 2 0:22:29 0:15:47
004

B1 1 3 3 3 3 2 1 0:15:26 0:05:31

B2 6 11 1.833 5 5 16 7 0:23:50 0:01:44
005

C2 8 18 2.25 7 6 17 12 0:26:20 0:04:38

C2 3 10 3.333 8 8 18 13 0:31:46 0:03:41
006

B1 6 20 3.333 10 10 22 20 0:24:42 0:03:51

B2 4 6 1.5 4 4 56 8 0:27:03 0:07:26
007

C2 3 6 2 5 5 21 4 0:24:40 0:04:04

C1 3 12 4 6 6 17 8 0:29:59 0:03:47
008

B2 8 25 3.125 13 10 18 10 0:27:52 0:01:51

N 16 16 16 16 16 16 16 16 16

Minimum 1 3 1.5 3 3 2 1 0:07:10 0:01:44

Maximum 8 33 4.571 18 17 56 20 0:32:23 0:17:30

Mean 5.063 15.875 3.001 7.813 7.438 17.063 7.063 0:23:15 0:05:18

Std. Deviation 2.351 9.979 0.907 3.834 3.464 12.157 5 0:07:08 0:04:39

(*: Selected 6 factors for correlation analysis with subjects’ satisfaction)

Table 3: Results of Relevance Assessments per Task

B1 B2 C1 C2 Total Percentage
Average

Ranking
4

A 8 2 0 8 18 15.929 7.6

B 5 3 1 4 13 11.504 5.2

C 0 0 0 4 4 3.54 13

D 0 0 1 2 3 2.655 3.667

E 6 2 1 4 13 11.504 3.222

F 2 2 0 5 9 7.965 12.143

G 0 0 0 3 3 2.655 23.333

H 0 0 3 3 6 5.31 4.5

I 5 6 2 6 19 16.814 8.824

J 6 10 0 9 25 22.124 7.042

Total 32 25 8 48 113 100

4 Average ranking of the documents or document components which were assessed with corresponding category for relevance

assessment (A-J)

207

0

5

10

15

20

25

30

A B C D E F G H I J

0

5

10

15

20

25

B1 B2 C1 C2 Average Ranking
(Average

Ranking)

A: Very useful & Very specific, B: Very useful & Fairly specific, C: Very useful & Marginally specific

D: Fairly useful & Very specific, E: Fairly useful & Fairly specific, F: Fairly useful & Marginally specific

G: Marginally useful & Very specific, H: Marginally useful & Fairly specific, I: Marginally useful & Marginally Specific, J: Contains no

relevant information

Figure 1: Results of Relevance Assessments per Task

We observed that ‘A’ (Very useful & Very specific,

15.929%), ‘E’ (Fairly useful & Fairly specific,

11.504%), and ‘I’ (Marginally useful & Marginally

specific, 16.814%) take approximately 50% of the

total relevance assessments;while ‘C’ (Very useful &

Marginally specific, 3.54%) and ‘G’ (Marginally

useful & Very specific, 2.655%) have only about 7%.

The difference between the assessments from the

subjects and the ranking from the system can be

explained by ‘J’ (Contains no relevant information).

‘J’ account for 22.124%, the highest percentage, of

the total assessments, but the average ranking (7.042)

for the document components whose relevance was

assessed with ‘J’ is higher than that whose relevance

was assessed with ‘A’ (7.6).

4.2. Correlation analysis between search

characteristics and subjects’ satisfaction

We examined the correlation between the 6 factors of

search characteristics and the subjects’ satisfaction.

Two questions (AQ3: “Are you satisfied with your

search results?” and AQ4: “Do you feel that the task

has been fulfilled?”) are adopted to measure the

subjects’ satisfaction. As shown in Table 4, there was

no significant correlation between the subjects’

satisfaction and the chosen 6 factors of search

characteristics in p<0.05. However, it is interesting to

note that the level of system support (AQ9: “How

well did the system support you in this task?”) and

the average relevance of the information presented

(AQ10: “On average, how relevant to the search task

was the information presented to you?”) have a

strong positive correlation (p<0.01, r=0.769) with the

subjects’ satisfaction (AQ3: “Are you satisfied with

your search results?”)5.

4.3. Subjects’ comments about the experiment

and the system

After the experiment, all of the subjects were asked to

answer the ‘Post-experiment questionnaire’ which

was intended to find out how understandable the

tasks were and how easy it was to learn and use the

system. General comments about the system were

also requested. The subjects’ responses about

understandability of tasks (PQ2: “How

understandable were the tasks?”), similarity to other

searching tasks (PQ3: “To what extent did you find

5 Questions (AQ3-AQ4, AQ9-AQ10) are listed in the

Appendix II

208

the tasks similar to other searching tasks that you

typically perform?”), and easy to learn and using the

system (PQ4: “How easy was it to learn to use the

system?”; PQ5: “How easy was it to use the system?;

PQ6: “How well did you understand how to use the

system?”) are shown in Table 5. It is noteworthy that

the subjects’ are satisfied with the system’s user

interface but they seem unfamiliar with searching

XML documents which showed poorest result. Table

6 presents the subjects’ likes and dislikes about the

search system and its interface.

Table 4: Correlation Coefficients between 6 Factors of Search Characteristics and Subjects’ Satisfaction

Query

iterations

Query terms

used

Unique

query terms

Documents/

components

viewed

Documents/

components

assessed

Time spent

coefficient
AQ3

p-value

-.431

.096

-.307

.248

-.105

.698

-.131

.628

.062

.819

-.406

.118

coefficient
AQ4

p-value

-.337

.202

-.275

.303

-.080

.768

.188

.484

.150

.580

-.229

.395

Table 5: Selected Questions from the Post-

experiment Questionnaire
6

PQ2 PQ3 PQ4 PQ5 PQ6

Mean 3.25 2.125 3.75 3.875 3.625

Std.

Dev.
0.707 0.835 0.707 0.835 0.916

Table 6: Subjects’ Likes and Dislikes about the

Search System and Interface

Likes about the search system and interface

- Easy to browse the search results (1)

- Easy to understand or learn the system (3)

- Display by the structured method (Provision of the

“Table of Contents”) (4)

- Simple interface design (5)

- Search capabilities (“Keyword Highlighting,” rsv

etc.) (3)

Dislikes about the search system and interface

- Delay of the response time (3)

- Lack of search functions and Boolean operators (7)

- Unstableness of the ranked results (2)

- Duplication of the same article in the same result (3)

- Too short information on the ranked result list (1)

- Display of the complex document by the tree

structure (1)

(N): Number of subjects

6 Based upon a 5 point scale in which 1=Not at all,

3=Somewhat, 5=Extremely; Questions are listed in the

Appendix III

5. Conclusion and Discussion

In this experiment, we tried to discover which factors

of search characteristics influence the searcher’s

satisfaction. No significant correlation was found

between the factors of search characteristics and

searcher’s satisfaction, but we expect a much larger

sample size to produce more statistically meaningful

interpretation in the next experiment. Also, it would

be interest to compare the subjects’ demographic

factors as many previous user studies carried out. In

addition, we would like to make comparison between

the graphical interface and the simple baseline

interface in the future experiment.

It also seems that the nominal scale of relevance

assessment is not that helpful in analyzing the results.

Therefore, a different kind of scale for relevance

assessment could be considered in the next

experiment.

References

Belkin, N. J., Cool, C., Kelly, D., Kim, G., Kim, J. Y.,

Lee, H. J., Muresan, G., Tang, M. C., Yuan X. J.

(2002) “Rutgers Interactive Track at TREC 2002.” In

E. M. Voorhees and L. P. Buckland (Eds.). The

Eleventh Text REtrieval Conference, TREC 2002 (pp.

209

539-548). Washington, D.C.: GPO.

Craswell, N., Hawking, D., Thom, J., Upstill, T.,

Wilkinson, R., Wu, Mingfang. (2002) “TREC11 Web

and Interactive Tracks at CSIRO.” In E. M. Voorhees

and L. P. Buckland (Eds.). The Eleventh Text

REtrieval Conference, TREC 2002 (pp. 197-206).

Washington, D.C.: GPO.

Fuhr, N., Malik, S., Lalmas, M. (2004) “Overview of

the INitiative for the Evaluation of XML Retrieval

(INEX) 2003.” In N. Fuhr, M. Lalmas and S. Malik

(Eds.). INEX 2003 Workshop Proceedings (pp. 1-11).

INEX 2004 Interactive track guidelines: [online

available] at: http://inex.is.informatik.uni-

duisburg.de:2004/tracks/int/

Appendix

I. Four tasks per category

- Background(B)

Task ID: B1

You are writing a large article discussing virtual reality

(VR) applications and you need to discuss their negative

side effects. What you want to know is the symptoms

associated with cybersickness, the amount of users who get

them, and the VR situations where they occur. You are not

interested in the use of VR in therapeutic treatments unless

they discuss VR side effects.

Task ID: B2

You have tried to buy & download electronic books

(ebooks) just to discover that problems arise when you use

the ebooks on different PC's, or when you want to copy the

ebooks to Personal Digital Assistants. The worst

disturbance factor is that the content is not accessible after

a few tries, because an invisible counter reaches a

maximum number of attempts. As ebooks exist in various

formats and with different copy protection schemes, you

would like to find articles, or parts of articles, which

discuss various proprietary and covert methods of

protection. You would also be interested in articles, or parts

of articles, with a special focus on various disturbance

factors surrounding ebook copyrights.

- Comparison(C)

Task ID: C1

You have been asked to make your Fortran compiler

compatible with Fortran 90, and so you are interested in the

features Fortran 90 added to the Fortran standard before it.

You would like to know about compilers, especially

compilers whose source code might be available.

Discussion of people's experience with these features when

they were new to them is also of interest.

Task ID: C2

You are working on a project to develop a next generation

version of a software system. You are trying to decide on

the benefits and problems of implementation in a number

of programming languages, but particularly Java and

Python. You would like a good comparison of these for

application development. You would like to see

comparisons of Python and Java for developing large

applications. You want to see articles, or parts of articles,

that discuss the positive and negative aspects of the

languages. Things that discuss either language with respect

to application development may be also partially useful to

you. Ideally, you would be looking for items that are

discussing both efficiency of development and efficiency of

execution time for applications.

II. Selected questions from the After-each-task

questionnaire

AQ3: Are you satisfied with your search results?

AQ4: Do you feel that the task has been fulfilled?

AQ9: How well did the system support you in this

task?

AQ10: On average, how relevant to the search task

was the information presented to you?

III. Selected questions from the Post-experiment

questionnaire

PQ2: How understandable were the tasks?

PQ3: To what extent did you find the tasks similar

to other searching tasks that you typically perform?

PQ4: How easy was it to learn to use the system?

PQ5: How easy was it to use the system?

PQ6: How well did you understand how to use the

system?

210

 Monday, December 6, 2004 Tuesday, December 7, 2004 Wednesday, December 8, 2004
09.00-09.20 Opening

Norbert Fuhr
09.20-10.40 Session 1: Ad hoc retrieval I

Chair: Ray Larson
The University of Amsterdam at INEX 2004. Börkur
Sigurbjörnsson, Jaap Kamps and Maarten de Rijke

TRIX 2004 struggling with the overlap. Jaana Kekäläinen,
Marko Junkkari, Paavo Arvola and Timo Aalto

Hybrid XML Retrieval Revisited. Jovan Pehcevski, James A.
Thom and Anne-Marie Vercoustre

TIJAH at INEX 2004 Modeling Phrases. Vojkan Mihajlovic,
Georgina Ramırez, Arjen P. de Vries, Djoerd Hiemstra and
Henk Ernst Blok

09.00-10.20 Session 4: Ad hoc retrieval II
Chair: Patrick Gallinari
Component ranking and Automatic Query Refinement for
XML Retrieval. Yosi Mass and Matan Mandelbrod

The Utrecht Blend: Basic Ingredients for an XML Retrieval
System. Roelof van Zwol, Frans Wiering and Virginia Dignum

Hierarchical Language Models for XML Component
Retrieval. Paul Ogilvie and Jamie Callan

Analyzing the Properties of XML Fragments decomposed
from the INEX Document Collection. Kenji Hatano, Hiroko
Kinutani, Toshiyuki Amagasa, Yasuhiro Mori, Masatoshi
Yoshikawa and Shunsuke Uemura

09.00-10.20 Session 5: Ad hoc retrieval III
Chair: Anastasios Tombros
An algebra for Structured Queries in Bayesian
Networks. Jean-Noël Vittaut, Benjamin Piwowarski
and Patrick Gallinari

GPX - Gardens Point XML Information Retrieval at
INEX 2004. Shlomo Geva

Merging XML Indices. Giambattista Amati, Claudio
Carpineto and Giovanni Romano

Ranked Retrieval of Structured Documents with the
STerm Vector Space Model. Felix Weigel, Klaus U.
Schulz and Holger Meuss

10.40-11.00 Coffee 10.20-10.40 Coffee 10.20-10.40 Coffee
10.40-11.20 Session 6: Natural language track

Chair: Trond Aalberg
NLPX at INEX 2004. Alan Woodley and Shlomo Geva

Analysing Natural Language Queries at INEX 2004. Xavier
Tannier, Jean-Jacques Girardot and Mihaela Mathieu

10.40-11.30 Workshop Reports II
Interactive track (Birger Larsen), Heterogeneous
collection and topic format (Thomas Rölleke and
Börkur Sigurbjörnsson)

11.00-12.20 Session 2: Heterogeneous collection track
Chair: Arjen de Vries
Building and Experimenting with a Heterogeneous
Collection. Zoltan Szlavik and Thomas Rölleke

Cheshire II at INEX 04: Fusion and Feedback for the Ad hoc
and Heterogeneous Tracks. Ray R. Larson

Using a relevance propagation method for Ad hoc and
Heterogeneous tracks in INEX 2004. Karen Sauvagnat and
Mohand Boughanem

A Test Platform for the INEX Heterogeneous Track. Serge
Abiteboul, Ioana Manolescu, Benjamin Nguyen and Nicoleta
Preda

11.20-12.00 Relevance feedback track
Chair: Anja Theobald
TIJAH at INEX 2004 Modeling Relevance Feedback. Vojkan
Mihajlovic, Georgina Ramırez, Arjen P. de Vries, Djoerd
Hiemstra and Henk Ernst Blok

Relevance feedback for XML retrieval. Yosi Mass and Matan
Mandelbrod

11.30-12.00 INEX 2005 Track proposals
Gabriella Kazai

12.00-12.20 Interactive track
Chair: Jaana Kekäläinen
The Interactive Track at INEX 2004. Anastasios Tombros, Birger
Larsen and Saadia Malik

12.00-12.15 Any other business and Closing
Mounia Lalmas

12.20-14.00 Lunch 12.20-14.00 Lunch 12.15-14.00 Lunch

14.00-15.30 Workshop sessions II (methodology and
tracks)

14.00-14.00-15.00 Session 3: Methodology
Chair: Norbert Fuhr
NEXI, Now and Next. Andrew Trotman and Börkur
Sigurbjörnsson

Reliability Tests for the XCG and inex-2002 Metrics.
Gabriella Kazai, Mounia Lalmas and Arjen de Vries

Some statistics about INEX 2004. Mounia Lalmas, Norbert
Fuhr, Saadia Malik, Zoltan Szlavik and Vu huyen Trang

15.00-15.30 Workshop descriptions and grouping
Mounia Lalmas

15.30-16.00 Coffee 15.30-16.00 Coffee 15.30-16.00 Coffee
16.00-17.30 Workshop sessions I (methodology and

tracks)
16.00-17.45 Workshop reports I

Metrics (Norbert Fuhr), Relevance (Mounia Lalmas),
Relevance feedback track (Yosi Mass), Natural language track
(Shlomo Geva)

18.00-20.00 Dinner 18.00-20.00 Dinner 18.00-20.00 Dinner

211

INEX’04 Guidelines for
Topic Development

The aim of the INEX initiative is to provide means, in the form of a large test collec-
tion and appropriate scoring methods, for the evaluation of content-oriented XML retrieval.
Within the INEX initiative it is the task of the participating organizations to provide the top-
ics and relevance assessments that will contribute to the test collection. Each participating
organization therefore plays a vital role in this collaborative effort.

1 Introduction

Test collections, as traditionally used in information retrieval (IR), consist of three parts: a
set of documents, a set of information needs called topics, and a set of relevance assessments
listing for each topic the set of relevant documents.

A test collection for XML retrieval differs from traditional IR test collections in many
respects. Although it still consists of the same three parts, the nature of these parts is fun-
damentally different. In IR test collections, documents are considered units of unstructured
text, queries are generally treated as collections of terms and/or phrases, and relevance as-
sessments provide judgments whether a document as a whole is relevant to a query or not.
XML documents, on the other hand, organize their content into smaller, nested structural
elements. Each of these elements in the document’s hierarchy, along with the document itself,
is a retrievable unit. Regarding the topics, with the use of XML query languages, users of
an XML retrieval system are able to combine both content and structural conditions within
their information need and restrict their search to specific structural elements within an XML
collection. Finally, the relevance assessments for an XML collection must also consider the
structural nature of the documents and provide assessments at different structural levels.

This guide deals only with the topics of the test collection and provides detailed guidelines
for their creation for INEX 2004. The guide is organized as follows. Section 2 describes
the topic creation criteria; Section 3 explains the topic format; and Section 4 describes a
procedure for topic development. Appendix A provides example topics.

2 Topic creation criteria

Creating a set of topics for a test collection requires a balance between competing interests.
It is a well-known fact that the performance of retrieval systems varies largely for different
topics. This variation is usually greater than the performance variation of different retrieval
methods on the same topic. Thus, to judge whether one retrieval strategy is in general more
effective than another, the retrieval performance must be averaged over a large, diverse set
of topics. In addition, to be a useful diagnostic tool, the average performance of the retrieval
systems on the topics can be neither too good nor too bad as little can be learned about
retrieval strategies if systems retrieve no or only relevant documents.

When creating topics, a number of factors should be taken into account.

1. The author of a topic should be either an expert or the very least be familiar
with the subject area covered by the collection! (Note that the author of a topic
should also be the assessor of relevance!).

2. Topics should reflect what real users of operational systems might ask.

3. Topics should be representative of the type of service that operational systems might
provide.

4. Topics should be diverse.

5. Topics may also differ in their coverage, e.g. broad or narrow topic queries.

1
212

2.1 Topic types

As in previous years, in INEX 2004 we distinguish two types of topics, the topic types reflect
two user profiles, where the users differ in the amount of knowledge they have about the
structure of the collection:

Content-only (CO) topics: are traditional IR topics written in natural language and con-
strain the content of the desired results.

The CO topics simulate users who do not (want to) know, or do not want to use, the
actual structure of the XML documents. This profile is likely to fit most users searching
XML digital libraries.

Content-and-structure (CAS) topics: are topic statements, that not only restrict con-
tent of interest but also contain explicit references to the XML structure.

The CAS topics simulate users that have some knowledge of the structure of the XML.
Those users might want to use this knowledge to try to make their topics more concrete,
by adding structural constraints. This user profile could fit librarians that have some
knowledge of the collection structure.

Both the CO and the CAS topics are IR topics, in the sense that they do not have a strict
semantics. Both topic types should be thought of as hints to the retrieval system. The final
judgment of relevance will necessary always be in the hands of a human assessor.

3 Topic format

Both CO and CAS topics are made up of four parts. The parts explain the same information
need, but for different purposes.

Title: a short explanation of the information need. It serves as a summary of both the
content and, in the case of CAS topics, also the structural requirements of the user’s
information need. The exact format of the topic title is discussed in more detail later
in this section.

Description: a one or two sentence natural language definition of the information need.

Narrative: a detailed explanation of the information need and the description of what makes
a document/component relevant or not. The narrative should explain not only what
information is being sought for, but also the context and motivation of the information
need is, i.e., why the information is being sought and what work task it might help to
solve. Note that the assessments will be made on the basis of the narrative alone. It is
therefore important that this description is clear.

Keywords: a set of comma-separated scan terms that are used in the collection explo-
ration phase of the topic development process (see Section 4) to retrieve relevant doc-
uments/components. Scan terms may be single words or phrases and may include
synonyms, and terms that are broader or narrower terms than those listed in the topic
description or title.

Note that the title and the description must be interchangeable. In addition, the topic title
and the topic narrative can be viewed respectively as a formal expression and an extension
of the topic description. In the next section we will explain the format of the topic title. The
other fields will not get their own sections, but will be referred to in Section 4.

3.1 Topic title

In this section we will give a high level description of the format of the title part of the
topics. A more formal specification of both the CO and CAS topic can be found on the
INEX web-page.

http://inex.is.informatik.uni-duisburg.de:2004/internal/pdf/NEXI.pdf

2
213

To make sure that your topics are syntactically correct, parsers have been implemented
in Flex and Bison (the GNU tools compatible with LEX and YACC). Online version of the
parsers is available:

http://metis.otago.ac.nz/abin/nexi.cgi

3.1.1 CO Topics

The topic title of a CO topic is a short, usually a 2-5 terms representation of the topic
statement. Each term is either a word or a phrase. Phrases are encapsulated in double quotes.
Furthermore the terms can have either the prefix + or –, where + is used to emphasize an
important concept, and – is used to denote an unwanted concept. Let’s look at two examples.

Example: A user wants to retrieve documents/components about computer science de-
grees that are not master degrees:

”computer science” +degree –master

Note that the + and – signs are used as hints to the search engine and do not have strict
semantics. As an example the following text might be judged relevant to the information
need, although it contains the word master.

The university offers a program leading to a PhD degree in computer science.
Applicants must have a master degree. . . .

Example: A user wants to retrieve document/components about information retrieval
from semi-structured documents:

”information retrieval” +semi-structured documents

As in the previous example the following text might be judged relevant, even if it neither
contains the word semi-structured, nor the phrase “information retrieval”.

The main goal of INEX is to promote the evaluation of content-oriented XML
retrieval by providing a large test collection of XML documents, uniform scoring
procedures, and a forum for organizations to compare their results. . . .

Note that, although the semantics of phrases and the +/– tokens is not strict, they
can potentially be of use to the retrieval engine. A full example of a CO topic is given in
Appendix A.1.

3.1.2 CAS Topics

The title of CAS topics is written in an XPath dialect (http://www.w3c.org/TR/xpath). In
short, the CAS titles are XPath expressions of the form:

A[B]

or

A[B]C[D]

where A and C are navigational XPath expressions using only the descendant axis. B and D
are predicates using about-functions for text (explained below); the arithmetic operators <,
<=, >, and >= for numbers; and the connectives ’and’ and ’or’.

The about function has the same syntax as the contains function in XPath. We will
restrict the usage to the form

about(.path, query)

where path is empty or contains only tag-names and descendant axis; and query is an IR
query having the same syntax as the CO titles. The about function is used to say that the
content of the element located by the path is about the information need expressed in the
query. Note that, as with the CO topics, the title is meant to be a hint for the search engine
and does not have definite semantics.

Example: Suppose a user wants to know what the INEX participants said about native
XML databases last year. The user assumes that the conference proceedings are mentioned
somewhere in the front matter.

3
214

//article[.//fm//yr = 2003 and about(.//fm, INEX proceedings)]//*[about(.,

native XML databases)]

Note that the user might be happy with retrieving something from the Proceedings of INEX
2003, although the proceedings were published in 2004. In the formalism expressed above,

A = //article
B = .//fm//yr = 2003 and about(.//fm, INEX proceedings)
C = //*
D = about(., native XML databases)

Example: Suppose a user want find articles about flight simulators written in Java. The
user thinks it is likely that such articles have an abstract that mentions flight simulators, and
a paragraph talking about Java implementation. Thus she might write the query:

//article[about(.//abs, flight simulator)

and about(.//p, implementation java)

and about(., flight simulator java)]

When looking at the results the user is not likely to be picky whether the results fit her query
exactly. The user might for example be happy with articles which do not have an abstract,
as long as they are about Java implementation of flight simulators.

Note that the main purpose of the INEX initiative is to build a test collection for the
evaluation of content oriented XML retrieval. The most valuable part of the collection are
the human made relevance assessments. Thus, each query MUST have at least one about
function in the rightmost predicate.

Equivalent tags In the current INEX collection there are several tags used interchange-
able (for historical paper-publishing reasons). Tags belonging to the following groups are
considered to be equivalent and can be used interchangeable in a query.

Paragraphs: ilrj, ip1, ip2, ip3, ip4, ip5, item-none, p, p1, p2, p3

Sections: sec, ss1, ss2, ss3

Lists: dl, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le, list, numeric-list, numeric-rbrace,
bullet-list

Headings: h, h1, h1a, h2, h2a, h3, h4

A full example of a CAS topic is given in Appendix A.2.

4 Procedure for topic development

Each participating group will have to submit 3 CO and 3 CAS topics by the May 3rd
2004 by filling in the Candidate Topic Form (one per topic) which is on the INEX web-site.

http://inex.is.informatik.uni-duisburg.de:2004/internal/TopicSubmission.html

This section outlines the procedures involved in the development of candidate topics. The
topic creation process is divided up into several steps. When developing a topic, use the on-
line version of the Candidate Topic Form (or a printout of it) to record all information on
the topic you are creating.

Step 1: Initial topic statements Create a one or two sentence description of the infor-
mation you are seeking. This should be a simple description of the information need without
regard to retrieval system capabilities or document collection peculiarities. This should be
recorded in the Initial Topic Statement field. Record also the context and motivation of the
information need is, i.e., why the information is being sought and what work task it might
help to solve.

4
215

Step 2: Collection exploration In this step the initial topic statement is used to ex-
plore the document collection in order to obtain an estimate of the number of relevant
documents/elements in the collection and to evaluate whether this topic can be judged con-
sistently in the assessment phase. You may use any retrieval engine for this task, including
your own or HyRex (HyRex can be accessed via the INEX website).

http://inex.is.informatik.uni-duisburg.de:2004/hyrex/

While exploring the collection record the set of keywords that you used for retrieval
(make sure to record all the keywords from all the iterations of your search or, if you use
query expansion strategies, the query terms generated by the process). Think of words that
would make good scan words when assessing. List those words in the keywords field of the
Candidate Topic Form.

Step 2a: Assess top 25 results Judge the top 25 documents/components of your re-
trieval result. To assess the relevance of a retrieved document/component use the following
working definition: mark a document/component relevant if it would be useful if you were
writing a report on the subject of the topic, or if it contributes toward satisfying your in-
formation need. Each document/component should be judged on it own merits. That is,
a document/component is still relevant even if it is the thirtieth document/component you
have seen with the same information. It is crucial to obtain exhaustive relevance judgments.
It is also very important that your judgment of relevance is consistent throughout this task.
Using the Candidate Topic Form record the number of found relevant components and the
XPath path representing each relevant element (see the form for details).

• If you find less than 2 or more than 20 relevant components within the top 25 results,
you should abandon the topic and start with a new one.

• If you have found at least 2 relevant components and no more than 20, perform a
feedback search (explained below).

Step 2b: Feedback search After assessing the top 25 documents/components, you should
have gotten an idea about which words (if any) could be added to the query to make the
query as expressive as possible for the kind of documents you wish to retrieve. Add those
words in the keywords field of the Candidate Topic Form. Use the expanded query, to retrieve
a new list of relevant document/components.

Step 2c: Assess top 100 results Judge the top 100 documents/components (some of
them you will have judged already), and record the number of relevant documents/components
in Candidate Topic Form.

Step 2d: Write narrative Having judged the top 100 documents/components you should
have gained a clear idea about what makes a component relevant or irrelevant, and thus you
should know how you will judge the topic in the assessment phase. Write this idea in the
narrative field. The narrative should be a detailed explanation of the information need and
what makes a document/component relevant. Record not only what information is being
sought for, but also the context and motivation of the information need. Make sure your
description is as exhaustive as possible as there will be a couple of months gap before you
will return to the topic for relevance assessments.

Step 3: Refining topic statements Refining the topic statement means finalizing the
topic title, description, keywords and narrative. Note that it is important that the four parts
all express the same information need; it should be possible to use each of the four parts of a
topic in a stand-alone fashion (e.g. using only the title for retrieval, or only the description
for filtering etc.).

5
216

Topic Submission Once you finished, submit the on-line Candidate Topic Form on the
INEX website.

http://inex.is.informatik.uni-duisburg.de:2004/internal/TopicSubmission.html

Make sure you submit all 6 candidate topics no later than the May 3rd 2004 .

Topic selection

From the received candidate topics, we (the clearinghouse) will then decide which topics to
use such that a wide range of likely number of relevant documents is included. The data
obtained from the collection exploration phase will be used as input to the topic selection
process. We will then distribute final set of topics back to you to be used for the retrieval
and evaluation.

We would like to thank you for your contribution.

Acknowledgments

The topic format proposed in this document is based on the outcome of working groups set
up during the INEX 2002 and 2003 workshops in Dagstuhl. We are very grateful for their
contribution. This document is a modified version of the topic development guides for INEX
2002 and 2003.

Authors:
Börkur Sigurbjörnsson, Birger Larsen, Mounia Lalmas and Saadia Malik

April 13th 2004

6
217

A Examples

A.1 Content-Only topic

<inex-topic query_type="CO">
<title>+"open standards" +"digital video" +"distance learning"</title>
<description>We are looking for articles that discuss open standards behind
media streaming and distribution of digital video that may be useful for
distance learning projects.</description>
<narrative>Our aim is to use our acquired knowledge and experience with
digital video in a distance learning project. We prefer, however, to use
software and methods that are based on open standards only. We are looking
for articles/components discussing methodologies of digital video production
and distribution that respect free access to media content through internet
or via CD-ROMs or DVDs in connection to the learning process. Discussions of
open versus proprietary standards of storing and sending digital video will
be appreciated.</narrative>
<keywords>media streaming, video streaming, digital video, distance
learning, open standards, open technologies, free access</keywords>
</inex-topic>

A.2 Content-and-Structure topic

<inex_topic query_type="CAS">
<title>//article[about(.//bb, Rumbaugh Jacobson Booch) and
about(.//abs, formal methods logic)]//sec[about(., UML formal
logic)]</title>
<description>Find information on the use of formal logics to model or
reason about UML diagrams.</description>
<narrative>My main interest is the application of formal methods and
logics in software development. I choose to search for its application
to UML diagrams because I think it is an interesting application
area. To be relevant, a document/component must discuss the use of
formal logics, such as first-order-, temporal-, or description-logics,
to model or reason about UML diagrams. I’m only interested in proper
formal logics, Business-logics and Client-logics do not have a proof
system and are therefore not considered to be formal logics. I think
that sections are the most appropriate unit of retrieval for this
fairly specific topic, since I’m not really interested in reading a
lot about UML stuff in general. I want to focus in on the document
parts that talk about logic. I think it is useful for the search
engine to look for citation to the UML trio: Rumbaugh, Jacobson and
Booch. Similarly think that it might be useful to put the formal
methods constraints on the abstract to stress that I’m only interested
in this particular subset of UML articles. Of course a relevant
article need not have this sort of reference or abstract, therefore
the relevance of an element will be judged on basis of how well it
explains the use of formal logics to model or reason about UML
diagrams.</narrative>
<keywords>unified modeling language, first order logic, temporal
logic, description logic, formal verification, theorem proving, model
checking, Kripke structures, Spin, Promela, SMV</keywords>
</inex_topic>

7
218

Narrowed Extended XPath I (NEXI)

Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand
andrew@cs.otago.ac.nz

Börkur Sigurbjörnsson

Informatics Institute
University of Amsterdam

Amsterdam, The Netherlands
borkur@science.uva.nl

ABSTRACT
INEX has through the years provided two types of queries: Content-Only
queries (CO) and Content-And-Structure queries (CAS). The CO language has
not changed much, but the CAS language has been more problematic. For the
CAS queries, the INEX 02 query language proved insufficient for specifying
problems for INEX 03. This was addressed by using an extended version of
XPath, which, in turn, proved too complex to use correctly. Recently, an INEX
working group identified the minimal set of requirements for a suitable query
language for future workshops. From this analysis a new IR query language
NEXI is introduced for upcoming workshops.

1. Introduction
The INEX [4] query working-group recently identified the query language requirements for future
workshops. While no changes were suggested for the CO queries, several amendments were suggested
for the CAS queries. The most over-riding requirement was a language continuing to look like XPath
[2], but not XPath. An alternative syntax was proposed at the workshop [6].

The working group identified many aspects of XPath to be dropped (e.g. functions), aspects to be
severely limited (e.g. the only operator to be allowed in a tag path is the descendant operator). New
features were also added (e.g. the about() filter). The shape of XPath was considered appropriate while
the verbosity was considered inappropriate. The complete list of changes is outlined in the working
group report [8]. Amendments were considered sufficient to warrant an XPath derivative language.
NEXI is now introduced as that language. Extra to the working group list, the use of wildcards in
search terms has been dropped.

The most significant diversion from XPath is semantics. Whereas in XPath the semantics are defined,
in NEXI the retrieval engine must deduce the semantics from the query. This is the information
retrieval problem – and to do otherwise is to make it a database language. For clarity, strict and loose
interpretations of the syntax are included herein, however these should not be considered the only
interpretations of the language.

A NEXI parser has been implemented in Flex [7] and Bison [3] (the GNU tools compatible with LEX
and YACC). The parser is made available for public use (and is included in the appendices).The
existing INEX queries (queries 1-126) have been translated into NEXI (where possible) and are also
included.

2. Query types
There are currently two query types in INEX, the content only (CO) query and the content and
structure (CAS) query [5].

2.1. The Content Only (CO) query
This is the traditional information retrieval query containing words and phrases. No XML [1] element
restrictions are allowed, and no target element is specified. This kind of query occurs when a user is
unfamiliar with the tagging structure of the document collection, or does not know where the result will

219

be found. To answer a CO query a retrieval engine must deduce the information need from the query,
identify relevant elements (of relevant documents) in the corpus, and return those sorted most to least
relevant.

Deduction of the information need from the query is to determine semantics from syntax. This is the
information retrieval problem, the problem being examined at INEX. As such, the queries must be
considered as “hints” as to how to find relevant documents. Some relevant documents may not satisfy
a strict interpretation of the query. Equally, some documents that do satisfy a strict interpretation of the
query may not be relevant.

2.2. The Content And Structure (CAS) query
Content and structure queries may contain either explicit or implicit structural requirements. Such a
query might arise if a user is aware of the document structure. To answer a CAS query a retrieval
engine must deduce the information need from the query, identify elements that match structural
requirements, and return those sorted most to least relevant. CAS queries can be interpreted in two
ways, either strictly (SCAS) or loosely (VCAS).

2.2.1. The SCAS interpretation
The target structure of the information need can be deduced exactly from the query. All target-path
constraints must be upheld for a result to be relevant. If a user asks for <sec> tags to be returned, these
must be returned. All other aspects of the query are interpreted from the IR perspective, i.e. loosely.

2.2.2. The VCAS interpretation
Specifying an information need is not an easy task, in particular for semi-structured data with a wide
variety of tag-names. Although the user may think they have a clear idea of the structural properties of
the collection, there are likely to be aspects to which they are unaware. Thus we introduce a vague
interpretation where target-path requirements need not be fulfilled. Relevance of a result will be based
on whether or not it satisfies the information need. It will not be judged based on strict conformance to
the target-path of the query

3. The INEX Topic Format
This discussion of the INEX topic format is included for context. As the topic format is likely to
change from year to year readers are advised to consult the latest edition of the guidelines for topic
development for complete details.

3.1. Restrictions on Queries
For an individual query to be useful for evaluation purposes it must satisfy several requirements (the
details of which are explained below):

• It must be interpretable loosely. To satisfy this requirement, every query must contain at least one

about() clause requiring an IR interpretation (i.e. non-numerical). That clause must occur in the
final filter. In //A[B] queries, this is B. In //A[B]//C[D], this is D.

• It must not be a simple mechanical process to resolve the path. To satisfy this requirement, every

query must be in the form //A[B] or //A[B]//C[D]. The form //A[B]//C is not allowed at INEX as
the resolution of //C from //A[B] is a simple mechanical process.

• It must have more than 5 known results. If this cannot be satisfied, abandon the query and choose

another.

• It must be “middle” complex. Perform the search and examine the top 25 results. If there are less

than 2 or more than 20 relevant results, the query is not middle-complex.

• Queries should reflect a real information need. Contrived queries are unlikely to be accepted.

• Queries should be diverse. If submitting more than one query, please make each different.

220

3.2. Equivalence Tags
In the current INEX collection there are several tags used interchangeable (for historical paper-
publishing reasons). Tags belonging to the following groups are considered equivalent and
interchangeable in a query:

Paragraphs:
ilrj, ip1, ip2, ip3, ip4, ip5, item-none, p, p1, p2, p3

Sections:
sec, ss1, ss2, ss3

Lists:
dl, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le,
list, numeric-list, numeric-rbrace, bullet-list

Headings:
h, h1, h1a, h2, h2a, h3, h4

Due to tag equivalence, the query

//article//sec[about(.//p, Computer)]

and

//article//ss2[about(.//item-none, Computer)]

are identical.

3.3. Submission format
Topics are submitted in the INEX topic format detailed each year in the annual guidelines for topic
development [5]. Detailed here is the 2003 format, which to date has not changed for subsequent
workshops.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!ELEMENT inex_topic (title, description, narrative, keywords)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT keywords (#PCDATA)>

<!ATTLIST inex_topic
topic_id CDATA #REQUIRED
query_type CDATA #REQUIRED
>

<inex_topic topic_id=””> – Supplied by INEX once all topics have been collected. This and other
attributes may be present in the final topics selected by INEX.

<inex_topic query_type=””> – either “CO” or “CAS”. This attribute determines whether the topic is
a content only (CO) or content and structure (CAS) topic. It consequently determines the query type
used in the <title> tag.

<title> – a NEXI query (either CO or CAS, depending in the query_type attribute of the inex_topic
tag). It should be noted the usual XML character encoding will be necessary, this includes substituting
‘<’ with ‘<’. See sections 4 and 5 for details.

<description> – a short (one or two sentence) natural language translation of the title. Although this
can be used by any track, it is also used by the Natural Language track as the query specification.

<narrative> – a detailed explanation of the information need including a description of what makes a
result relevant. It should be possible for someone other than the author to read the narrative and a
result and determine unambiguously if the result is relevant or not.

<keywords> – a comma separated list of terms and phrases used during the topic formulation.

221

It is important that the title, description, and narrative all describe the same information need.

3.4. Example of an INEX topic
<inex_topic query_type="CAS">

<title>
//article[.//yr = 2001 or .//yr = 2002]//sec[about(.,summer holidays)]

</title>
<description>

Summer holidays either of 2001 or of 2002.
</description>
<narrative>

Return section elements, which are about summer holidays, where the
sections is descendent of article element, and the article is from 2001
or 2002.

</narrative>
<keywords>

summer, holiday, 2001,2002
</keywords>

</inex_topic>

3.5. Topic Titles
The topic title contains the information retrieval query expressed in NEXI. The syntax of such queries
is precisely defined below and a parser written in FLEX and BISON is included in the appendices. It is
the information retrieval problem to deduce the semantics from the information need, however no
meaningful language can exist without semantics. This duality can only be resolved by strictly
defining the semantics to be loose.

4. The Content Only (CO) query
4.1. Searching for words and numbers
The smallest searchable unit in a CO query is the word:

word: NUMBER | ALPHANUMERIC

ALPHANUMERIC: {LETTER}{LETTERDIGITEXTRAS}*
NUMBER: "-"?{DIGIT}+

LETTER: [a-zA-Z]
DIGIT: [0-9]
LETTERDIGIT: [a-zA-Z0-9]
LETTERDIGITEXTRAS [a-zA-Z0-9'-]

Positive numbers, negative numbers and sequences of alphanumerics proceeded by an alphabetic
character are all valid search words. Alphanumerics have already been used in query 41 so must be
included. Hyphens are allowed after the first character of an alphanumeric (to avoid confusion with
term restrictions, see section 4.3). The apostrophe can only occur after the first character of an
alphanumeric.

Example: To search for the single word Apple, the CO query is

Apple

Loose interpretation: It is anticipated that using the word Apple will help locate relevant documents.
I won’t tell you if I mean “Macintosh Computer”, “Granny Smith”, or “Mr Apple” but find what I want
anyway.

4.2. Searching for phrases
A phrase is a double quoted sequence of words:

phrase: '"' word_list '"'
word_list: word word | word_list word

A phrase must contain two or more words. A phrase containing only one word is erroneous and the
quotes should be removed to make a single word query.

Example: To search for Charles Babbage, the CO query will be

"Charles Babbage"

222

Loose interpretation: Relevant documents are anticipated to contain these two words adjacent to each
other, but need not. They may contain both words non-adjacent. For that matter they might not
contain both words. A relevant document might not even contain either word.

4.3. Term restrictions
Terms can be preceded by either a plus (+) or minus (-) sign

term: term_restriction unrestricted_term
term_restriction: EMPTY | '+' | '-'
unrestricted_term: word | phrase

Loose interpretation: The ‘+’ signifies the user expects the word will appear in a relevant element.
The user will be surprised if a ‘-’ word is found, but this will not prevent the document from being
relevant. Words without a sign are specified because the user anticipates such terms will help the
search engine to find relevant elements. As restrictions are only hints, it is entirely possible for the
most relevant element to contain none of the query terms, or for that matter only the ‘-’ terms.

4.4. CO queries
A CO query is a sequence of one or more searchable terms.

co : term | co term

Example:

+"face recognition" approach

Loose interpretation: “I expect the phrase ‘face recognition’ will appear in a relevant document, I also
anticipate the word ‘approach’ will help you find the documents I want”.

4.5. Bag of Words
Term ordering in IR queries is often assumed to be irrelevant. In the “bag of words” interpretation, a
query is an unordered set of search terms (and phrases). The assumption does not hold true for some
queries. For example,

computer history

and

history computer

express different information needs even though the “bag of words” is identical.

Additionally, if a term occurs multiple times, the occurrence count is lost when the term is added to the
“bag of words”. For some queries, multiple term occurrences are needed to adequately specify the
information need. For example, the query

The The

should search for documents about the well known rock band of the same name, and cannot be
specified without the use of the multiple occurring term. Further, some search engines “stop” common
words not considered useful for searching (such as the, and, of, etc). This query requires the use of
such a term.

Loose interpretation: There may or may not be an implied order to the terms in a query. If a term
occurs multiple times this may or may not imply meaning. Stopping common words may or may not
alter the meaning of the query.

4.6. The pitfalls of queries
The minus sign (-) maintains two meanings; it is used for both exclusionary terms and negative
numbers. For the purpose of clarity, 12 and –12 are numbers. By inserting a space (represented as ‘+’
in this paragraph) between the – and the 12 (-+12), the meaning is changed to exclusionary. “Don’t
search for the number –12” can be expressed as --12 or -+-12. Equally, --+12 is an error.

223

5. The Content and Structure (CAS) query
CAS queries can take three possible forms:

 //A[B] Return A tags about B
 //A[B]//C Return C descendants of A where A is about B (used in INEX’02)
 //A[B]//C[D] Return C descendants of A where A is about B and C is about D

A and C are paths whereas B and D are filters. The syntax is defined as:

cas: path cas_filter | path cas_filter path | path cas_filter path cas_filter

cas_filter: '[' filtered_clause ']'

Use of the form //A[B]//C is not useful for information retrieval evaluation purposes. Once the result
of //A[B] has been determined, it is a mechanical process to extract the //C descendants. Use of this
form was deprecated in INEX’03.

5.1. Path specification
Tag and attribute names follow the XML 1.1 [1] specification

XMLTAG: {XML_NAME}{XML_NAMECHAR}*

XML_NAMECHAR: [-_.:a-zA-Z0-9]
XML_NAME: [_:a-zA-Z]

Element nodes in the XML tree are identified as “//tag” and attribute nodes as “//@attribute”. The
wildcard “//*” is included to identify first or subsequent descendant (tag or attribute). Convoluted use
of attributes and wildcards is discouraged.

node: named_node | any_node | tag_list_node

NODE_QUALIFIER: "//"

named_node: NODE_QUALIFIER tag
attribute_node: NODE_QUALIFIER '@' tag
any_node: NODE_QUALIFIER '*'

In cases where either tag A or tag B is required, it is written “//(A|B)”.

tag_list: tag '|' tag | tag_list '|' tag
tag_list_node: NODE_QUALIFIER '(' tag_list ')'

A path through the XML tree is specified as a sequence of nodes. The only relationship between nodes
in a path is descendant. There is no way to specify the child relationship or other XPath axes.
Attributes cannot have descendant nodes so may only be specified at the end of a path.

path: node_sequence | node_sequence attribute_node
node_sequence: node | node_sequence node

Strict interpretation: “//A” is any A tag in the tree. “//A//B”, any B descendant of an A tag in the
tree. “//@C” is the C attribute of any tag. “//A//@C” is any C attribute anywhere in the tree beneath an
A tag in the tree.

For any descendant of A use “//A//*”. Any descendant of the root, “//*”, is also any tag in the tree.
“//*//*//*” is any tag at least three levels deep in the tree. “//*//A” is an A that is not the root of the tree,
while “//*//A//*” means any descendant of A so long as A is not the root.

The path “//(A|B)” means any A tag in the tree or any B tag in the tree. “//(A|B)//(C|D)” is any C or D
descendant of either an A or B tag. This includes “//A//C”, “//A//D”, “//B//C” and “//B//D”.
Convoluted use of this syntax is discouraged.

The path //T1…//Tn is an ordered sequence of nodes in the tree starting with T1 and terminating at Tn
such that for all p∈n, Tp+1 is a descendant of Tp.

224

Loose interpretation: There is likely to be relevant information in the document in places not
specified in a user query. The path specifications should therefore be considered hints as to where to
look.

5.1.3. A Note on Attributes
No real query using attributes on the INEX collection is believed to exist. Query authors are
discouraged from using attributes simply because they can.

5.2. Path filters
At present paths can be filtered either with search strings, or numerically. In future versions, filtering
based on proper nouns (e.g. Author Names), and other data types is anticipated.

5.2.4. String filtering
Documents can be filtered to only those that satisfy a given textural (CO) query in the given path (or
relative to the given path).

about_clause : ABOUT '(' relative_path ',' co ')'
relative_path: '.' | '.' path

ABOUT: "about"

Relative paths are specified relative to a context path. At B in //A[B] the context path is //A. At B in
//A[B]//C[D] the context path is //A. At D in //A[B]//C[D] the context path is //A//C. The relative path
“.” is interpreted as “the context path”. The relative path “.//p” is interpreted as “a p descendant of the
context path”.

Example:

//article[about(.//p, "information retrieval")]

Strict interpretation: “What ever you do, you must return article tags. Now, as a suggestion, look for
//article//p elements about information retrieval.”

Loose interpretation: “What I want is most likely a whole article that mentions information retrieval
in a p tag. Relevant results are not limited to this, but I’m pretty sure it’ll help you find what I want.”

5.2.5. Arithmetic filtering
Documents can also be filtered to only those that satisfy a numeric query. As with string filtering, this
is specified with a relative path.

arithmetic_clause: relative_path arithmetic_operator NUMBER
arithmetic_operator: '>' | '<' | '=' | '>=' | '<='

Example:

//article[.//pdt//yr = 2003]

Strict interpretation: Retrieve article elements from documents that loosely “contain the value 2003
in an //article//pdt//yr element”.

Loose interpretation: A loose interpretation could be to look at a year range (2002, 2003, and 2004).
This might be useful if, for example, a workshop held in December 2003, published the formal
proceedings in 2004. Alternatively, a paper published electronically in December 2002 might finally
appear in print in January 2004 leading to confusion over the publication date.

The above example could also be described using string filtering

 //article[about(.//pdt//yr, 2003)]

however, the arithmetic syntax is preferred.

Both positive and negative numbers are supported by CO and CAS queries. The ambiguity arising
from the multiple meaning of the minus (-) was discussed in section 4.6.

225

5.2.6. Boolean Operators
Path filters can be joined with Boolean operators AND and OR. They can also be bracketed.

filter: about_clause | arithmetic_clause;

filtered_clause: filter

| filtered_clause AND filtered_clause
| filtered_clause OR filtered_clause
| '(' filtered_clause ')';

AND: "AND" | "and"
OR: "OR" | "or"

Examples:

//article[about(., apple) and about(., computer)]

//article[about(., apple) or about(., computer)]

Strict interpretation: The first example will return article elements from documents about apple and
about computer, the second about apple or about computer (remember: these are only hints). This
introduces a subtle difference in query meaning between the two queries:

//article[about(.//sec, apple computer)]

and
//article[about(.//sec, apple) and about(.//sec, computer)]

The first query asks for articles that have a section discussing ‘apple computer’. The second asks for
articles that have a section discussing ‘apple’ and a section discussing ‘computer’ (even if they are not
the same section). In the first query, the topics must co-occur. In the second they may co-occur.

Loose interpretation: AND is interpreted as ANDish, OR as ORish. The query contains the Boolean
operators strictly as hints on how to resolve the information need. CO, SCAS and VCAS all interpret
Boolean operators loosely.

5.2.7. Examples
Examples of some CAS queries are given here along with strict interpretations. Loose interpretation of
each is the same “I’m sure this’ll help find what I want”.

//sec[about(., mobile electronic payment system)]

Return sec tags where the sec tag mentions mobile electronic payment systems.

//*[about(., singular value decomposition)]

Return elements about singular value decomposition. The retrieval engine must deduce the most
appropriate element to return.

//article[.//fm//yr >= 1998]//sec[about(.//p, "virtual reality")]

Return sec tags of documents about virtual reality and published on or after 1998.

//article[(.//fm//yr = 2000 OR .//fm//yr = 1999) AND about(., "intelligent
transportation system")]//sec[about(., automation +vehicle)]

Return sec elements about vehicle automation from documents published in 1999 or 2000 that are
about intelligent transportation systems.

6. Conclusions
The INEX query working-group at the INEX workshop outlined a set of requirements necessary for a
query language to be used for future workshops. The language was to be similar in form to XPath,
while at the same time being both severely reduced, and expanded. The language, NEXI, is defined
herein and satisfies these needs.

226

A parser written in Flex and Bison and is included. The existing INEX topics have been translated into
NEXI and checked against the parser. Only those queries using features deprecated by the working-
group could not be translated – in these cases a near translation is included.

7. Acknowledgements
Richard A. O’Keefe read several drafts and commented on many aspects of this language.

References
[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., & Cowan, J. (2003).

Extensible markup language (XML) 1.1 W3C proposed recommendation. The World Wide Web
Consortium. Available: http://www.w3.org/TR/2003/PR-xml11-20031105/ [2003.

[2] Clark, J., & DeRose, S. (1999). XML path language (xpath) 1.0, W3C recommendation. The
World Wide Web Consortium. Available: http://www.w3.org/TR/xpath [2004.

[3] Donnelly, C., & Stallman, R. (1995). Bison - the yacc-compatible parser generator. Available:
http://www.gnu.org/directory/bison.html.

[4] Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (2002). INEX: Initiative for the evaluation of XML
retrieval. In Proceedings of the ACM SIGIR 2000 Workshop on XML and Information Retrieval.

[5] Kazai, G., Lalmas, M., & Malik, S. (2003). INEX'03 guidelines for topic development.
[6] O'Keefe, R. A., & Trotman, A. (2003). The simplest query language that could possibly work. In

Proceedings of the 2nd workshop of the initiative for the evaluation of XML retrieval (INEX).
[7] Paxson, V. (1995). Flex, version 2.5, a fast scanner generator. Available:

http://www.gnu.org/directory/flex.html.
[8] Sigurbjörnsson, B., & Trotman, A. (2003). Queries: INEX 2003 working group report. In

Proceedings of the 2nd workshop of the initiative for the evaluation of XML retrieval (INEX).

227

A1. Makefile

Makefile

Andrew Trotman
University of Otago 2004

Script to build the NEXI parser

tokenizer : parser.tab.c lex.yy.c
 gcc lex.yy.c parser.tab.c -lm -o tokenizer

lex.yy.c : tokenizer.l parser.tab.h
 flex tokenizer.l

parser.tab.c : parser.y
 bison parser.y -d

clean :
 rm tokenizer parser.tab.h parser.tab.c lex.yy.c

228

A2. Flex script
%{
/*
 TOKENIZER.L

 Andrew Trotman
 University of Otago 2004

 FLEX script to tokenize INEX NEXI queries and check for syntax errors
*/
#include <stdio.h>
#include "parser.tab.h"
int c;
extern int yylval;
extern int line_number;
extern int char_number;

%}

LETTER [a-zA-Z]
DIGIT [0-9]
LETTERDIGIT [a-zA-Z0-9]
LETTERDIGITEXTRAS [a-zA-Z0-9'\-]
XML_NAMECHAR [a-zA-Z0-9_:.\-]
XML_NAME [a-zA-Z:_]

%%

" " { char_number++; }

"\r" { char_number++; }

"\n" {
 line_number++;
 char_number = 1;
 return yytext[0];
 }

"about" {
 char_number += 5;
 yylval = yytext[0];
 return ABOUT;
 }

"AND" {
 char_number += 3;
 yylval = yytext[0];
 return AND;
 }

"and" {
 char_number += 3;
 yylval = yytext[0];
 return AND;
 }

"OR" {
 char_number += 2;
 yylval = yytext[0];
 return OR;
 }

"or" {
 char_number += 2;
 yylval = yytext[0];
 return OR;
 }

">" {
 char_number++;
 yylval = yytext[0];
 return GREATER;
 }

"<" {
 char_number++;
 yylval = yytext[0];
 return LESS;
 }

"=" {
 char_number++;
 yylval = yytext[0];
 return EQUAL;
 }

229

{LETTER}{LETTERDIGITEXTRAS}* {
 char_number += strlen(yytext);
 yylval = yytext[0];
 return ALPHANUMERIC;
 }

"-"?{DIGIT}+ {
 char_number += strlen(yytext);
 yylval = yytext[0];
 return NUMBER;
 }

"//" {
 char_number += 2;
 yylval = yytext[0];
 return NODE_QUALIFIER;
 }

{XML_NAME}{XML_NAMECHAR}* {
 char_number += strlen(yytext);
 yylval = yytext[0];
 return XMLTAG;
 }

. {
 char_number++;
 return yytext[0];
 }

%%

/*
 YYWRAP()

*/
int yywrap(void)
{
return 1;
}

230

A3. Bison script
%{
/*
 PARSER.Y

 Andrew Trotman
 University of Otago 2004

 BISON script to tokenize INEX NEXI queries and check for syntax errors
*/

#define YYDEBUG 1
#include <math.h>
#include <stdio.h>
#include <ctype.h>

int line_number = 1;
int char_number = 1;
extern char *yytext;

void yyerror(char *err) /* Called by yyparse on error */
{
printf ("Line %d (char %d): %s at '%s'\n", line_number, char_number, err, yytext);
}

/*
 NOTES:
 INEX topics 10, 14, 19, 20 are not strict translations as they cannot
be expressed (multiple specified target elements)
 INEX topic 13 is not a strict translation due to instance (au[1]) usage
*/

%}

%token NUMBER ALPHANUMERIC XMLTAG
%token ABOUT NODE_QUALIFIER
%token AND OR
%token GREATER LESS EQUAL

%left AND OR

%%/* Grammar rules and actions follow */
input: /* empty */
 | input line
 ;

line: '\n'
 | co '\n' { printf("CO Passed\n"); }
 | cas '\n' { printf("CAS Passed\n"); }
;

/*
 in a CAS query:
 the initial can be the terminal "//*" to specify "a descendant of"
 the final part can be an unrestricted target path (for compatibility
with INEX 2002)
*/
cas: path cas_filter | path cas_filter path | path cas_filter path cas_filter;

cas_filter: '[' filtered_clause ']';

filtered_clause : filter
 | filtered_clause AND filtered_clause
 | filtered_clause OR filtered_clause
 | '(' filtered_clause ')';

filter: about_clause | arithmetic_clause;

about_clause : ABOUT '(' relative_path ',' co ')';

arithmetic_clause: relative_path arithmetic_operator NUMBER;

arithmetic_operator: GREATER | LESS | EQUAL | greater_equal | less_equal;

greater_equal: GREATER EQUAL;

less_equal: LESS EQUAL;

/*
 child has been eliminated and replaced with descendant. In the
 unlikley event child is ever needed, it can (most likley) be
 specified as those descendants enough to make the specification
 unambigious.

 now, a PATH is either:
 "//" for root

231

 "//A" for tag A
 "//A//B" for tag B within tag A
 "//*" for any tag
 "//A//*" for any descendant of A
 "//@A" for attribute A
 "//A//@B" for attribute B descendant of node A
*/
path: node_sequence | node_sequence attribute_node;

relative_path: '.' | '.' path;

node_sequence: node | node_sequence node;

any_node: NODE_QUALIFIER '*';

attribute_node: NODE_QUALIFIER '@' tag;

named_node: NODE_QUALIFIER tag;

tag_list: tag '|' tag | tag_list '|' tag;

tag_list_node: NODE_QUALIFIER '(' tag_list ')';

node: named_node | any_node | tag_list_node;

tag: alphanumeric | XMLTAG;

/*
 CO topics are sequences of numbers, terms and phrases
 with optional specifiers mandatory (+) and unwanted (-)
 note:
 "12" is a number
 "-12" is number
 "- 12" is don't search for number 12
 "--12" | "- -12" is don't search for number -12
 "-- 12" is an error
 "content-based" is an error
*/
co : term | co term;

term: term_restriction unrestricted_term;

term_restriction: /* empty */ | '+' | '-';

unrestricted_term: word | phrase;

/*
 A phrase is a sequence of two or more words surounded by double quotes
*/
phrase: '"' word_list '"';

word_list: word word | word_list word;

/*
 a word is a sequence:
 of alphabetics
 of digits
 of digits preceeded by a negative (-) sign (a negative number)
 alphanumerics starting with an alpha (for both ip1 tags and Y2K
queries)
 As the operators are also valid search terms, a word is
 operator or a sequence of alphabetic characters
*/

word: NUMBER | alphanumeric;

alphanumeric : ALPHANUMERIC | ABOUT | AND | OR;

%%

/*
 MAIN ()

*/
int main(void)
{
//yydebug = 1;
yyparse();

return 0;
}

232

A4. INEX queries 1-126
The pre-existing INEX queries have all been converted and checked against the parser. Topics 10, 14,
19 and 20 originally specified a set of target elements. This practice was banned for INEX’03 and is
not supported here either. Topic 13 specifies a particular instance of an element as the target, again
outlawed for INEX’03 and not supported here. Topic 44 used wildcards. As such, these 6 queries are
not accurately translated.

1. //article[about(.//(abs|kwd), description logics)]//fm//au

2. //ack[about(., research funded america)]

3. //*[about(.//kwd, information data visualization) and about(., large information
hierarchies spaces multidimensional data databases)]

4. //*[about(.//(atl|abs|st), experience results problems) and about(., extreme
programming)]

5. //article[about(.//bibl, QBIC) and about(., image retrieval)]//tig

6. //article[about(., Survey on Software Engineering) and about(.//sec, programming
languages)]//tig[about(., software engineering survey programming survey
programming tutorial software engineering tutorial)]

7. //article[about(., Content-based retrieval of video databases)]//sec

8. //article[about(.//fm//aff, ibm) and about(.//bdy//sec, certificates)]

9. //article[about(.//bdy//sec, nonmonotonic reasoning) and (.//hdr//yr = 1999 or
.//hdr//yr = 2000) and about(.//tig//atl, -calendar) and about(., belief
revision)]

10. //*[about(.//(atl|st|title), book review) and about(.//(st|p), machine learning
adaptative algorithm probabilistic model neural network support vector machine
kernel methods numerical computation)]

11. //*[about(.//p, wireless) and about(.//(abs|kwd), security) and about(.,
security applications)]

12. //article[.//pdt//yr = 2001 or .//pdt//yr = 2002]//bdy//sec[about(., internet
search engine)]

13. //article[about(.//fm//au//@sequence, additional) and about(.//fm//abs, review)
and about(., AR VR virtual augmented reality system)]//fm//au

14. //*[about(.//fgc, Corba architecture) and about(.//p, Figure Corba
Architecture)]

15. //article[.//fm//hdr//hdr2//pdt = 1996 or .//fm//hdr//hdr2//pdt =
1997]//bm//bib//bibl//bb[about(., hypercube mesh torus toroidal non-numerical
database)]

16. //article[about(.//bm//bib//bibl//bb//atl, concurrency control)]//fm//tig//atl

17. //article[about(.//fm//au, -W -Bruce -Croft)]//bb[about(.//au, W Bruce Croft)]

18. //article[about(., Hypertext Information Retrieval) and
about(.//bib//bibl//bb//atl, Hypertext Information Retrieval)]

19. //*[about(., singular value decomposition svd formula)]

20. //article[about(.//atl, Concurrency Control) and about(.//fm//hdr//hdr1//ti,
data) and about(., Concurrency Control in real-time databases)]//sec

21. //*[about(.//(p|st|it|bb), recommender system recommender agent)]

22. //article[about(.//bb//au//snm, Mannila) and (about(.//bb//au//fnm, Heikki) or
about(.//bb//au//fnm, H)) and about(., Mannila)]//fm//au

23. //article[(.//yr = 1995 or .//yr = 1996 or .//yr= 1997 or .//yr = 1998 or .//yr
= 1999) and about(.//bdy, XML electronic commerce)]

24. //article[about(.//au, Smith Jones) and about(.//bdy, software engineering and
process improvement)]

25. //article[about(.//fm//hdr//hdr1//ti, IEEE MultiMedia) and about(., QoS Quality
of Service)]

26. //article[about(.//st, XML) and about(., data processing system)]//fm//tig//atl

27. //article[about(.//atl, 1999 Reviewers List) and about(.//ti, IEEE Transactions
Visualization and Computer Graphics) and .//yr = 2000]//reviewer//name

28. //article[about(.//sec1//title, Special Feature) and about(.//ti, IEEE
Micro)]//atl

29. //*[about(.//atl, image retrieval) and about(., image retrieval colour shape
texture)]

30. //article[.//yr >= 1996 and about(., parallelism)]//au

233

31. computational biology

32. semantic web

33. software patents

34. Efficient database search structures and techniques

35. Parallel query optimization

36. Heat dissipation of microcomputer chips

37. Temporal database queries and query processing

38. multidimensional indices

39. Video on demand

40. Content-based retrieval

41. Y2K spending

42. Decryption of the Enigma code

43. approximate string matching algorithm

44. internet society communication netizen social sociology web usenet mail network
culture

45. augmented reality and medicine

46. Firewalls in internet security

47. concurrency control semantic transaction management application performance
benefit

48. active database rule specification

49. Query relaxation approximate and intelligent query answering

50. XML editors or parsers

51. Text Data Mining

52. History of Computing of USSR

53. information retrieval xml

54. knowledge building acquisition and sharing

55. Digital Divide city planning neighbourhood planning

56. open hypermedia systems and agents

57. public key cryptography RSA EC DSA algebraic number field

58. Location management scheme

59. schema integration methods

60. Internet speed

61. //article[about(.,clustering +distributed) and about(.//sec,java)]

62. //article[about(.,security +biometrics) AND about(.//sec,"facial recognition")]

63. //article[about(.,"digital library") AND about(.//p, +authorization +"access
control" +security)]

64. //article[about(., hollerith)]//sec[about(., DEHOMAG)]

65. //article[.//fm//yr > 1998 AND about(., "image retrieval")]

66. //article[.//fm//yr < 2000]//sec[about(.,"search engines")]

67. //article//fm[about(.//(tig|abs), +software +architecture) and about(., -
distributed -Web)]

68. //article[about(., +Smalltalk) or about(., +Lisp) or about(.,+Erlang) or
about(., +Java)]//bdy//sec[about(., +"garbage collection" +algorithm)]

69. //article//bdy//sec[about(.//st,"information retrieval")]

70. //article[about(.//fm//abs, "information retrieval" "digital libraries")]

71. //article[about(.,formal methods verify correctness aviation
systems)]//bdy//*[about(.,case study application model checking theorem
proving)]

72. //article[about(.//fm//au//aff,United States of
America)]//bdy//*[about(.,weather forecasting systems)]

73. //article[about(.//st,+comparison) and about(.//bib,"machine learning")]

74. //article[about(., video streaming applications)]//sec[about(., media stream
synchronization) OR about(., stream delivery protocol)]

234

75. //article[about(., Petri net) AND about(.//sec, formal definition) AND
about(.//sec, algorithm efficiency computation approximation)]

76. //article[(.//fm//yr = 2000 OR .//fm//yr = 1999) AND about(., "intelligent
transportation system")]//sec[about(.,automation +vehicle)]

77. //article[about(.//sec,"reverse engineering")]//sec[about(., legal) OR
about(.,legislation)]

78. //vt[about(.,"Information Retrieval" student)]

79. //article[about(.,XML) AND about(.,database)]

80. //article//bdy//sec[about(.,"clock synchronization" "distributed systems")]

81. //article[about(.//p,"multi concurrency control") AND about(.//p, algorithm) AND
about(.//fm//atl, databases)]

82. //article[about(.,handwriting recognition) AND about(.//fm//au,kim)]

83. //article//fm//abs[about(., "data mining" "frequent itemset")]

84. //p[about(.,overview "distributed query processing" join)]

85. //article[.//fm//yr >= 1998 and .//fig//no > 9]//sec[about(.//p,VR "virtual
reality" "virtual environment" cyberspace "augmented reality")]

86. //sec[about(.,mobile electronic payment system)]

87. //article[(.//fm//yr = 1998 OR .//fm//yr = 1999 OR .//fm//yr = 2000 OR .//fm//yr
= 2001 OR .//fm//yr = 2002) AND about(., "support vector machines")]

88. //article[(.//fm//yr = 1998 OR .//fm//yr = 1999 OR .//fm//yr = 2000 OR .//fm//yr
= 2001) AND about(., "web crawler")]

89. //article[about(.//bdy,clustering "vector quantization" +fuzzy +k-means +c-means
-SOFM -SOM)]//bm//bb[about(.,"vector quantization" +fuzzy clustering +k-means
+c-means) AND about(.//pdt,1999) AND about(.//au//snm, -kohonen)]

90. //article[about(.//sec,+trust authentication "electronic commerce" e-commerce e-
business marketplace)]//abs[about(., trust authentication)]

91. Internet traffic

92. "query tightening" "narrow the search" "incremental query answering"

93. "Charles Babbage" -institute -inst

94. "hyperlink analysis" +"topic distillation"

95. +"face recognition" approach

96. +"software cost estimation"

97. Converting Fortran source code

98. "Information Exchange" +XML "Information Integration"

99. perl features

100. +association +mining +rule +medical

101. +"t test" +information

102. distributed storage systems for grid computing

103. UML formal logic

104. Toy Story

105. +categorization "textual document" learning evaluation

106. Content protection schemes

107. "artificial intelligence" AI practical application industry "real world"

108. ontology ontologies overview "how to" practical example

109. "CPU cooling" "cooling fan design" "heatsink design" "heat dissipation" airflow
casing

110. "stream delivery" "stream synchronization" audio video streaming applications

111. "natural language processing" -"programming language" -"modeling language"
+"human language"

112. +"Cascading Style Sheets" -"Content Scrambling System"

113. "Markov models" "user behaviour"

114. +women "history of computing"

115. +"IP telephony" +challenges

116. "computer assisted art" "computer generated art"

117. Patricia Tries

235

118. "shared nothing" database

119. Optimizing joins in relational databases

120. information retrieval models

121. Real Time Operating Systems

122. Lossy Compression Algorithm

123. multidimensional index "nearest neighbour search"

124. application algorithm +clustering +k-means +c-means "vector quantization"
"speech compression" "image compression" "video compression"

125. +wearable ubiquitous mobile computing devices

126. Open standards for digital video in distance learning

236

INEX 2004 Retrieval Task
and Result Submission
Specification

01 June 2004

Retrieval Task
The retrieval task to be performed by the participating groups of INEX 2004 is defined as the ad-hoc
retrieval of XML documents. In information retrieval (IR) literature, ad-hoc retrieval is described as a
simulation of how a library might be used, and it involves the searching of a static set of documents
using a new set of topics. While the principle is the same, the difference for INEX is that the library
consists of XML documents, the queries may contain both content and structural conditions and, in
response to a query, arbitrary XML elements may be retrieved from the library. Within the ad-hoc
retrieval task we define the following two sub-tasks:

CO: Content-oriented XML retrieval using content-only (CO) queries. As described in the INEX
2004 Topic Development Guide, CO queries are requests that ignore the document structure
and contain only content related conditions, e.g. only specify what a document/component
should be about (without specifying what that component is). The need for this type of query
for the evaluation of XML retrieval stems from the fact that users may not care about the
structure of the result components. In this task, it is left to the retrieval system to identify the
most appropriate XML elements to return to the user. These elements are components that are
most specific and most exhaustive with respect to the topic of request. Most specific here
means that the component is highly focused on the topic, while exhaustive reflects that the
topic is exhaustively discussed within the component.

VCAS: Content-oriented XML retrieval based on content-and-structure (CAS) queries, where the
structural constraints of a query can be treated as vague conditions. CAS queries are topic
statements, which contain explicit references to the XML structure, and explicitly specify the
contexts of the user’s interest (e.g. target elements) and/or the contexts of certain search
concepts (e.g. containment conditions). Specifying an information need is not an easy task, in
particular for semi-structured data with a wide variety of tag names. Although users may think
they have a clear idea of the structural properties of the collection, there are likely to be
aspects to which they are unaware. The idea behind the VCAS sub-task is to allow the
evaluation of XML retrieval systems that aim to implement approaches, where not only the
content conditions within a user query are treated with uncertainty but also the expressed
structural conditions. These systems aim to return components that contain the information
sought after by the user even if the result elements do not exactly meet the structural
conditions expressed in the query. The path specifications should therefore be considered hints
as to where to look.

Note: INEX 2003 had an additional task, the SCAS sub-task. There, the structural constraints of a CAS
query had to be strictly matched. INEX can provide relevance assessments to participants interested in
the SCAS sub-task. The relevance assessments will be based on the VCAS criterion. The obtained set
of assessments will be filtered to derive the relevance assessments for SCAS. This was the approach
adopted last year, and was sufficient to indicate how effective were the approaches. The filtered set
however does not correspond to assessments that fully satisfy the SCAS criterion, and should be
considered as an “approximate set”. If enough participants are interested and depending on time and
resources, additional assessments could be performed to derive the “correct” relevance assessments for
SCAS based on the approximate set.

Result Submission
For each sub-task up to 3 runs may be submitted. The results of one run must be contained in one
submission file (e.g. up to 6 files can be submitted in total). A submission may contain up to 1500
retrieval results for each of the INEX topics included within that sub-task (e.g. for the CO sub-task only
submit the search results obtained for the CO topics).

237

2

Submission format
For relevance assessments and the evaluation of the results we require submission files to be in the
format described in this section. The overall submission format is defined in the following DTD:

<!ELEMENT inex-submission (description, topic+)>
<!ATTLIST inex-submission

participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (CO | VCAS) #REQUIRED
query (automatic | manual) #REQUIRED

>
<!ELEMENT description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic

topic-id CDATA #REQUIRED
>
<!ELEMENT result (file, path, rank?, rsv?)>
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute (available at
http://inex.is.informatik.uni-duisburg.de:2004/inex04/servlet/ShowParticipants), a run ID (which must
be unique for the submissions sent from one organisation – also please use meaningful names as much
as possible), the identification of the task (e.g. CO or VCAS), and the identification whether the query
was constructed automatically or manually from the topic. Please note that at least one of the runs for
each sub-task must be with the use of automatic queries. Furthermore each submitted run must
contain a description of the retrieval approach applied to generate the search results.

A submission contains a number of topics, each identified by its topic ID (as provided with the topics).
For each topic a maximum of 1500 result elements may be included. A result element is described by a
file name and an element path and it may include rank and/or retrieval status value (rsv) information.
Before detailing the various elements of the above DTD, here is a sample submission file:

<inex-submission participant-id="12" run-id="VSM_Aggr_06" task=”CO”
query=”automatic”>

<description>Using VSM to compute RSV at leaf level combined with
aggregation at retrieval time, assuming independence and
using augmentationweight=0.6.

</description>
<topic topic-id="01">

<result>
<file>tc/2001/t0111</file>
 <path>/article[1]/bm[1]/ack[1]</path>
<rsv>0.67</rsv>

</result>
<result>

<file>an/1995/a1004</file>
<path>/article[1]/bdy[1]/sec[1]/p[3]</path>
<rsv>0.1</rsv>

</result>
[...]

</topic>
<topic topic-id="02">

[...]
</topic>
[...]

</inex-submission>

238

3

Rank and RSV
The rank and rsv elements are provided for submissions based on a retrieval approach producing
ranked output. The ranking of the result elements can be described in terms of

• Rank values, which are consecutive natural numbers, starting with 1. Note that there can be
more than one element per rank.

• Retrieval status values (RSVs), which are positive real numbers. Note that there may be
several elements having the same RSV value.

Either of these methods may be used to describe the ranking within a submission. If both rank and rsv
are given, the rank value is used for evaluation. These elements may be omitted from a submission if a
retrieval approach does not produce ranked output.

File and path
Since XML retrieval approaches may return arbitrary XML nodes from the documents of the INEX
collection, we need a way to identify these nodes without ambiguity. Within INEX submissions,
elements are identified by means of a file name and an element (node) path specification, which must
be given in XPath syntax.

File names must be given relative to the INEX collection’s xml directory (excluding the xml
directory from the file path). The file path should use '/' for separating directories. Note that only article
files (e.g. no volume.xml files) can be referenced here. The extension .xml must be left out. Example:

an/1995/a1004

Element paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as
described by the following grammar:

Path ::= '/' ElementNode Path | '/' ElementNode '/' AttributeNode | '/' ElementNode

ElementNode ::= ElementName Index

AttributeNode ::= '@' AttributeName

Index ::= '[' integer ']'

Example:

/article[1]/bdy[1]/sec[4]/p[3]

This path identifies the element which can be found if we start at the document root, select the first
“article” element, then within that, select the first “bdy” element, within which we select the fourth
“sec” element, and finally within that element we select the third “p” element.

Important: XPath counts elements starting with 1 and takes into account the element type, e.g. if
a section had a title and two paragraphs then their paths would be given as: ../title[1],
../p[1] and ../p[2].

A result element may then be identified unambiguously using the combination of its file name and
element path. Example:

<result>
<file>an/1995/a1004</file>
<path>/article[1]/bdy[1]/sec[1]/p[3]</path>

</result>

An application that can be used to check the correctness of a given path specification is available at
http://inex.is.informatik.uni-duisburg.de:2004/browse.html. Note that this application requires the input
of a file name and element path. If these are correctly given, the specified XML element within its
container article element will be displayed.

239

4

Result Submission Procedure
To submit a run, please use the following link:

 http://inex.is.informatik.uni-duisburg.de:2004/cgi-bin/inex?mode=browse_submissions

This online submission tool will be available soon.

June 1, 2004.
Mounia Lalmas and Saadia Malik

240

1

INEX 2004 Relevance
Assessment Guide

1. Introduction
During the retrieval runs, participating organisations evaluated the 74 INEX 2004 topics (40 content-
only (CO) and 34 content-and-structure (CAS) queries) against the IEEE Computer Society document
collection and produced a list (or set) of document components (XML elements1) as their retrieval
results for each topic. The top 1500 components in a topic’s retrieval results were then submitted to
INEX. The submissions received from the different participating groups have now been pooled and
redistributed to the participating groups (to the topic authors whenever possible) for relevance
assessment. Note that the assessment of a given topic should not be regarded as a group task, but
should be provided by one person only (e.g. by the topic author or the assigned assessor).

The aim of this guide is to outline the process of providing relevance assessments for the INEX 2004
test collection. This requires first a definition of relevance for XML retrieval (Section 2), followed by
details of what (Sections 3) and how (Section 4) to assess. Finally, we describe the on-line relevance
assessment system that should be used to record your assessments (Section 5).

2. Relevance dimensions: exhaustivity and specificity
Relevance in INEX is defined according to the following two dimensions:

• Exhaustivity (E), which describes the extent to which the document component discusses the topic
of request.

• Specificity (S), which describes the extent to which the document component focuses on the topic
of request.

Exhaustivity is measured on the following 4-point scale:

Not exhaustive (E0): the document component does not discuss the topic of request at all.
Marginally exhaustive (E1): the document component discusses only few aspects of the topic of

request.
Fairly exhaustive (E2): the document component discusses many aspects of the topic of request.
Highly exhaustive (E3): the document component discusses most or all aspects of the topic of

request.

Specificity is assessed on the following 4-point scale:

Not specific (S0): the topic of request is not a theme of the document component.
Marginally specific (S1): the topic of request is a minor theme of the document component (i.e. the

component focuses on other, non-relevant topic(s), but contains some relevant information).
Fairly specific (S2): the topic of request is a major theme of the document component (i.e. the

component contains mostly relevant content and only some irrelevant content).
Highly specific (S3): the topic of request is the only theme of the document component.

Although the two dimensions are largely independent of each other, a not-exhaustive (E0) component
can only be not specific (S0) and vice versa. Other than this rule, a component may be assigned any
other combination of exhaustivity and specificity, i.e. E3S3, E3S2, E3S1, E2S3, E2S2, E2S1, E1S3,
E1S2, and E1S1. For example, a component assessed as E1S1 is one that contains only marginally
exhaustive relevant information (E1) where this relevant content is only a minor theme of the
component, i.e. most of the content is irrelevant to the topic of request (S1).

1 The terms document component and XML element are used interchangeably.

241

2

3. What to judge
Depending on the topic, a pooled result set may contain initially between 500 and 1,500 document
components of 500 - 510 articles, where a component may be a title, paragraph, subsection, section, or
whole article, etc.

Traditionally, in evaluation initiatives for information retrieval, like TREC, relevance is judged on
document level, which is treated as the atomic unit of retrieval. In XML retrieval, the retrieval results
may contain document components of varying granularity, e.g. paragraphs, sections, articles, etc.
Therefore, to provide comprehensive relevance assessment for an XML test collection, it is necessary
to obtain assessment for all components at the different levels of granularity that contain any
relevant information.

This means that if you find, say, a section of an article relevant to the topic of the request, you will then
need to provide assessment –(both with regards to exhaustivity and specificity) for the found relevant
component, for all its ascendant elements until you reach the article component, and for all its
descendant elements until you have identified all relevant sub-components.

Such comprehensive assessments are necessary as it is demonstrated by the following example.
Consider the XML structure in Figure 1. Let us say that you judged the marked sec element, which
encapsulates all text fragments relevant to the topic, as highly exhaustive and fairly specific (E3S2,
denoted by , see Table 1). Given this single assessment, it would not be possible to deduce the
exhaustivity and specificity levels of the ascending or descending elements. For example, both bdy and
article may be judged either fairly (S2) or marginally specific (S1) depending on the volume of
additional, irrelevant information contained within the other sections and in the fm and bm components.
Looking at the sub-components of our sec element, it is clear that no conclusions can be drawn from
the assessment score assigned to our sec element regarding the exhaustivity or specificity levels of its
sub-components; i.e., any of the ss1, ss2 subsections, and p paragraphs (etc.) may be highly (E3),
fairly (E2) or only marginally (E1) exhaustive, and could be highly (S3), fairly (S2) or only marginally
(S1) specific, or could even be irrelevant (E0S0). For example, one of the paragraphs of the first ss2
element may be irrelevant (E0S0), while the other may be fairly exhaustive and highly specific (E2S3).

Figure 1. Example XML structure

As a general rule, it can be said that the exhaustivity level of a parent element is always equal to or
greater than the exhaustivity level of its children elements. This is due to the cumulative nature of
exhaustiveness. For example, the parent of a highly exhaustive (E3) element will always be highly
exhaustive (E3), since the child element already discusses all or most aspects of the topic. Another rule
for the exhaustivity dimension is that a component whose child elements are all not exhaustive (E0)

[article]
 [fm]
 ...
 [bdy]

 [sec]
 [ss1]
 [ip1]
 [ss2]
 [p]
 [p]
 [ss2]
 [ip1]
 [p]
 [lc]
 [li]
 [p]
 [p]
 [li]
 [p]
 [ss1]
 [ss1]
 [sec]
 ...
 [bm]
 ...

242

3

will also be not exhaustive (E0). A rule regarding specificity is that the parent of an element whose
specificity degree is greater than 0, must also have a specificity level greater than 0, but less or equal to
the maximum S value of all its child elements. For instance, suppose that a parent element has a small
child element with S1 and a large child element with S2, then the S value of that parent can only be
either 1 or 2. However, besides these general rules, no specific rules exist that would automate all the
assessment of ascendant and descendant elements of relevant components. Therefore, you will need to
explicitly judge all elements that contain relevant information. This is the only way to ensure both
comprehensive and consistent relevance assessments.

4. How to judge
To assess the exhaustivity and specificity of document components, we recommend a three-phase
approach.

• During the first phase, you should skim-read the whole article (that a result element is a part of -
even if the result element itself is not relevant!) and identify any relevant information as you go
along. The on-line system will assist you in this task by highlighting keywords within the article
(see Section 5).

• In the second phase, you should assess the exhaustivity and specificity of the relevant components
(i.e. identified in the first phase), and that of their ascendant and descendant XML elements.

• To ensure comprehensive assessments, in the third phase, you should assess the exhaustivity and
specificity of the descendant XML elements of all elements that have been assessed as relevant
during the second phase.

The on-line assessment system (see Section 5) will identify for you all elements that have to be
assessed for phases 2 and 3.

During the relevance assessment of a given topic, all parts of the topic specification should be
consulted in the following order of priority: narrative, topic description, topic title and keywords. The
narrative should be treated as the most authoritative description of the user's information need, and
hence it serves as the main point of reference against which relevance should be assessed. In case there
is conflicting information between the narrative and other parts of a topic, the information contained in
the narrative is decisive. The keywords should be used strictly as a source of possibly relevant cue
words and hence only as a means of aiding your assessment. You should not rely only on the
presence or absence of these keywords in document components to judge their relevance. It may be
that a component contains some or maybe all the keywords, but is irrelevant to the topic of the request.
Also, there may be components that contain none of the keywords yet are relevant to the topic. The
same applies to the terms listed within the topic title!

In the case of CAS topics, the topic titles contain structural constraints in the form of XPath
expressions. Since these structural conditions are there to provide hints for the search engines, they
should be ignored during your assessment. This means that you should assess the elements returned for
a CAS topic as whether they satisfy your information need (as specified by the topic) with respect to
the content criterion only. Therefore, you should not assess an element as “irrelevant” only because
the structural condition is not satisfied.

Note that some result elements may be related to each other (ascendant/descendant), e.g. an article and
some sections or paragraphs within the article. This should not influence your assessment. For example
if the pooled result contains Chapter 1 and then Section 1.3, you should not assume that Section 1.3 is
more relevant than Sections 1.1, 1.2, and 1.4, or that Chapter 1 is more relevant than Section 1.3 or vice
versa. Remember that the pooled results are the product of different retrieval engines, which warrants
no assumptions about the level of relevance based on the number of retrieved related components!

You should judge each document component on its own merits! That is, a document component is still
relevant even if it the twentieth you have seen with the same information! It is imperative that you
maintain consistency in your judgement during assessment. Referring to the topic text from time to
time will help you maintain judgement consistency.

243

4

5. Using the on-line assessment system (X-Rai)
There is an on-line relevance assessment system (XML Retrieval Assessment Interface) provided at:

http://inex.lip6.fr/2004/xrai

which allows you to view the pooled result set of the topics assigned to you for assessment, to browse
the IEEE-CS document collection and to record your assessments. Use your INEX username and
password to access this system.

The assessment tool works with recent "gecko" browsers: we highly recommend you to use either
• Mozilla (version 1.7 or up) at http://www.mozilla.org/products/firefox/.
• Firefox (version 0.9.1 or up) at http://www.mozilla.org/products/mozilla1.x/.

Note that JavaScript must be enabled for the assessment tool to work and that the assessment tool is
not compatible with Internet Explorer.

X-Rai uses MathML in order to render mathematical formulas. Some specific fonts have to be
downloaded if you want a perfect rendering of mathematical formulas. More details can be found at the
following address: http://www.mozilla.org/projects/mathml/fonts/.

Before detailing the assessment system, first we define describe the graphical scheme employed to
represent the possible combinations of relevance values.

5.1. Relevance values
In the on-line assessment system, the following scheme is used for representing assessment values (see
also Table 1):

• Exhaustivity level is displayed in different shades of blue, where the darker the blue, the more
exhaustive the element.

• Specificity level is represented by two overlapping discs: the filled in disc denoting the
relevant content and the white disc representing the irrelevant content. A single blue disk
represents a highly specific (S3) element; a blue disc in front of the white disc denotes a fairly
specific (S2) element; a blue disc behind the white disc corresponds to the marginally specific
(S1) degree; and finally a single white disc represents a not-specific (S0) component.

The tables below show the different icons used to indicate the relevance value of an XML element.

Element is not assessed
Element is to be assessed
Element is irrelevant (E0S0)
Element is inconsistent

 Exhaustivity
Specificity

Highly exhaustive
(E3)

Fairly exhaustive
(E2)

Marginally exhaustive
(E1)

Highly specific (S3)
Fairly specific (S2)
Marginally specific (S1)

Table 1. Icons used to indicate relevance values

Note that all icons except the icon can be used by assessors to specify the relevance value (the
exhaustivity and specificity level) of an element. The icon is used by the on-line assessment system
only to mark components that are in an inconsistent state.

244

5

5.2. Home page
After logging in, you will be presented with the Home page (see Figure 2a) listing the topic ID numbers
of the topics assigned to you for assessment (under the title “Choose a pool”). This page can always be
reached by clicking on the “X-Rai” link of the menu bar on any subsequent pages.

Each X-Rai page is composed of the following components:
• The menu bar, which is itself composed of four parts:

1. The login name (e.g. “demo” in Figure 2a and “lip6” in Figure 2b),
2. A list of menu items, which can be accessed by holding the mouse over the menu

label (e.g. “Links” in Figure 2b.),
3. The location within X-Rai, where each location step is a hyperlink (in Figure 2a, we

are at the root of the web site, so the only component of the location is “X-Rai”,
which is a link to the home page),

4. The menu bar may also contain a number of icons (displayed on the right hand side,
see Figure 3a). Click on one of these icons to display (or hide):

 Information about X-Rai.

 The tree view of the article (only available in article view).

 The current list of bookmarks (only available in article view).
• The main window.
• An optional status bar (see Figure 3a and 5), displayed only when assessing a pool, i.e. in pool,

sub-collection or article view (see relevant sections below) appears at the bottom of the window
and shows statistics on the current view for each relevance value, e.g. how many elements have

been assessed as highly exhaustive and highly specific (), as highly exhaustive and fairly

specific (), etc; as irrelevant (); and how many elements remain to be assessed ().
Only when no more elements remain to be assessed is the assessment for that view (pool / sub-
collection / article) complete.
In the status bar, three arrows (, and) may be used to navigate quickly between the
elements to be assessed. You may also use the shortcut keys of shift + left / up / down. The up
arrow enables you to move to a level up in the hierarchy, e.g. from an article or a collection part
to its innermost enclosing part of the collection (you move in the opposite direction by selecting
a sub-collection or an article). The left arrow can be used to go to the previous element to be
assessed, while the right arrow to go to the next element to be assessed.

The on-line assessment system provides three main views:

1. Pool view,
2. Sub-collection view, and
3. Article view

Figure 2a. Home page for a given participant

Figure 2b. Links menu:

ß INEX’04: link to the official INEX web
site.
ß Forum: link to the site, where

discussions and bug reports related to the
assessment rules and system can be read
and posted.
ß Guide: the latest version of this

assessment guide.
ß Rules: a technical report on the passive

and active inference rules used in X-Rai
(see Inference Rules section).

245

6

5.3. Pool view
Clicking on a topic ID will display the Pool main page for that topic (see Figure 3a).

Here, a new menu item, “Pool”, appears on the menu bar at the top of the window.

Within the “Pool” menu (Figure 3b), with the “Topic” submenu item you can display the topic
statement in a popup window. This is useful as it allows you to refer to the topic text at any time during
your assessment.

The “Keywords” submenu item allows you to access a feature, where you can specify a list of words or
phrases to be highlighted when viewing the contents of an article during assessment. These cue words
or phrases can help you in locating potentially relevant texts within an article and may aid you in
speeding up your assessment (so add as many relevant cue words as you can think of!). You may edit,
add to or delete from your list of keywords at any time during your assessment (remember, however, to
refresh the currently assessed article to reflect the changes). You may also specify the preferred
highlighting colour for each and every keyword. After selecting the “Keywords” menu item, a popup
window will appear showing a table of coloured cells. A border surrounding a cell signifies a colour
that is already used for highlighting some keywords. Move the mouse over a coloured cell to display
the list of keywords that will be highlighted in that colour. To edit the list of words or phrases for a
given colour, click on the cell of your choice. You will be prompted to enter a list of words or phrases
(one per line) to highlight. You can choose three different highlighting modes using the drop-down
menu: using coloured fonts, drawing a border around the phrase or using a background colour. Note
that the words or phrases you specify will be matched against the text in the assessed documents in
their exact form, i.e. no stemming is performed.

Under the title “Collections” is the list of collections to be assessed. In INEX’04 (ad hoc task) there is
only one such collection, the IEEE collection.

The left or right arrows on the status bar move the focus to the previous or next collection, where there
is at least one element to assess (since there is only one collection, the focus will remain).

Clicking the hyperlink of “IEEE collections” will take you into the sub-collection view.

5.4. Sub-collection view
The sub-collection views allow you to browse the different sub-collections within the IEEE collection,
i.e. volumes, years within a given volume (see Figure 4), the collection of articles within a given
volume and year. Note that this view will show all elements within a sub-collection, i.e. all articles
within a given volume and year, and not only the ones that need to be assessed.

Figure 3a. Pool view

Figure 3b. Pool menu:

ß Topic: displays topic
statement.
ß Keywords: to manipulate

list of words and phrases
to highlight.

246

7

The left or right arrows on the status bar move the focus to the previous or next sub-collection, where
there is at least one element to assess. You can also directly click on a link to a sub-collection.

5.5. Article view
It is in this article view that elements can be assessed. The article view (see Figure 5) displays all
components of an article, whether these elements are to be assessed or not. In addition, the article view
shows every XML tag in the article while keeping an eye-friendly view of the article. XML tags are
displayed between brackets, in light blue font. For each component the currently assigned (or inferred)
relevance values are displayed in front of the XML tag name.

For instance, an abs element, which has been assessed as highly exhaustive and highly specific (E3S3),
is displayed with the following XML tag syntax:

To make an assessment, first hold the mouse over an XML tag name. The cursor will turn into a cross
shape. You can then:

• Left-click to display the assessment panel for the element. The assessment panel has three
components: the XPath of the selected element (first line), the current assessment value
(second line), and the set of 11 icons (reflecting all possible assignments as shown in Table 1).
Forbidden assessments (e.g. assessing a parent element as not relevant where one of its child
elements is relevant) are displayed in a grey box. To assess the current element, click on the
icon with the corresponding relevance value. To hide the panel, click anywhere else in the
panel.

Figure 4. Sub-collection view

Figure 5. Article view

247

8

• It is possible to assess groups of elements. Control-click to select the element or control-
double-click to select the sibling elements in the same “state” (i.e. elements which are

assessed or un-assessed). Then click on the green button or press the key shift-G to

display an assessment panel for the selected elements. Click on the red button or press the
key control-shift-G to clear the current selection.

• Right-click to display the navigation panel (see figure below). Depending on the element you
clicked on, there might be up to three arrows. Click on the left (or right) arrow to access the
previous (or next) sibling element in the article tree. Click on the up arrow to access the
parent. If necessary, the window scrolls up or down to make the element tag visible. The
element tag is then highlighted in red for a brief moment.

The icon at the bottom centre of the navigation panel can be used to add the currently

selected element to the list of bookmarks. Click on to remove the element from the

bookmarks. To display the list of bookmarks, click on the clip icon or press the key B.
The bookmarks are ordered with respect to the article they occur in. Click on a bookmark to
highlight the element.

It is also possible to use a document-tree view in order to navigate into the article. Click on the icon

 or press the key T. A panel then appears with the document tree view. Click on to expand a sub-
tree or on to collapse a sub-tree. Click on any element to highlight it in the article view.

5.6. Saving your assessments

Contrary to last year, the assessment tool this year does not automatically save the assessments,
but you NEED TO SAVE YOUR RELEVANCE ASSESSMENTS by clicking on the disk icon:

The icon is disabled (grey shade) when all assessments are saved.

5.7. Inference rules
This year, the assessment system makes use of two types of inference mechanisms to ensure exhaustive
and consistent assessments: we refer to these as passive and active inferences. The passive type simply
identifies new elements to be assessed based on those already assessed. For example, for any relevant
element (e.g. any component assessed other than “irrelevant”), the relevance of its child elements must
be assessed, even if these were not part of the original assessment pool (i.e. have not been retrieved).
With the application of the passive inference rules, these need-to-be-assessed components will be
marked with the icon. Unlike the passive rules, the active inference rules are able to derive the
relevance value of some elements. These inferred relevance values will be marked using a red border.
For example, denotes “inferred as not relevant”, which is (for example) assigned to a component if
all its child elements have been assessed as “not relevant”.

August 2004
Gabriella Kazai, Mounia Lalmas, and Benjamin Piwowarski

!

248

Evaluation Metrics 2004

Arjen P. de Vries
CWI

arjen@acm.org

Gabriella Kazai
Queen Mary University of London

gabs@dcs.qmul.ac.uk

Mounia Lalmas
Queen Mary University of London

mounia@dcs.qmul.ac.uk

1. INTRODUCTION
The ‘official’ INEX 2004 rankings have been based on the re-
sults of the inex-2002 metric (implemented in the inex eval

script), where a number of new quantisation functions have
been introduced besides the original strict and generalised
quantisations. The main evaluation index corresponds to
a combination (macro-average) of the inex-2002 evaluation
scores on each of these quantisations. We also report the
(set-based) overlap indicator that characterises a run by the
percentage of overlapping items in the submission.

2. THE INEX-2002 METRIC
The inex-2002 metric computes the precall measure [4] over
returned document components, and computes the proba-
bility P (rel|retr) that a component viewed by the user is
relevant:

P (rel|retr)(x) :=
x · n

x · n+ eslx·n
(1)

where eslx·n denotes the expected search length [1], i.e. the
expected number of non-relevant elements retrieved until an
arbitrary recall point x is reached, and n is the total number
of relevant components with respect to a given topic.

To apply the above metric, the two relevance dimensions
(i.e. exhaustivity and specificity) are first mapped to a sin-
gle relevance scale by employing a quantisation function,
fquant(e, s) : ES → [0, 1], where ES denotes the set of pos-
sible assessment pairs (e, s):

ES = {(0, 0), (1, 1), (1, 2), (1, 3),

(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

Two quantisation functions are used: fstrict (Equation 2)
and fgen (Equation 3). The former is used to evaluate re-
trieval methods with respect to their capability of retrieving
highly exhaustive and highly specific document components.
The generalised function credits document components ac-
cording to their degree of relevance.

fstrict(e, s) :=


1 if e = 3 and s = 3,
0 otherwise.

(2)

fgen(e, s) :=

8>>><>>>:
1 if (e, s) = (3, 3),

0.75 if (e, s) ∈ {(2, 3), (3, {2, 1})},
0.5 if (e, s) ∈ {(1, 3), (2, {2, 1})},
0.25 if (e, s) ∈ {(1, 2), (1, 1)},

0 if (e, s) = (0, 0).

(3)

3. ADDITIONAL QUANTISATION FUNC-
TIONS

Kazai et al. [3] defined a so-called specificity-oriented gener-
alised quantisation function, that better reflects the evalua-
tion criterion for XML retrieval defined in INEX, according
to which specificity plays a more dominant role than exhaus-
tivity:

fsog(e, s) :=

8>>>>>>><>>>>>>>:

1 if (e, s) = (3, 3),
0.9 if (e, s) = (2, 3),
0.75 if (e, s) ∈ {(1, 3), (3, 2)},
0.5 if (e, s) = (2, 2),
0.25 if (e, s) ∈ {(1, 2), (3, 1)},
0.1 if (e, s) ∈ {(2, 1), (1, 1)},
0 if (e, s) = (0, 0).

(4)

Following the conclusions of the metrics workgroup at INEX
2003 [2], two other classes of ‘strict’ quantisation functions
have been defined: specificity-oriented and exhaustivity-oriented
functions.

The specificity-oriented functions apply strict quantisation
with respect to the specificity dimension only, while allow
to consider different degrees of exhaustivity. They aim to
evaluate systems according to their ability to retrieve the
most specific relevant components, where the exhaustivity of
the component may vary from marginally and fairly exhaus-
tive to highly exhaustive (Equation 5) or only from fairly to
highly exhaustive (Equation 6).

fs3 e321(e, s) :=


1 if e ∈ {3, 2, 1} and s = 3,
0 otherwise.

(5)

fs3 e32(e, s) :=


1 if e ∈ {3, 2} and s = 3,
0 otherwise.

(6)

249

Similarly to the specificity-oriented functions, exhaustivity-
oriented quantisation functions have been defined as well:
Equations 7 and 8. Note, however, that these exhaustivity-
oriented functions suffer from the same overlap problem as
the generalised quantisation functions.

fe3 s321(e, s) :=


1 if e = 3 and s ∈ {3, 2, 1},
0 otherwise.

(7)

fe3 s32(e, s) :=


1 if e = 3 and s ∈ {3, 2},
0 otherwise.

(8)

4. OVERLAP INDICATOR
The (set-based) overlap indicator is defined for a result list
R as follows:

|{p ∈ R|∃q ∈ R ∧ p 6= q ∧ overlap(p, q)}|
|R| (9)

5. REFERENCES
[1] W. Cooper. Expected search length: A single measure

of retrieval effectiveness based on the weak ordering
action of retrieval systems. American Documentation,
19(1):30–41, 1968.

[2] G. Kazai. Report of the inex 2003 metrics working
group. In Proceedings of the 2nd Workshop of the
INitiative for the Evaluation of XML retrieval (INEX),
Dagstuhl, Germany, December 2003, pages 184–190,
Mar. 2004.

[3] G. Kazai, M. Lalmas, and A. de Vries. The overlap
problem in content-oriented xml retrieval evaluation. In
Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 72–79, 2004.

[4] V. Raghavan, P. Bollmann, and G. Jung. A critical
investigation of recall and precision. ACM Transactions
on Information Systems, 7(3):205–229, 1989.

250

Guidelines for Topic Development in

Heterogeneous Collections

Virginia Dignum, Roelof van Zwol
Utrecht University

{virginia, roelof}@cs.uu.nl

July 12, 2004

1 Introduction

The current INEX collection is based on a single document structure (DTD)
[1]. In practical environments, such a restriction will hold in rare cases only.
Instead, most XML collections will comprise documents from different sources,
and thus with different DTDs. Also, there will be distributed systems (feder-
ations or peer-to-peer systems), where each node manages a different type of
collection. The heterogenous track (in the remainder of this document referred
to as the het track) comes forth from the realization that an information seeker
is interested in semantically meaningful answers irrespectively of the structure
of the documents. As in the ad-hoc track, both content-only (CO) and content-
and-structure (CAS) should be possible in the het track.

CO queries are DTD-independent and as such, running CO queries defined
for the ad-hoc track in the het collection should provide reasonable answers.
CAS topics are more interesting and challenging. For CAS queries, there is
the problem of mapping structural conditions from one DTD onto other (possi-
bly unknown) DTDs. Methods from federated databases could be applied here,
where schema mappings between the different DTDs are defined manually. How-
ever, for a larger number of DTDs, automatic methods must be developed, e.g.
based on ontologies. Some work has been done on the derivation of DTDs from
ontologies (e.g. [2]). Although interesting, such work is actually the inverse of
what the het-track requires. The ultimate aim of this track is (1) to develop a
generic ontology for scientific publications information, and (2) automatically
generate the equivalence between that ontology and different document DTDs.

The current aim of this document is to present initial ideas concerning the de-
velopment and assessment of CAS topics for the het track. Different approaches
are described from basic single constraint to complex topics which assessment
will require path transformation methods and probabilistic approaches. Since

1

251

this year is the first time that we will assess heterogeneous collections, we think
that it is more important to get a good feeling of the challenges and problems
related to heterogeneous collections than to achieve the best retrieval results
possible.

This document is organized as follows. In the next section, we introduced
three different types of CAS topics for the het track (plus a brief reference to
CO topics) including example topics. In section 4 we present the format to be
used in the specification of het topics.

2 Topic Creation

At this early stage of the Het track, the focus of topic creation is, in our opinion,
not so much the retrieval performance for the topic, but to gain experience with
retrieval in heterogenous collections.

Usually, the effectiveness of a retrieval strategy is judged in terms of perfor-
mance over a large set of topics. In the current stage of het track, an effective
retrieval strategy is one that is able to query several collections.

3 Het Topic Types

Given the objectives for het retrieval strategies described in the previous sec-
tions, we propose to use different topics types, as follows:

• CO: is not challenging for the het track. Since CO queries do not take
structural information into account, however, any CO query used in the
ad-hoc track can be used in the het track and give similar results (because
the test collection used for the ad-hoc track is part of the het track).

• BCAS (Basic Content and Structure Topics): This type of topics focuses
on the combination of singular structural constraints with a content-based
constraint. The aim is synonym matches for structural constraints.

• CCAS (Complex Content and Structure Topics): are the het track equiv-
alent of the CAS topics of the ad-hoc track, specified used the NEXI
language. The aim is to enable transformations and partial mappings of
the topic path upon the different collections in the het track, without
loosing the IR component of the topic.

• ECCAS (Extented Content and Structure Topics): extend CCAS to en-
able the specification of the correctness path transformation and mapping
probabilities.

2

252

3.1 Content-only

The treatment of CO queries, as it does not depend on the structure of the
document collection, is exactly the same as in the ad-hoc track. Since the
collection used in the ad-hoc track is one of the collections available for the het
track, the aim is that all documents assessed relevant in the ad-hoc track for
a given CO topic must be as well retrieved by retrieval tools to be used in the
het track. As such, we will not further discuss CO queries but, at least for this
year, will use the CO topics available for the ad-hoc track.

3.2 Basic CAS

The motivation for BCAS is based on the assumption that each retrieval system
in the Het track should be able to retrieve related XML fragments in seman-
tically similar document collections. In its simplest form the retrieval system
should be capable to successfully match an atomic structural constraint upon
semantically similar XML fragments. Figure 1 shows three XML fragments,
and an example topic for the BCAS sub track. It illustrates how a single atomic
structural constraint and a single content-based constraint can be expanded, and
matched upon several semantically similar structures. We think its worthwhile
to investigate the systems ability to find semantically and textually relevant
pieces of information that match a single structural constraint.

<author>William Tell</author>
(a) XML fragment 1
<writer fname=’William’ lname=’Tell’/>
(b) XML fragment 2
<author>

<firstname>William</firstname>
<lastname>Tell</lastname>

</author>
(c) XML fragment 3
//author[about(., ’’William Tell’’)

Figure 1: XML document fragments

The format of a BCAS topic can thus be described using NEXI syntax as
follows:

//struct constraint[about(., content constraint)],
where struct constraint is an atomic structural reference and content constraint
a textual reference. At this stage, we think that structural constraints should be
specified using DTD concepts as in the ad-hoc collection. A possible extension
will be to form topics using other DTDs in the het-collection.

Examples are:

3

253

• //author[about(.,′ JohnSmith′)]

• //title[about(.,′ InformationRetrieval′)]

• not ad-hoc DTD: //writer[about(.,′ JohnSmith′)]

3.3 Complex CAS

The CCAS sub-track makes use of the system’s ability to resolve combined (com-
plex) structural constraints, that allow a wide range of path transformations to
be incorporated and matched upon the XML fragments that are considered rel-
evant for a topic. This sub-track can be compared to CAS topics in the ad-hoc
track.
Query format: CCAS titles are XPath expressions of the form:

A[B]
or
A[B]C[D]

where A and C are navigational XPath expressions using only the descendant
axis. B and D are predicates using about-functions for text; the arithmetic
operators <, <=, >, and >= for numbers; and the connectives and and or (cf.
[1]).

As in the BCAS sub-track, we think that in a first step, elements of the
DTD used currently for the ad-hoc track should be used to specify structural
references. Extensions to this track will allow the use of other DTDs to specify
structural constraints.

3.4 Extended Complex CAS

With this sub-track, we mean to explore the possibilities to describe the uncer-
tainty of the information seeker irt the specific structure constraint sought. We
assume here that the user is able to express the probability of the likelihood of
a given structural constraint.
For example, a seeker might be looking for experts in information retrieval.
She expects that authors of publications on IR, with a probability of 70% (this
means that there is a 30% probability that the information she is looking for is
represented using a semantically different tag). To determine that a publication
is about IR, she expects that in 50% of the cases, the title of the publication
will contain IR In this case, a ECCAS query would look like:
//author(0.8)[about(title(0.5),′ InformationRetrieval′)]

Query format: ECCAS queries are specified as XPath expressions of the form:
A(P)[B]
or

4

254

A(P)[B]C(P)[D]
where (P) is the probability value given by the user to a structural constraint.

4 Topic Format

Title Short description of information need.

• BCAS

• CCAS

• ECCAS

Content Description (as in ad-hoc track) natural language definition of the
content needed

Structure Description (!new for Het track!) natural language definition of
the structure characteristics been looked for (e.g. The user is looking for
authors that wrote about XML retrieval: Author is a tag identifying the
person, persons, or institutions that have written/compiled the document.
It is usually part of the front matter/editorial section of a document)

Narrative (as in ad-hoc track) detailed explanation of the information needs
and the description of what makes a document relevant or not

Keywords (as in ad-hoc track) a set of comma separated scan terms.

5 Het Topic Assessment

In the following, some thoughts concerning the assessment of het-topics.

1. Structure is described using standard language (e.g. the one used in the
ad-hoc track)

2. structure is described in terms of any one of the DTDs in the collection

3. description of the structure includes as many as possible synonyms of
terms

4. natural language description of content (as is the case for content descrip-
tion, in the ad-hoc track)

The choice for either of these options has consequences for the retrieval perfor-
mance of the tool (precision and recall):

5

255

• if equivalence classes for DTDs are available, then in the first three case
above, a possible solution is to ’translate’ the query into as many DTDs as
possible and run all those sub-queries on documents of the given DTD. For
example, if it is known that ’author’, ’name’ and ’writer’ are all possible
classes names to indicate the author of a document, a query on ’author’
should be able to return as relevant, documents that contain information
on ’name’ and ’writer’ as well.

• if equivalence classes are not available, in the first two cases above, queries
will only hit and return answers from documents that follow the DTD
used in the query. Taking, the same example, now a query on ’author’
only identifies as relevant documents which DTD contains class ’author’
and ignores documents which describe ’writer’ or ’name’.

• (semi) automatic learning of DTDs.

References

[1] INEX04 Guidelines for Topic Development, http://inex.is.informatik.uni-
duisburg.de:2004/internal/pdf/INEX04TopicDevGuide.pdf

[2] Michael Erdmann, Rudi Studer: How to structure and access XML doc-
uments with ontologies. Data & Knowledge Engineering, 36(3): 317-335
2001

6

256

 INEX 2004 Heterogeneous
Track Result Submission
Specification

Result Submission
For at least 5 (freely chosen) topics, for each topic up to 3 runs may be submitted. The results of one
run must be contained in one submission file (e.g. up to 3 files can be submitted per topic). A
submission may contain up to 1500 retrieval results for each of the topics. Runs should be submitted
until October 18, 2004.

Submission format
For relevance assessments and the evaluation of the results we require submission files to be in the
format described in this section. The overall submission format is defined in the following DTD:

<!-- XML predefined entities -->
<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">

<!ELEMENT inex_het_track_submission (description, topic+)>
<!ATTLIST inex_het_track_submission
participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
query (automatic | manual) #REQUIRED
topic-part (T|D|K|TD|TK|DK|TDK) #IMPLIED
task CDATA #IMPLIED
>

<!ELEMENT description (#PCDATA)>

<!ELEMENT topic (subcollections, result*)>
<!ATTLIST topic
topic-id CDATA #REQUIRED
>
<!ELEMENT subcollections (subcollection+)>
<!ELEMENT result (subcollection, file, path, rank?, rsv?)>
<!ELEMENT subcollection EMPTY>
<!ATTLIST subcollection name CDATA #REQUIRED>

<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute (available at
http://inex.is.informatik.uni-duisburg.de:2004/inex04/servlet/ShowParticipants), a run ID (which must
be unique for the submissions sent from one organisation – also please use meaningful names as much
as possible), the identification whether the query was constructed automatically or manually from the
topic. The submission may contain topic-part that was used for searching and task and task type.
Furthermore each submitted run must contain a description of the retrieval approach applied to generate
the search results. A submission contains a number of topics, each identified by its topic ID (as
provided with the topics).
For each topic the considered subcollections must be specified and a maximum of 1500 result elements
may be included. A result element is described by a file name, the subcollection in that the result
element has been found, an element path and it may include rank and/or retrieval status value (rsv)
information.

257

Before detailing the various elements
of the above DTD, here is a sample submission file:

<inex_het_track_submission participant-id="16" run-id="VSM_Aggr_06" query="manual">

 <description>Using VSM to compute RSV at leaf level combined with aggregation
at retrieval time, assuming independence and using
augmentationweight=0.6.</description>
 <topic topic-id="01">
 <subcollections>
 <subcollection name="Berkeley"/>
 <subcollection name="CompuScience"/>
 <subcollection name="hcibib"/>
 </subcollections>
 <result>
 <subcollection name="hcibib"/>
 <file>hcibib</file>
 <path>/article[1]/bm[1]/ack[1]</path>
 <rank>1</rank>
 <rsv>.05234</rsv>
 </result>
 <result>
 <subcollection name="CompuScience"/>
 [...]
 </result>
 <result>
 [...]
 </result>
 [...]
 </topic>
 <topic topic-id="02">
 [...]
 </topic>
</inex_het_track_submission>

Rank and RSV
The rank and rsv elements are provided for submissions based on a retrieval approach producing
ranked output. The ranking of the result elements can be described in terms of

• Rank values, which are consecutive natural numbers, starting with 1.
• Retrieval status values (RSVs), which are positive real numbers. Note that there may be

several elements having the same RSV value.

Either of these methods may be used to describe the ranking within a submission. If both rank and rsv
are given, the rank value is used for evaluation. These elements may be omitted from a submission if a
retrieval approach does not produce ranked output.

File and path
Since XML retrieval approaches may return arbitrary XML nodes from the documents of the INEX Het
Track collection, we need a way to identify these nodes without ambiguity. Within INEX Het Track
submissions, elements are identified by means of a file name, subcollection name and an element
(node) path specification, which must be given in XPath syntax. File names must be given relative to
the INEX Het Track subcollection’s directory (excluding the subcollection directory from the file path).
The file path should use '/' for separating directories. Note that only article files (e.g. no volume.xml
files) can be referenced here. The extension .xml must be left out.
Example:

 an/1995/a1004

Element paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as
described by the following grammar:

 Path ::= '/' ElementNode Path

| '/' ElementNode '/' AttributeNode
| '/' ElementNode

 ElementNode ::= ElementName Index

 2
258

 AttributeNode ::= '@' AttributeName

 Index ::= '[' integer ']'

Example:

 /article[1]/bdy[1]/sec[4]/p[3]

This path identifies the element which can be found if we start at the document root, select the first
“article” element, then within that, select the first “bdy” element, within which we select the fourth
“sec” element, and finally within that element we select the third “p” element.

Important: XPath counts elements starting with 1 and takes into account the element type, e.g. if a
section had a title and two paragraphs then their paths would be given as: ../title[1], ../p[1]
and ../p[2].

A result element may then be identified unambiguously using the combination of its subcollection, file
name and element path.

Examples:

<result>
 <subcollection name=”qmuldcsdbpub”>
 <file>qmuldcsdbpub</file>
 <path>/document[1]/title[1]</path>
</result>

<result>
 <subcollection name=”Berkeley”>
 <file>marc_cs_data_v2_utf8_hettrack</file>
 <path>/document[1]/title[1]</path>
</result>

Result Submission Procedure
To submit a run, please use the following link:
http://inex.is.informatik.uni-duisburg.de:2004/cgi-bin/inex?mode=browse_submissions_het

October 13, 2004
Zoltán Szlávik, Thomas Rölleke

 3
259

 INEX 2004 Interactive
Track Guidelines

Motivation
The main motivation for the track is twofold. First, to investigate the behaviour of users when interacting
with components of XML documents, and secondly to investigate and develop approaches for XML
retrieval which are effective in user-based environments.

For 2004, we address the first issue: to investigate the behaviour of searchers when presented with the
retrieved components of XML documents.

Data collection to be used
The INEX data collection from the ad hoc track (version 1.4) will be used in the track.

Tasks/Topics
The tasks used are derived from the CO INEX 2004 topics. In order to make the topics comprehensible
by other than the topic author, it was required that the INEX 2004 topics not only detail what is being
sought for, but also why this is wanted, and in what context the information need has arisen. The aim of
this extension of the topics was for them to act as simulated work task situations that, on the one hand
will allow the test persons to engage in realistic searching behaviour, and on the other provide a certain
level of experimental control by being common across test persons.

Four tasks will be used, divided into two task categories. The idea is to explore the effect that task type
may also have on user behaviour. The categories to be used are:

- Background category (B): Most of the INEX topics are in this category. The topics express an

information need in the form of “I’d like to find out about X”. Two tasks will be given in this
category, based on topics 192 and 180. The tasks will correspond to part of the Narrative and will be
distributed to participants.

- Comparison category (C): There are a number of topics whose subject is along the lines of: “Find

differences between X and Y”. Two tasks will be given in this category, based on topics 188 and
198. The tasks will correspond to part of the Narrative and will be distributed to participants.

Each searcher will choose one task from each category. This allows the topic to be more “relevant” and
interesting to the searcher. A maximum time limit of 30 minutes will apply. Sessions can finish before
this if searchers feel they have completed the task.

Instructions to be given to Searchers
A document with “Instructions for searchers” will be made available for download from the track pages
(http://inex.is.informatik.uni-duisburg.de:2004/tracks/int/). This will briefly outline the purpose of the
study, the nature of the corpus, and how to assess the components returned by the system.

Please note that in contrast to the assessments made for the ad hoc track, there is no requirement on the
test persons to view each retrieved component as independent from other components viewed.
Experiences from user studies clearly show that users learn from what they see during a search session.
To impose a requirement on searchers to discard this knowledge creates an artificial situation and will
restrain the test persons from interacting with the retrieved components in a natural way.

Two aspects of relevance are measured in the assessments: the extent to which the retrieved component
contains information that is useful for solving the given task, and the extent to which the retrieved

260

component is focussed on the topic of the task, i.e., how specific the retrieved information is in relation
to the task.

The usefulness is measured on the following scale:

Highly useful (3): The displayed component contains information that is useful for solving
most or all aspects of the task.

Fairly useful (2): The displayed component contains information that is useful for solving
many aspects of the task.

Marginally useful (1): The displayed component contains information that is only useful for
solving a single or very few aspects of the task.

Not useful (0): The displayed component does not discuss the topic of interest at all, and is of
no help in solving the task.

The specificity is measured on the following scale:

Highly specific (3): The topic of the task is the only theme of the displayed component.

Fairly specific (2): The topic of the task is a major theme of the displayed component.

Marginally specific (1): The topic of the task is a minor theme of the displayed component.

Not specific (0): The topic of the task is not a theme of the displayed component.

As can be noted the definitions of usefulness and specificity are close to those in the ad hoc track. The
amount of information valuable for solving a task is labelled usefulness rather than exhaustiveness
because we believe that usefulness is a much more understandable concept to test persons and easier to
relate to the task.

The two scales are combined into the following 10 categories on the relevance assessment list:

Very useful & Very specific
Very useful & Fairly specific
Very useful & Marginally specific
Fairly useful & Very specific
Fairly useful & Fairly specific
Fairly useful & Marginally specific
Marginally useful & Very specific
Marginally useful & Fairly specific
Marginally useful & Marginally specific
Contains no relevant information

The intention with the scale is to measure the amount of relevant information contributed to the solving
of the task by the displayed components, and at the same time measure how specific the information in
the component is.

System
For this first year of the interactive track a system will be provided by the organisers. The system used is
the HyREX XML search engine for the retrieval of document components, and a custom made interface
to display results, collect relevance assessments and allow browsing. A brief guide to the system will be
made available to participants along with information on how to access the system via the web, or how to
install it locally. Two interfaces are available in the system: A simple baseline interface and an additional
graphical interface. Each site must submit logs and questionnaires for at least 8 searchers with the
former interface, i.e. the simple baseline interface described in Section 4 of the System guide. The latter
interface is an advanced graphical interface based on Partial Treemaps (See Section 5 of the system
guide). The use of the advanced interface is optional and will require additional searchers.

Page 2 of 4
261

Experimental Design
A minimum of 8 searchers from each participating site will be used. Each searcher will search on one
task from each task category. The task will be chosen by the searcher. The order in which task categories
are performed by searchers will be permuted. This means that one complete round of the experiment
requires only 2 searchers.

The order of an experimental session will be:
1 Introductory stuff: General briefing of the experiment and procedures
2 Before-experiment questionnaire
3 Hand out Instructions for Searchers
4 System tutorial
5 Category task selection from the first category
6 Before-task questionnaire
7 Search session
8 After-task questionnaire
9 Repeat 5-8 for the other task category
10 After-experiment questionnaire
11 Informal discussion/interview: any additional views on the experiment, system, etc. the searcher

wishes to share.

It is important that the experiment takes place in an undisturbed environment, and that an experimenter is
present in the room at all times. The role of the experimenter is to remain in the background and be ready
to help out in case of problems with the system, and to oversee that everything goes according to plan.
The system training and the two tasks should be performed in one, continuous session.

The minimum experimental matrix for one site will be:

Searcher First task category Second task category
1 Background (B) Comparison (C)
2 (C) (B)
3 (B) (C)
4 (C) (B)
5 (B) (C)
6 (C) (B)
7 (B) (C)
8 (C) (B)

This matrix can be augmented by adding blocks of 4 users (a total of 12, 16, 20, etc. users).

System Logs
The bulk of the data from this study will be collected in the system logs. It is important to ensure that
each search session is saved in an appropriately named log file. The file name must consist of the id of
the participating site (the one used for logging into the participants area on the INEX web site, e.g., qmul,
lip6, dbdk, etc.), searcher id, and task type. For example,

qmul_searcher001_B.log
qmul_searcher001_C.log

Questionnaires
A number of questionnaires are provided by the track organisers, and each of these must be completed
for every searcher/task. It is important to ensure that the searcher id, experimental condition and other ids
are clearly marked on each questionnaire. To allow this, there are fields to be filled by the experimenter
at the top of the questionnaires:
- Participating site: the name of the organisation (e.g. qmul, cwi, lip6, etc.)
- Searcher id: an identifier for the searcher indicated by a number (searcher id must match the id used

in the respective log filename – see previous section)
- Searcher condition (BC/CB): Indicates whether the searcher executes a background task first and

then a comparison one (BC) or vice-versa (CB)

Page 3 of 4
262

- Task ID (B1 B2 C1 C2): the four ids correspond to the task ids; the appropriate id should be circled.

In addition to the questionnaires, there is a form that can be used by the experimenter present at the study
for noting any problems, comments, questions or interesting observations about the searchers’ behaviour.
In addition, the times when searches begin and end a task should be noted, as well as any irregularities in
the experiment (for instance, if the searching is interrupted for some reason). A spreadsheet will be
provided by the track organisers in which to record the data from the different paper questionnaires filled
in by each searcher. The spreadsheets should be saved using file names similar to those of the logs, e.g.,

qmul_searcher001.xls
qmul_searcher002.xls

Submission of Results
The 2 logs from each searcher session, and the spreadsheet with the questionnaire data from each
searcher must be e-mailed back to the track organisers at tassos@dcs.qmul.ac.uk
In addition, a photocopy of the completed questionnaires should be posted to:
Tassos Tombros, Department of Computer Science, Queen Mary University of London, Mile End Rd.,
London E1 4NS, U.K.

After submission the track organisers will check the submissions and bundle the log and questionnaire
data into a package that will be made available to all active participants in the track. The package will
also be made available to the group under INEX working with metrics for the purpose of developing
better ones. An initial analysis of the results will be done by the track organisers and the results will be
presented at the INEX Workshop. The track participants may also analyse the data in any way they see
fit, and present the results of such analyses at the INEX workshop or in other fora. It is also hoped that
after the workshop in Dagstuhl interested participants will agree to work together on analysing specific
aspects of the data.

Schedule
Distribution of Guidelines, Tasks, System and System Documentation: 15 September 2004
Submission of results to track organisers: 30 October 2004
INEX 2004 Workshop: 6-8 December 2004

September 16, 2004
Tassos Tombros, Birger Larsen, Saadia Malik

Page 4 of 4
263

HyREX for INEX iTrack

Saadia Malik
University of Duisburg-Essen

Anastasios Tombros
Queen Mary University of London

Birger Larsen
Royal School of Library and Information Science

17th September 2004

1 Introduction

For iTrack, we plan to use theHyper-media Retrieval Engine for XML (HyREX)infor-
mation retrieval system with two different interfaces. One, simple interface, presents
the results in simple ranked list and will be used as a baseline system while the other,
graphical interface, presents the results in Partial Treemaps. The interfaces are opti-
mised for and tested on Mozilla 1.6 and later versions, as well as Mozilla Firefox 0.9.3
(can be downloaded fromhttp://www.mozilla.org)

The aim of this document is to describe these interfaces, as well as the logging and
downloading information in detail.

2 Logging in

On the login page the experimenter must choose between the simple baseline system
or the graphical interface. Either option will result in a prompt for User Name and
Password. The organisers will provide user names and passwords for every test person
that comply with the naming rules detailed in the Track guidelines (the use of which
will ensure that the log files are named correctly).

The login of the current user is displayed in the top left corner of the search and
result pages. To login as a different user all browser windows need to be closed. In
addition to the logins for the interface, the user name and password for the INEX
participants’ area is needed in order to display the retrieved documents. This will be
prompted for once on displaying the first document.

New users may be created from the login page, but are not effective until the server
is restarted by the organisers.

3 Query Posting

After logging in a search form appears. The search form accepts Content-only (CO)
Queries. These ignore the document structure and contain only content related condi-
tions, e.g., only specifying what a document/component should be about. A CO query
can be a set of space separated terms where a term may be a single word or a phrase

1

264

encapsulated in double quotes. No other operators are currently supported by the inter-
face.

4 Simple Interface

After the query submission, a new browser window is opened. This contains the result
list with up to 100 top-ranked search results with 10 results per page. Results from
11 to 100 can be viewed by clicking the ’next’ link or a page number on the top of
the result list. Each result is presented in the form of a summary consisting of rank,
article title, author information, retrieval status value (rsv), and a pointer to the path of
retrieved document component.

The last query issued is shown on top of the page along with a search form. A new,
modified query can be entered in the search form. It is also possible to close the result
list window and submit a new query in the initial search form.

A screenshot of the result list can be seen in Fig 1.

Figure 1: Ranked result list in simple interface

4.1 Result Detail

Clicking on the path of a retrieved component opens that specific document part in
a new browser window together with a table of contents view. The table of contents
is a tree view of the document but certain unimportant XML elements are left out
to constrict the size of the tree. The retained elements are those that contribute to
the overall logical structure of the document. Typically, section elements would be
included but, e.g., the bold element would not be included. The document component
currently selected is highlighted in yellow in the table of contents view. Sometimes this
may not work so aRefreshbutton is available at the top of the table of contents view.

2

265

Next and Previous buttons (when possible) are available at the top of the document
view to navigate back and forth in the document. Query terms are highlighted in red
colour.

On the top and bottom of the document part view the user is asked to provide rel-
evance assessments from a drop down box preceded byRelevance of the displayed
information. Two aspects of relevance are to be assessed: the extent to which the re-
trieved component contains information that isusefulfor solving the given task, and
the extent to which the retrieved component is focussed on the topic of the task, i.e.,
howspecificthe retrieved information is in relation to the task. See theInstructions for
searchersfor a precise definition of the two aspects.

Graded expressions of the two aspect are combined in a single 10 point scale. The
possible values are:
• Very useful & Very specific
• Very useful & Fairly specific
• Very useful & Marginally specific
• Fairly useful & Very specific
• Fairly useful & Fairly specific
• Fairly useful & Marginally specific
• Marginally useful & Very specific
• Marginally useful & Fairly specific
• Marginally useful & Marginally specific
• Contains no relevant information
Once the user has finished browsing and assessing a document, the document

should be closed before moving on to a new hit in the result list window. This can be
done with the ’Close document’ link in the top right corner, or by closing the browser
window. A screenshot of the result detail window can be seen in Fig 2.

Figure 2: Result detail screenshot

3

266

5 Graphical Interface

5.1 Overview Page

At the overview page, the result set is clustered document-wise and a summary of
each retrieved document is presented. The summary contains rank, title of the article,
author(s), a grey shaded rectangle, and a red bar below the grey rectangle. The grey
colour shades illustrate the retrieval weights and the red bar of varying length shows the
number of hits. On mouseover, a Tooltip is provided on the grey rectangles and on the
red bars to provide information about the retrieval weight and no of hit(s) respectively.
Clicking on a title presents the result detail in Partial TreeMaps.

A screenshot can be seen in Fig 3.

Figure 3: Screenshot depicting graphical overview clustered document wise

5.2 Partial Treemaps

This interface is developed in order to cover two aspects of XML retrieval:
1. structural or hierarchal relationship among the document elements
2. varying granularity or size of answer elements
The main idea is based on TreeMaps [Johnson and Shneiderman(1991)] that uses

two dimensions in order to illustrate the structure of XML documents. A document
is represented in a rectangular area and split horizontally and vertically alternatively
to represent the different levels. For example, horizontal splitting for first level nodes,
vertical splitting for second level nodes and horizontal splitting again for third level
nodes, and so on. However, for XML documents this representation is too cluttered.
Therefore, the treemap concept is augmented and the concept ofPartial Treemapsis
introduced in which non-retrived nodes and ancestors of non-retrieved items are omit-
ted [Kriewel(2001)].

Tooltips provide additional information about the retrieved components such as
first 150 characters of contents and component name, e.g., article, section, subsection

4

267

etc. On the top of the Treemap view, all the retrieved documents are shown as small
rectangles in grey shades along with theNextandPrevioushyperlinks. In addition to
Partial Treemaps and overview, the contents of a particular document component are
also shown together with the table of contents view of the document as described above
in subsection 4.1. A screenshot can be seen in Fig 4.

Figure 4: Screenshot depicting Partial Treemaps

6 Logging

All the events are logged in xml and plain text file format. These events include
• Feedback given by user
• document components viewed by user
• which path is followed to view this document component such as overview, struc-

ture, next previous button, treemaps.
For all these events query,docid, file, document component, rsv, and relevance of
the document or document components are logged.

7 Downloading

The system is made available in two versions: One with the HyREX engine and inter-
face mounted centrally at servers in Duisburg, and one with a local, offline installation
of the interface which connects to the HyREX engine in Duisburg. The local interface
comes with a detailed installation guide. The Online system can be accessed via

http://inex1.is.informatik.uni-duisburg.de:8080/ufi/
andhttp://inex2.is.informatik.uni-duisburg.de:8080/ufi/

The local system is made available on the following ftp server for download:
ftp://ftp.is.informatik.uni-duisburg.de/pub/projects/hyrex/

5

268

References

[Johnson and Shneiderman(1991)] Brian Johnson and Ben Shneiderman. Tree-maps:
A space filling approach to the visualization of hierarchical information structures.
Technical Report CS-TR-2657, University of Maryland, Computer Science De-
partment, April 1991.

[Kriewel(2001)] Sascha Kriewel. Visualisierung für retrieval von XML-dokumenten.
Master’s thesis, University of Dortmund, CS Dept., December 2001.

6

269

Instructions for Searchers

Thank you for agreeing to participate in the experiment. All the collected data will be treated as
confidential and it will not be possible to identify you as person with the data after the experiment has
ended.

The goal of the study is to investigate the performance of a new system for information retrieval.

You will be asked to search on a number of tasks on a single search system. You will first be given a
practice run with the system. In this run you will only use the terms “Information retrieval”. During this
practice run you can ask any questions about any of the features of the system. The collection you will
be searching consists of full text articles from the journals published by the IEEE Computer Society.
The broad topic area is computer science with a focus on hardware and software development. The
time span covered by the collection is 1995 to 2002.

In this experiment you will be asked to search on tasks from two task categories. For each category,
you will have a choice of one from two available tasks. For each task you can take a maximum of 30
minutes. If you feel you have completed the task before the 30 minute period you can notify the
experimenter and the session will be stopped.

The system may present whole articles or parts of articles to you. Feel free to browse the results
returned by the system and to submit as many different queries to the system as you like for each task.
It is an important aspect of the experiment to collect your assessments of the relevance of the
information presented to you by the system. To help us collect this data, please select a score from the
relevance assessment list for each viewed piece of information. After selecting a score press ‘Submit’
to record the score in the system.

You will be asked to assess two aspects of relevance: the extent to which the retrieved component
contains information that is useful for solving the given task, and the extent to which the retrieved
component is focussed on the topic of the task, i.e., how specific the retrieved information is in relation
to the task.

The usefulness is measured on the following scale:

Highly useful (3): The displayed component contains information that is useful for solving
most or all aspects of the task.

Fairly useful (2): The displayed component contains information that is useful for solving
many aspects of the task.

Marginally useful (1): The displayed component contains information that is only useful for
solving a single or very few aspects of the task.

Not useful (0): The displayed component does not discuss the topic of interest at all, and is of
no help in solving the task.

The specificity is measured on the following scale:

Highly specific (3): The topic of the task is the only theme of the displayed component.

Fairly specific (2): The topic of the task is a major theme of the displayed component.

Marginally specific (1): The topic of the task is a minor theme of the displayed component.

Not specific (0): The topic of the task is not a theme of the displayed component.

270

The two scales are combined into the following 10 categories on the relevance assessment list:

Very useful & Very specific
Very useful & Fairly specific
Very useful & Marginally specific
Fairly useful & Very specific
Fairly useful & Fairly specific
Fairly useful & Marginally specific
Marginally useful & Very specific
Marginally useful & Fairly specific
Marginally useful & Marginally specific
Contains no relevant information

During the experiment you will also be asked to complete several additional questionnaires:
- Before the experiment (measuring search experience)
- Before each task (measuring task familiarity)
- After each task
- After the experiment (collecting experiment feedback)

Thank you for your help!

271

